The early Drosophila embryo: a little something for everyone

Adam Martin

Massachusetts Institute of Technology

July 23, 2019 – KITP Morphogenesis

Drosophila embryo: Everything a Biophysicist could want (in a couple hrs)

Time (4 hours)

2) Patterned gene expression3) Cellularization

4) Morphogenesis

Plasma Membrane Myosin motor

Microtubules DNA

Different transcription factors

Development involves global tissue movements

Development involves global tissue movements

Development involves global tissue movements

Cell cycle transitions during early development

nuclear replication (cell cycle ~nine minutes)

Eric Wieschaus

Cell cycle transitions during early development

nuclear replication (cell cycle ~nine minutes)

Eric Wieschaus

Cell cycle transitions during early development

nuclear replication (cell cycle ~nine minutes)

Eric Wieschaus

After cells form, cell division occurs in mitotic domains

Chanet et al., 2017

After cells form, cell division occurs in mitotic domains

Chanet et al., 2017

After cells form, cell division occurs in mitotic domains

Chanet et al., 2017

Morphogen signaling leads to gradient in nuclear Dorsal

Shilo et al., 2013

Morphogen signaling leads to gradient in nuclear Dorsal

Shilo et al., 2013

<u>The Dorsal protein defines the ventral side of</u> <u>the embryo</u>

Dorsal protein (NF-kB transcription factor)

Kanodia et al., 2009

<u>Dorsal concentration and cross-regulation</u> <u>establish domains of gene expression</u>

M. Levine's lab

Cellularization: 1 to 6,000 cells in 1 hour

Cellularization: 1 to 6,000 cells in 1 hour

Cellularization: 1 to 6,000 cells in 1 hour

	Dlg	F-actin		Sokac & Wieschaus, 2008	
2 1 3-4 C 84 C 84	3 1 1 2 1 34 1 34	an sean tá cana Singan Annaichte	DINSILL	<u> 11111111</u>	THE REAL
	4 + 1 + 1 1 + + + 1 7 - 1		MAN		mmm
				日期月月	teres in her

Cells that form are epithelial in nature

Cells that form are epithelial in nature

Epithelial cells undergo various shape changes and rearrangements to sculpt tissues

Epithelial cells undergo various shape changes and rearrangements to sculpt tissues

Myosin 2 (myosin) is thought to generate force to drive morphogenesis

Myosin 2 (myosin) is thought to generate force to drive morphogenesis

Simple model for constriction

Apical

Inactive RhoA-GDP

Basal
Apical

Inactive RhoA-GDP

- Inactive RhoA-GDP
- Active RhoA-GTP

Apical

Adherens junctions serve as anchor points for contraction to pull

Adherens junctions serve as anchor points for contraction to pull

Distinct morphogenetic programs arise from different patterns of cell contractility

Radial Cell Polarity (RCP)

Tissue bending (Apical constriction)

Distinct morphogenetic programs arise from different patterns of cell contractility

In Drosophila, ventral cells fold inward / invaginate

Sweeton, D., et al. *Development* (1991)

In Drosophila, ventral cells fold inward / invaginate

Sweeton, D., et al. *Development* (1991)

In Drosophila, ventral cells fold inward / invaginate

Sweeton, D., et al. *Development* (1991)

Apical constriction is associated with tissue folding

15 minutes

Apical constriction is associated with tissue folding

Myosin

Membrane

Myosin

Membrane

Myosin

Membrane

Claudia Vasquez Cross-Section Apical **→**Basal

GFP::Rho-Kinase

Frank Mason, Ph.D.

GFP::Rho-Kinase

Frank Mason, Ph.D.

GFP::Rho-Kinase

twist mutant

GFP::Rho-Kinase

GFP::Rho-Kinase

twist mutant

GFP::Rho-Kinase

Frank Mason, Ph.D.

GFP::Rho-Kinase

twist mutant

Frank Mason, Ph.D.

GFP::Rho-Kinase

GFP::Rho-Kinase

twist mutant

GFP::Rho-Kinase

Frank Mason, Ph.D.

RhoA signaling is polarized within apical domain

GFP::ROCK

Surface view

RhoA signaling is polarized within apical domain

GFP::ROCK

Depends on RhoA activity Active RhoA is also medioapically polarized

RhoA signaling is polarized within apical domain

Surface view

Depends on RhoA activity Active RhoA is also medioapically polarized

Constricting cell apex has a spatial pattern of ROCK/myosin

Mason FM, Tworoger M, Martin AC. *Nat Cell Biol.* (2013). Mason et al., *J. Cell Biol.* (2016).

Constricting cell apex has a spatial pattern of ROCK/myosin

Why is ROCK/myosin in the middle?

Mason FM, Tworoger M, Martin AC. *Nat Cell Biol.* (2013). Mason et al., *J. Cell Biol.* (2016).

Sarcomere is the contractile unit of a muscle - myosin in the middle

Hanson and Huxley, Nature (1953).

Sarcomere is the contractile unit of a muscle - myosin in the middle

Hanson and Huxley, Nature (1953).

Sarcomere is the contractile unit of a muscle - myosin in the middle

Hanson and Huxley, Nature (1953).

Actin Myosin

Polarized actin cortex

Jonathan Coravos, Ph.D.

Polarized actin cortex

Central ROCK and myosin II

Jonathan Coravos, Ph.D. Frank Mason, Ph.D.

Polarized actin cortex

"Radial Sarcomere"

Jonathan Coravos, Ph.D.

Apical Constriction

Central **ROCK** and

myosin II

Frank Mason, Ph.D.

Tissue extension in Drosophila

Tissue extension in Drosophila

Tissue extension in Drosophila

Ordered exchange of intercellular contacts can drive extension

1

Mason & Martin, 2011

Ordered exchange of intercellular contacts can drive extension

1

Myo-II Baz/Par-3

Mason & Martin, 2011

Ordered exchange of intercellular contacts can drive extension

Mason & Martin, 2011

Cell protrusion is also important for convergent extension

Sun et al., 2017

Cell protrusion is also important for convergent extension

Sun et al., 2017

How do we know whether myosin functions as a 'motor'?

ATPase Activity of Myosin Correlated with Speed of Muscle Shortening

MICHAEL BÁRÁNY

1967

From the Institute for Muscle Disease, Inc., New York

How do we know whether myosin functions as a 'motor'?

ATPase Activity of Myosin Correlated with Speed of Muscle Shortening

MICHAEL BÁRÁNY

From the Institute for Muscle Disease, Inc., New York

Claudia Vasquez

1967

TABLEII

RELATIONSHIP BETWEEN CONTRACTION TIME AND ATPASE ACTIVITY OF MYOSIN IN MUSCLES OF CAT AND SLOTH

. mn

Contraction time*	All Pase activity in the presence of				
	Actin	Са ⁺⁺ +0.05 м KCl	Са ⁺⁺ +0.5 м КСІ	EDTA	ATP sensitivity‡
msec	µmoles P _i / mg/min	µmole/P _i / mg/min	µmole P _i / mg/min	µmole P _i / mg/min	%
19-19.5	1.46	0.67	0.45	0.61	131
122-135	0.26	0.18	0.12	0.17	100
22.5-27	1.41	0.68	0.39	0.58	128
109	0.25	0.20	0.12	0.19	122
	Contraction time* 19–19.5 122–135 22.5–27 109	AIPContraction time*time*Actin μ moles $P_i/moles P_i/min$ 19–19.51.46122–1350.2622.5–271.411090.25	All Pase activity 1Contraction time*Ca++++0.05 M KCl $\mu moles P_i / \mu mole / P_i / msec$ $\mu moles P_i / \mu mole / P_i / mg/min$ 19-19.51.460.67122-1350.260.1822.5-271.410.681090.250.20	All Pase activity 1 in the preseContraction time* $Ca^{++}+0.05$ Actin $Ca^{++}+0.5$ M KCl μ moles P_i msec μ moles P_i mg/min μ mole P_i mg/min19–19.51.460.670.45122–1350.260.180.1222.5–271.410.680.391090.250.200.12	All Pase activity: In the presence ofContraction time* $Ca^{++}+0.05$ Actin $Ca^{++}+0.5$ M KClEDTA μ moles P_i μ mole/ P_i μ mole P_i μ mole P_i msec mg/min mg/min mg/min mg/min 19–19.51.460.670.450.61122–1350.260.180.120.1722.5–271.410.680.390.581090.250.200.120.19

* 37-38°C and 34-35°C for muscles of cat and sloth, respectively. References for contraction times: cat extensor digitorum longus, Gordon and Phillips (13, 14); cat gastrocnemius, Wills (15) and Buller et al. (11); sloth muscles, Goffart et al. (12).

[‡] 37.5°C and 34.5°C for myosin of muscles of cat and sloth, respectively.

B	IEII CONTRACTION TIME AND IN MUSCLES OF CAT AND SLOTH						
	ATPase activity [‡] in the presence of						
	Actin	Са ⁺⁺ +0.05 м KCl	Са+++0.5 м KCl	EDTA	ATP sensitívity‡		
	µmoles Pi/ mg/min	µmole/P _i / mg/min	µmole P _i / mg/min	µmole P _i / mg/min	%		
Cat extensor digitorum longus 19–19.5	1.46	0.67	0.45	0.61	131		
Sloth extensor digitorum longus 122–135	0.26	0.18	0.12	0.17	100		
Cat gastrocnemius medialis 22.5-27	1.41	0.68	0.39	0.58	128		
Sloth gastrocnemius medialis 109	0.25	0.20	0.12	0.19	122		

*37-38°C and 34-35°C for muscles of cat and sloth, respectively. References for contraction times: cat extensor digitorum longus, Gordon and Phillips (13, 14); cat gastrocnemius, Wills (15) and Buller et al. (11); sloth muscles, Goffart et al. (12).

237.5°C and 34.5°C for myosin of muscles of cat and sloth, respectively.

Myosin activity and assembly is regulated by phosphorylation

 assembly into bipolar mini-filaments

Drosophila myosin 2 is regulated by phosphorylation similar to mammalian myosin 2

- Phosphorylation

Sarah Heissler James Sellers Drosophila myosin 2 is regulated by phosphorylation similar to mammalian myosin 2

Sarah Heissler James Sellers

