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Drosophila embryo: Everything a 
Biophysicist could want (in a couple hrs) 

Microtubules
DNA Different transcription factors

Time (4 hours)

Plasma Membrane
Myosin motor

1) Nuclear division 2) Patterned gene expression 
3) Cellularization 4) Morphogenesis



Development involves global tissue movements



Development involves global tissue movements



Development involves global tissue movements



Eric Wieschaus

Cell cycle transitions during early development



Eric Wieschaus

Cell cycle transitions during early development



Eric Wieschaus

Cell cycle transitions during early development



After cells form, cell division occurs in mitotic domains
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Morphogen signaling leads to gradient in nuclear Dorsal
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The Dorsal protein defines the ventral side of 
the embryo

Kanodia et al., 2009

Dorsal protein 
(NF-kB  

transcription 
factor)



Dorsal concentration and cross-regulation 
establish domains of gene expression

M. Levine’s lab
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Epithelial cells undergo various shape changes and rearrangements to sculpt 
tissues



Apical
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Junctions

Quintin . . . Labouesse. 
Trends Genet. 2008. 

Epithelial cells undergo various shape changes and rearrangements to sculpt 
tissues
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Distinct morphogenetic programs arise 
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In Drosophila, ventral cells fold inward / invaginate

Sweeton, D., et al. Development (1991)
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Apical constriction is associated with tissue folding
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Apical constriction is associated with tissue folding

Brodland et al., PNAS (2000).

Ventral

Dorsal



Myosin 2 (myosin) accumulates apically during folding
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Myosin 2 (myosin) accumulates apically during folding
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RhoA signaling is polarized within apical domain
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RhoA signaling is polarized within apical domain

GFP::ROCK

Surface view

GFP::ROCK Myosin Merge

Depends on RhoA activity 
Active RhoA is also medioapically polarized
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Constricting cell apex has a spatial pattern of ROCK/myosin

Mason FM, Tworoger M, Martin AC. Nat Cell Biol. (2013). 
Mason et al., J. Cell Biol. (2016).
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Why is ROCK/myosin in the middle?



Hanson and Huxley, Nature (1953).

Sarcomere is the contractile unit of a muscle - myosin in 
the middle
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Apical cortex polarity resembles that of sarcomere

Coravos and Martin, Developmental Cell (2016).
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Ordered exchange of intercellular 
contacts can drive extension

anterior posterior

Rosette formation

Type 2 transition
anterior posterior

Myo-II

Baz/Par-3

Mason & Martin, 2011

1



Cell protrusion is also important for 
convergent extension
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Huebner & Wallingford, 2018
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Myosin activity and assembly is 
regulated by phosphorylation
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Vasquez, et al., eLife (2016).

Mutant - 1 Phospho site

WT - 2 Phospho sites

Mutant - 0 Phospho site“Phosphomimetic”

Myosin motor activity scales with contraction rate


