Characterizing variation in embryonic patterning among *Drosophila* species using a spatio-temporal atlas of gene expression

How can we relate variations in biological form to underlying molecular events?

D. melanogaster

D. pseudoobscura

Maternal genes bcd, hb, cad

Gap & terminal genes gt, hkb, kni, knil, Kr, oc, tll, croc, fkh...

Pair-rule genes eve, ftz, h, prd, run, slp1, slp2, tsh, D...

Segment polarity genes

Reaction Diffusion Model

$$dX/dt = F(Y) - AX + B\Delta X$$

 $dY/dt = CX - DY + E\Delta Y$

X_i(s,t) = concentration of mRNA for gene i at location s and time t.

 $Y_i(s,t)$ = concentration of protein for gene i

F(Y) – transcription rate as a function of protein concentration (and DNA sequence).

C - translation rates

A,D - decay rates

B,E - diffusion rates

Goal: Understand general rules by which patterning is encoded in the cis-regulatory sequence in the genome.

Patterned blastoderm (animal body plan)

Outline

- Building a high resolution spatio-temporal atlas of gene expression in the Drosophila blastoderm
- Characterizing variation in expression patterns:
 - among individuals in a population
 - between species

Challenges for acquiring spatiotemporal expression data

- Imaging large numbers of whole-mount embryos with cellular resolution
- Accurate quantitative measurements of gene expression and protein concentrations
- Building a high fidelity model of embryo morphology
- Combining expression data from different embryos into a common model atlas

3D gene expression imaging

- In situ—hybridization
 - Anti-sense RNA-probes, Tyramide Signal Amplification
 - Sytox labeled DNA
- 2-photon fluorescence microscopy

Imaging through the embryo is challenging

Penetration loss

Decreased resolution in Z

Nuclei are segmented from the 3D stack

Тор

Mid section

Extracting cellular resolution expression data

- 1. Segment out each individual nuclei
- 2. Record 3D location and expression levels associated with each nucleus.

```
id, x, y, z, Vn, Vc, Sytox, Cy3_n,...
1, 102.36, 142.14, 112.00, 207.96, 605.36, 52.18, 23.55,...
2, 264.63, 172.01, 79.36, 281.73, 599.90, 82.12, 31.67,...
3, 225.91, 174.99, 88.65, 185.79, 418.35, 85.32, 35.63,...
```

pointcloud file

Average and compare expression across individuals

Assemble expression measurements for multiple genes

Model can include an arbitrary number of genes

Allows analysis of spatial relationship between many genes

Difficulty: significant variations among individuals within a population

Coarse registration roughly aligns embryos

Align Orient Scale

Coarse registration roughly aligns embryos

Align Orient Scale

Fine Registration

Idea: Find corresponding cells based on spatial location and local pattern of expression

Average displacements of nuclei normal to the blastoderm surface

average displacement normal to smoothed surface

gd7 mutant (dorsalized)

dorsal

ventral

dorsal

wildtype

ventral

dorsal

toll^{10B} mutant (ventralized)

ventral

anterior

posterior

Movement of anterior ftz boundaries

early: 4-8% (44 embryos)

mid: 26-50% (42 embryos)

late: 76-100% (57 embryos)

Average Morphological Template

6000 nuclei with average shape and density for each of 6 time intervals

Pattern Dynamics

Nuclear movement

Changing expression

ftz stripe locations in gd7 (dorsalized)

wt

 gd^7

Expression varies over time

Current state of D. mel atlas

- ~4500 embryos imaged
- >1 TB of raw image data
- ~100 genes stained for mRNA
- Ongoing imaging of protein and transgenic lines

1st release online:

http://bdtnp.lbl.gov

Outline

- Building a high resolution spatio-temporal atlas of gene expression in the Drosophila blastoderm
- Characterizing variation in expression patterns:
 - among individuals in a population
 - between species

D'arcy Thompson

On Growth and Form (1916)

Variation in expression levels

Sources of variation

- 1. Regulatory variability (stochasticity in expression levels)
- 2. Geometric variability (failure to accurately register embryos)
- 3. Measurement error

Transcriptional regulation of eve stripe 2. 8.0 0.6 0.4 eve (2) 0.2 anterior В -0.2Bcd 0.2 0.6 0.4

Outline

- Building a high resolution spatio-temporal atlas of gene expression in the Drosophila blastoderm
- Characterizing variation in expression patterns:
 - among individuals in a population
 - between species

There are exceptional genomic resources for Drosophila

Genetic variation between D.pse and D.mel

90% orthologous genes

70% mean identity in coding sequences

95-100% identity in TF DNA binding domains

Variability in phenotype across different species

Blastoderm embryos from D.mel and D.pse have different numbers of nuclei.

Blastoderm embryos from D.mel and D.pse have distinct density patterns.

Some expression patterns are very similar in *D.mel* and *D.pse*.

Some expression patterns are distinct in *D.mel* and *D.pse*.

Some expression patterns are distinct in *D.mel* and *D.pse*.

Even for similar patterns, there are often quantitative differences in spatial location.

Even for similar patterns, there are often quantitative differences, in intensity profiles.

Even for similar patterns, there are often quantitative differences in cell number.

Kni and Hb form the boundaries of eve stripe 4+6

Kni and Hb form the boundaries of eve stripe 4+6

Decreased number of cells in stripe 4+6 may be explained by addition of predicted Kni binding in *D. pse* regulatory sequence

Global "Phenotype Alignment"

We want to find corresponding cells in the two embryo models.

Expression differences create new transcriptional niches.

Conclusions

- Spatial registration and correspondence provides a basis for analyzing variations in biological form both within and between species
- Phenotype alignment provides a global analysis of variations in patterning
- Working to experimentally identify molecular bases for differences and develop systematic models of regulation

Angela DePace Soile Keränen Cris Luengo Lisa Simirenko **Gunther Weber** Oliver Rüebel Min-Yu Huang Bernd Hamann **Damir Sudar David Knowles** Jitendra Malik Mark Biggin Mike Eisen

http://bdtnp.lbl.gov