

Quantitative predictions on auxin transport

Karen Alim

Ludwig-Maximilians-Universität München

August 28th, 2009

ARNOLD SOMMERFELD

CENTER FOR THEORETICAL PHYSICS

A manifold of leaf vein patterns shows conserved properties

Conserved structures

- central midvein towards the petiole
- secondary veins spanning the leaf blade
- higher order veins reticulating the spacing

Auxin and its efflux carrier build patterning mechanism

Plant hormone auxin

- auxin is produced in leaves and transported towards stem
- defective auxin transport results in disrupted veins → auxin induces vascular differentiation

Efflux carrier PIN

Wenzel et al. Plant J. (2007)

- PIN membrane bound channel protein
- PIN knock out leads to undirected auxin transport
- PIN yields directed auxin transport in mammalian and yeast cells

In a string of cells auxin waves can be excited

In vitro experiment

- strand of cells cut from plant
- apply source of auxin to one cell
- auxin wave travels down the cells
- radioactively labeled auxin becomes diluted
- observe spatial auxin distribution at different time steps
- velocity of $pprox \mu m/sec$

Outline

1 Deduction of a microscopic model

- Auxin dynamics
- Efflux carrier dynamics
- 2 Theoretical analysis and prediction of observables
 - Nonlinear analysis
 - Analytic calculation of auxin amplitude
 - Analytic calculation of auxin amplitude
- S Experimental setup to measure transport dynamics
- 4 Conclusion & Outlook

Auxin needs efflux carriers to exit cell

$$\dot{A}(n) = s_A - d_A A(n) - \frac{e_A}{\ell} [J(n) - J(n-1)], \ J(n) = A(n) P_r(n) - A(n+1) P_l(n+1)$$

Dynamics of the weak acid auxin

- protonated auxin follows concentration gradient into cell
- gets ionized at ph7 of cytoplasm, auxin is trapped
- efflux facilitated by carrier P_r , P_l with efficiency e_A
- extracellular diffusion suppressed by small interspace
- fast synthesis s_A and degradation d_A in cells

Efflux carrier mediate a self-enhancing flow of auxin

$$\dot{P}_r(n) = -d_P P_r(n) + [P_{tot} - P_r(n) - P_l(n)] \left[s_P + g_P J^2(n) \theta(J(n)) \right]$$

Cycling of membrane bound PIN efflux carrier

- PIN proteins are membrane bound
- efflux carrier cycle between endosomes and cell membrane s_P , d_P
- auxin flux yields enhanced attachment g_P
- directed transport due to self-enhancing flow of auxin
- efflux carrier production too slow for wave $v pprox \mu m/sec$

Parameters are sensitive to environmental conditions

Rescaling

- normalize concentrations $a = A/A_{eq}$, $A_{eq} = s_A/d_A$ and $P_r = P_r/P_{tot}$
- transport efficiency e_A fastest time scale, others estimated slower
- measure time and rates in slowest estimated time-scale d_P

- What is the underlying nonlinear mechanism resulting in wave formation?
- How do parameters control wave properties?
- Are quantitative predictions possible?

Auxin traffic jam builds up wave

• bottle neck due to slow directed attachment rate of efflux carriers

Microscopic equations

$$\begin{aligned} \dot{a}(n) &= d_A(1-a(n)) - (e_A P_{tot}/\ell) \left[J(n) - J(n-1) \right] \\ \dot{p}_r(n) &= -p_r(n) + \left[1 - p_r(n) - p_l(n) \right] \left[s_P + g_P P_{tot}^2 A_{eq}^2 J^2(n) \Theta(J(n)) \right] \\ \dot{p}_l(n) &= -p_l(n) + \left[1 - p_r(n) - p_l(n) \right] \left[s_C + g_P P_{tot}^2 A_{eq}^2 J^2(n-1) \Theta \right] \\ J(n) &= a(n) p_r(n) - a(n+1) p_l(n+1) \end{aligned}$$

$$\dot{a} = g(a, p_r) + \tilde{g}(a, p_r, \nabla a, \nabla p_r)$$

$$\dot{p_r} = f(a, p_r) + \tilde{f}(a, p_r, \nabla a, \nabla p_r)$$

Reaction-advection system

$$\dot{a} = g(a, p_r) + \tilde{g}(a, p_r, \nabla a, \nabla p_r)$$

$$\dot{p_r} = f(a, p_r) + \tilde{f}(a, p_r, \nabla a, \nabla p_r)$$

A wave developing

- bistable system
- excitation triggers wave
- advection drives system past second fixed point
- relaxation back

Excitability of a bistable system due to advection

Reaction-advection system

$$\dot{a} = g(a, p_r) + \tilde{g}(a, p_r, \nabla a, \nabla p_r)$$

$$\dot{p_r} = f(a, p_r) + \tilde{f}(a, p_r, \nabla a, \nabla p_r)$$

A wave developing

- bistable system
- excitation triggers wave
- advection drives system past second fixed point
- relaxation back

Theoretical predictions explain microscopic model

Varying transport efficiency

higher transport efficiency leads to more auxin accumulation

Theoretical predictions explain microscopic model

Varying transport efficiency

higher transport efficiency leads to more auxin accumulation

$$A_{\max}^2 \propto \frac{e_A P_{\text{tot}}}{\ell d_P} \frac{1}{\frac{g_P P_{\text{tot}}^2 A_{\text{eq}}^2}{d_P}} \frac{(1 + \frac{s_P}{d_P})(1 + 2\frac{s_P}{d_P})}{\frac{s_P}{d_P}} \qquad v \propto e_A P_{\text{tot}}$$

Measure auxin amplitude in experiment

Observing an auxin wave

- quantify radioactively labeled or deuterated auxin
- GFP-labeled carriers mark position of wave front
- avoid boundary layer effects > 100 cells
- vary transport parameters by external stimuli (wind, light) or by use of mutants

Conclusion

Unveil nonlinear mechanism behind auxin wave

- found bistable system that is driven excitable due to advection terms
- analyzed influence of parameters on wave properties

Quantitative predictions

- able to solve dynamics analytically and make quantitative forecasts
- hope to inspired experiments to test predictions

Stationary flow pattern in two dimensions

- by what mechanism do 2D patterns arise
- how do 2D pattern depend on the parameters and form
- how may plants regulate 2D patterns

• my supervisor Erwin Frey

• financial support

Deutsche Forschungsgemeinschaft DFG

• and you for your attention