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Benoît ROMAN

Ruffles in leaves, petals, and more

E. Coen

any symmetry. Instead, the complex
patterns emerge from the elastic and
geometric properties of the thin mem-
branes of which the flowers and
leaves are constructed. 

Spontaneous Symmetry Breaking
One of the main concepts used to ex-
plain how complex patterns can be
teased from simple laws is spontaneous
symmetry breaking. Symmetry breaking
is significant in almost every field of
physics, but it is especially important
in searching for the origin of patterns.

To define spontaneous symmetry
breaking, we first must define symme-
try. A two-dimensional object is sym-
metrical if you can pick it up, move it
or rotate it and place it in a new loca-
tion, and then find that the resulting
pattern is a perfect overlay of the pat-
tern that was present before you began.
An example appears in Figure 2.

The most symmetrical pattern of all
is one that is featureless and uni-
form—a void. Empty space is sym-
metrical in this way, and the equations
of physics are too. The equations are
indifferent to where objects are located
in space. Objects can be anywhere or
nowhere, and the laws of physics will
apply to them.

Spontaneous symmetry breaking
happens whenever equations that are
featureless and uniform have solutions

that are not. More generally, sponta-
neous symmetry breaking describes
any case where the solutions of equa-
tions have less symmetry than the
equations themselves.

Here is an example. Imagine that
you have picked up a thin plastic ruler.
Ignoring the marks and labels on the
ruler, you can think of it as uniform
and featureless in the horizontal direc-
tion. Now grab the ruler at its two ends
and gently press inward. The stresses
within the ruler are distributed uni-
formly within it, and it is still uniform
and featureless in the horizontal direc-
tion. However, as you compress the
ruler more and more, it will eventually
give way and buckle.

This buckling is a spontaneous break-
ing of symmetry. At all interior points
away from your fingers, the ruler used
to be flat and patternless. Under com-
pression, a solitary half of a horizontal
wave suddenly emerges; the symmetry
in the direction perpendicular to the
ruler’s original plane has been broken.

Because buckling will be very im-
portant for understanding the shapes
we will discuss later, we should de-
scribe it in a bit more detail. As you
press the ruler inward from its two
ends by a given amount, it must decide
between deforming in two different
ways. It can deform simply by com-
pressing in the horizontal direction—

squeezing, like a spring—without
breaking any symmetry (see Figure 3).
In this configuration the energy of the
ruler is proportional to its thickness,
which we’ll denote as t.

When buckling sets in, the ruler de-
forms mainly by bending. In this type
of deformation, the ruler breaks the or-
thogonal symmetry. It uses the third
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that a leaf or flower—just like a torn sheet of plastic—can use an enhanced, uniform growth at its margins to generate such complex pat-
terns. Examples of wavy edges in nature include, from left to right, some lichens (shown, Sticta limbata), orchids (shown, Schomborgkia
beysiana), sea slugs (represented by Glossodoris hikuerensis) and ornamental cabbage. (Lichen photograph courtesy of Stephen Sharnoff;
sea slug photograph courtesy of Jeff Jeffords.)

Yva Momatiuk and John Eastcott/PhotoResearchers, Inc.

© 2004 Sigma Xi, The Scientific Research Society. Reproduction
with permission only. Contact perms@amsci.org.
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Ruffles in leaves

The observed curvature of the arcs
when they are flattened is called the
geodesic curvature along these lines—
another property controlled by their
metric. An important observation is
that the geodesic curvature along the
edges of the wavy leaf in Figure 8 is
nearly constant. We do not see any big
variations in this curvature that are
correlated either with the vein struc-
ture or with the waviness of the leaf.
The tissue along the edge grew nearly
uniformly, the growth law was uni-
form, and the leaf grew as a simple
leaf. Like the plastic sheets, it should
have been a simple featureless leaf, but
because of the geometrical limitations
of space, it was forced to break the
symmetry and to adopt a wavy shape.

Wrapping Up
Flowers, like leaves, form complex
buckled shapes. Geometrically, the
main difference between the two is that

leaves form essentially from long, free-
standing strips, whereas flowers have
more complex geometries; the central
tube of a daffodil, for example, closes
on itself like a cylinder. What happens
to such a cylinder or tube when we ap-
ply to it a metric that increases toward
its edge? Just as the leaf grows from the
center, we can think about “growing”
such cylinders starting from a ring of
cells and adding rings on top of one
another. If the rings all have the same
number of cells, they will have the
same diameter and will form a cylin-
der. However, as the number of cells
that form a ring grows exponentially
upward, the metric of the cylinder in-
creases also, leading to an increasing
diameter of the cylinder in its upper
part and to a trumpet-like shape.

As the metric of the flower increases,
the edge of the flower splays outward
more and more. Eventually, it splays
out so much that the edge of the flower

is perpendicular to the direction of the
stem along which it is growing. It
forms a circle with a radius we’ll call R.
That marks the end of this phase of
flower growth. If cells continue to at-
tach to the end of the flower, causing
the metric to grow at an ever-steeper
rate as the flower grows sideways, the
perimeter of the edge will have to be
longer than 2!R. This is known to be
impossible in our Euclidean space
without breaking the axial symmetry.
The edge of the flower must buckle.

In Figure 9a we show the result of an
experimental study using thin tubes
made of polyacrylamide gel. This gel
changes its volume depending on its
environment. It swells in water, but
shrinks in acetone. We used this proper-
ty to change the metric of the tube. First,
we dipped the tube in acetone, causing
it to shrink uniformly. Next we dipped
one end of the tube in water, allowing
the water to diffuse into the tube. As a

2004    May–June     259www.americanscientist.org
© 2004 Sigma Xi, The Scientific Research Society. Reproduction

with permission only. Contact perms@amsci.org.

Figure 7. Can a leaf that is normally flat be induced to become wavy? Here the growth hormone auxin is applied to the edge of a normally flat
leaf from an eggplant, causing enhanced growth only near its margins.  This growth imposes a negative Gaussian curvature on the leaf, simi-
lar to that in the torn plastic sheets in Figures 5 and 6. After 10 days of such a treatment, waves have developed; at 12 and 14 days the waves have
grown bigger, and waves within waves become discernible. (Photographs courtesy of the authors.)

after 12 days after 14 days

before after 10 days
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Ruffles in torn plastic sheets
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Magnification factor 
3.2

Eran  Sharon et al 2002

Ruffles in torn plastic sheets
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• Metric

ds2 = (1+g(y))2 dx2 + dy2

• g(y): growth strain

Ruffles
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Up to 5 generations with wavelenghts λ, λ/3, λ/9, 
λ/27, λ/81.

Ruffles
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Venation networks

conserved: midvein, secondary veins
variable: higher order ... ; areoles 
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Venation networks

Dimitrov & Zucker 2006

Sachs, Mitchison... 1980
Rolland-Lagan & Prusinkiewicz 2005

Feugier et al. 2005-2006

Runions et al. 2005Figure 18: Two models of reticulate patterns of poplar leaves, compared to a photograph of a real leaf. The pattern on the left was generated
using relative neighborhoods in two hours; the pattern on the right was generated using the Urquhart approximation in two minutes.

Figure 19: A poplar branch. The leaves have textures similar to
those in Figure 18. The outlined area is shown magnified in the
inset.

Figure 20: Simulation of leaf development using non-uniform
anisotropic growth. Left: Development of second-order veins in
the early stages of growth. Right: Development of high-order veins
in later stages of development of another leaf.

develop in succession, from low to high order. Discrepancies be-
tween real and simulated patterns may be due to the approximate
character of the growth model, for which quantitative experimental
data are yet unavailable.

Figure 21: A model of trillium flower. Venation patterns are not
limited to leaves, but also include flower petals.

In order to test the potential of the generated patterns in realistic
image synthesis, we have included some of them as textures in plant
models. The results, obtained using the renderer Dali, are shown in
Figures 16, 17, 19, and 21.

Parameters used to generate the presented leaf patterns are collected
in Table 1.

7 Conclusions

We have proposed an algorithm for synthesizing leaf venation pat-
terns. The algorithm is based on the biologically plausible hypoth-
esis that venation results from an interplay between leaf growth,
placement of auxin sources, and the development of veins. An ef-
fective implementation of this algorithm represents an unexpected
application of computational geometry to a biological problem. Our
results suggest that the apparent complexity of leaf venation may
emerge from the iteration of a simple elemental mechanism.
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Venation networks

Dimitrov & Zucker 2006

Couder et al 2002
Laguna et al 2008

Sachs, Mitchison... 1980
Rolland-Lagan & Prusinkiewicz 2005

Feugier et al. 2005-2006

Runions et al. 2005Figure 18: Two models of reticulate patterns of poplar leaves, compared to a photograph of a real leaf. The pattern on the left was generated
using relative neighborhoods in two hours; the pattern on the right was generated using the Urquhart approximation in two minutes.

Figure 19: A poplar branch. The leaves have textures similar to
those in Figure 18. The outlined area is shown magnified in the
inset.

Figure 20: Simulation of leaf development using non-uniform
anisotropic growth. Left: Development of second-order veins in
the early stages of growth. Right: Development of high-order veins
in later stages of development of another leaf.

develop in succession, from low to high order. Discrepancies be-
tween real and simulated patterns may be due to the approximate
character of the growth model, for which quantitative experimental
data are yet unavailable.

Figure 21: A model of trillium flower. Venation patterns are not
limited to leaves, but also include flower petals.

In order to test the potential of the generated patterns in realistic
image synthesis, we have included some of them as textures in plant
models. The results, obtained using the renderer Dali, are shown in
Figures 16, 17, 19, and 21.

Parameters used to generate the presented leaf patterns are collected
in Table 1.

7 Conclusions

We have proposed an algorithm for synthesizing leaf venation pat-
terns. The algorithm is based on the biologically plausible hypoth-
esis that venation results from an interplay between leaf growth,
placement of auxin sources, and the development of veins. An ef-
fective implementation of this algorithm represents an unexpected
application of computational geometry to a biological problem. Our
results suggest that the apparent complexity of leaf venation may
emerge from the iteration of a simple elemental mechanism.
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Venation networks
Main motivations
•Tissue with two cell types — a minimal system for 2D morphogensis
Goal: 
•understand reorganisation of network as leaf grows
•compare with observations and suggest future experiments
Model:
•cell based 
•elastic walls slowly yielding to tension
•growth driven by 
•cell division
•two cell types with different 
   mechanical properties
•division of areoles
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Venation networks

across species and can be used for taxonomy and phylogeny (3). However, their local structure

results from a self-organised process (17). Therefore we will focus only on this local structure.

We use a two-dimensional cell-based model built upon the following rules: (i) Cell walls are

viscoelastic and elongate under turgor pressure (Cosgrove); (ii) the mechanical properties of

ground and procambial cells are different; (iii) cells divide when they reach a threshold in area

((les trois ref de phyllo Barbier/Johnsson/Smith, (12), Dupuy 06)); (iv) new veins appear when

the areoles reach a threshold in area (REF canalization, couder-02). The second assumption

is essential as it induces the mechanical stresses which drive reorganisation of the veination

network – its rationale is given below. Finally we stress that our results are insensitive to the

details of the implementation of the four rules.

More precisely, we consider a single layer of cells, represented as a partition of the plane

into polygons (Fig.XX). There are two cell types, ground and vein cells. As we are interested

only in the local structure of the network, we use periodic boundary conditions and assume that

the elementary cell remains a square. Each wall i is modeled as a viscoelastic rod behaving as

a spring in series with a dashpot (Maxwell model), its tension Ti being

Ti = µh

(

li
l0i

− 1

)

=
νih

l0i

dl0i
dt

. (1)

l0i and li are the rest and actual length of the wall, and νi its coefficient of viscosity. We assume

that all walls have the same thickness h and elastic modulus µ, and that turgor pressure P is

constant and uniform.

Cells can actively control growth by the orientation of fibers and expansins (Cosgrove).

Besides, ground cells have uniform, regular shapes, while vein cells exhibit dramatic shape

changes (17,19). Therefore it is reasonable to assume different mechanical properties for ground

cell walls – a uniform viscosity – and for vein walls – a higher viscosity with a dependance on

the orientation of the wall relative to the vein, incorporating a possible anisotropy in the me-

3

Supporting Online Material

Mechanical properties of vein walls

All ground cell walls share the same viscosity νg. The mechanical properties of vein cell walls

depend on the direction of the wall, incorporating a possible anisotropy of the tissue. This is

implemented by introducing a symmetric, rank-two tensorial field t characterizing the local ori-

entation and degree of anisotropy of the vein tissue (this could be related to the local orientation

of the elongated vein cells in actual leaves), which satisfies the following properties:

• the largest eigenvalue of t is always equal to one;

• in regions where the orientation is unambiguously defined (away from junctions), the

eigenvector associated with the largest eigenvalue of t is aligned with the direction of the

vein, while the second eigenvalue is close to zero;

• in regions where the orientation is ambiguous (in the vicinity of junctions), the second

eigenvalue becomes close to one.

The viscosity of each vein cell wall is a function of its direction and of the local orientation t,

such that:

• ν = λνg (λ > 1) for an edge that is far from a junction and aligned with the local

orientation;

• τ = 2τg for an edge that is far from a junction and perpendicular to the local orientation.

On average, vein widths may thus be expected to increase at a rate that is half the overall

growth rate of the system, which is roughly consistent with the vein diameter distributions

in leaves.
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viscoelastic walls

quasi-static, energy minimisation

chanical properties of vein tissues (see Supplementary material for details of implementation).

Note that variations in elastic modulus (instead of viscosity) lead to the same results.

Elastic relaxation is much faster than growth, so that at any time step, the system is in a state

of equilibrium so that the lengths li can be found by minimizing the mechanical energy, which

includes its elastic energy and pressure (P ) potential energy:

E =
∑ µh

2

(

li
l0i

− 1

)2

−
∑

PSi, (2)

where Si is the area of cell i. The rest lengths are then updated according to Eq. 1. Cells divide

when they reach a threshold area (S = 1), through the insertion of a new wall that is initially

free of tension (li = l0i ). The new wall runs through the centroid of the cell and is perpendicular

to the axis of inertia associated with its largest moment of inertia. This defines the direction of

longest extension of the cell, similarly to available criteria (18) (OTHER REFS?). The identity

of cells (ground/procambial) is inherited during divisions.

The simulation begins with a small number of ground cells. Veins are added progressively

over time, by switching files of ground cells to the vein state. The first two veins are placed

arbitrarily, forming a first areole. Subsequently, new veins are added when an areole reaches

a threshold area, dividing the areole into smaller areoles (there are no freely ending veins as a

simplification). The rules for determining the locations of new veins are loosely based on the

auxin canalization hypothesis. Auxin concentration is assumed to be maximum at the center of

the areole, and the auxin flux along the boundary of the areole is taken as proportional to the

distance to the center. Veins connect a maximum of auxin flux to the center. With these rules,

elongated areoles are typically divided in two along their shortest extension, while areoles that

have a rounder shape are divided in three. New veins are continuously added until the system

reaches a certain size, then growth alone continues until it reaches its final size.

Figure 1 shows a sequence illustrating several stages of a typical run. As the system grows,

4

cell division: when
according to smallest axis of inertia

periodic boundary 
conditions

chanical properties of vein tissues (see Supplementary material for details of implementation).

Note that variations in elastic modulus (instead of viscosity) lead to the same results.
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across species and can be used for taxonomy and phylogeny (3). However, their local structure

results from a self-organised process (17). Therefore we will focus only on this local structure.

We use a two-dimensional cell-based model built upon the following rules: (i) Cell walls are

viscoelastic and elongate under turgor pressure (Cosgrove); (ii) the mechanical properties of

ground and procambial cells are different; (iii) cells divide when they reach a threshold in area

((les trois ref de phyllo Barbier/Johnsson/Smith, (12), Dupuy 06)); (iv) new veins appear when

the areoles reach a threshold in area (REF canalization, couder-02). The second assumption

is essential as it induces the mechanical stresses which drive reorganisation of the veination

network – its rationale is given below. Finally we stress that our results are insensitive to the

details of the implementation of the four rules.

More precisely, we consider a single layer of cells, represented as a partition of the plane

into polygons (Fig.XX). There are two cell types, ground and vein cells. As we are interested

only in the local structure of the network, we use periodic boundary conditions and assume that

the elementary cell remains a square. Each wall i is modeled as a viscoelastic rod behaving as

a spring in series with a dashpot (Maxwell model), its tension Ti being

Ti = µh

(

li
l0i

− 1

)

=
νih

l0i

dl0i
dt

. (1)

l0i and li are the rest and actual length of the wall, and νi its coefficient of viscosity. We assume

that all walls have the same thickness h and elastic modulus µ, and that turgor pressure P is

constant and uniform.

Cells can actively control growth by the orientation of fibers and expansins (Cosgrove).

Besides, ground cells have uniform, regular shapes, while vein cells exhibit dramatic shape

changes (17,19). Therefore it is reasonable to assume different mechanical properties for ground

cell walls – a uniform viscosity – and for vein walls – a higher viscosity with a dependance on

the orientation of the wall relative to the vein, incorporating a possible anisotropy in the me-

3

Modèle de prolifération cellulaire

Tension dans la paroi i

ν
µ

Ti = µh

(
li
l0i
− 1

)
=

νih

l0i

dl0i
dt

Taux d’allongement ∝ allongement

On minimise l’énergie mécanique

E =
∑

i∈parois

µh

2

(
li
l0i
− 1

)2

−
∑

j∈cellules

PSj

Module élastique µ uniforme, épaisseur h constante

Pression de turgescence P uniforme

Variations de la viscosité ν
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Venation networks

areole division: from sides to centroid
minima of distance to centroid
2 or 3 new veins according to areole shape

Règles de division des aréoles
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Venation networks
Scarpella, Francis & Berleth 2004

Résultat
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Venation networks

force balance at junctions

Scarpella, Francis & Berleth 2004

Résultat
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Venation networks

properties of junctions

wS/wL

wI/wL
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Figure 3: The geometry of junctions between veins. At each junction, the veins are labeled

according to their width as large (L), intermediate (I), and small (S). a The relation between

mean widths of veins at a junction: simulation (bold line) and data from (4) for leaves of

Gloeospermum (dashed line). TAKE OUT OTHER LINES?? Inset: definition of geometrical

parameters: widths wL,S,I and angles αLI,LS,IS. b Mean angles αLI , αLS , αIS versus the ratio

of the smallest vein width to the largest (wS/wL): simulation (bold line) and data from (4)

for leaves of several species (other lines). The straight line corresponds to the value of αLI

predicted by the force model with wI = wL. We analyzed the geometry of junctions as in (4);

we discarded junctions between more than three veins (which are rare) or too close to another

junction (separated by a distance smaller than the width of the connecting segment.

9

leaf data by Bohn, 
Andreotti, Douady, 

Muzinger & Couder 2002
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Corrélations entre largeurs et angles

RC were removed. Figure 8 shows details of the resulting

networks for three different values of the threshold. New

histograms are computed on the filtered network, and are

plotted in Fig. 6. In the absence of filtering, the thin veins

dominate the statistics. The pdfs do not change in shape but

the two maxima are slightly better resolved. There does not

seem to be a strong dependence of the angle distribution on

the global size of the veins. The fact that the maxima become

sharper will be understood in the context of the results given

in the following paragraph.

B. Conditioned pdfs for the angles

Up to now, no distinction has been made between the

three angles of a given node. However, it is clear that most

nodes are the meeting points of veins having different diam-

eters. In the following, before building up histograms, we

will, at each node, distinguish the three segments by their

radii. They are labeled large (L), intermediate (I), and small

(S). We will then measure three angles. The first one, !LI, is

the angle between the segments of largest and intermediate

radii, ! IS is the angle between the segments of intermediate

and smallest radii, and !LS is the angle between the seg-

ments of largest and smallest radii.

The pdfs p(!LI), p(! IS), and p(!LS) shown in Fig. 9

are much simpler; each of them has only one maximum and

the three maxima are different. The double maximum of the

total histogram is, therefore, a result of the superposition of

these three simpler histograms. The values of the three

angles of a node are thus directly related to the local hierar-

chy of the meeting vein sizes.

In order to quantify this local hierarchy we use as a pa-

rameter RS /RL , the ratio of the radius of the thin segment to

that of the thick one. The radius of the segment of interme-

diate size is usually close to the large one and, therefore, the

configuration of radii is well defined by the chosen parameter

"see Fig. 10#. For RS /RL close to 1 all radii are nearly equal

and no hierarchy can be defined. For RS /RL close to 0, a thin

vein is connected to a thick one. Figure 11 shows the nor-

malized histogram of RS /RL . It has a maximum at about

0.5, which means that intermediate situations are frequent.

Figure 12"a# shows a set of conditioned histograms

p(!LI) for the angle between the thick and intermediate

veins. Each single histogram is obtained by taking into ac-

count only the nodes where RS /RL is in a chosen range of

values. The original histogram is thus decomposed in

sharper, more symmetrical histograms. For RS /RL close to 1

the three veins have approximately the same size and the

symmetry of the situation is reflected in the symmetry of the

angles that are all approximately equal to 120°. For very

small values of RS /RL , a very thin vein is only a small

perturbation to the thick vein and the angle !LI is close to

180°. Between the two extreme situations the angles of the

peak vary continuously.

The dependency of the pdfs p(! IS) and p(!LS) $Figs.
12"b# and 12"c#% on the ratio RS /RL is much weaker. The

mean value of ! IS is about 100° for small RS /RL and rises

to the symmetric 120° for RS /RL close to 1. p(!LS) stays

remarkably constant. Its mean value and its maximum

FIG. 8. Details of the Gloeospermum leaf after filtering with

different threshold radii; "a# without filtering, "b# Rc!25 &m, "c#
Rc!37.5 &m, and "d# Rc!50 &m.

FIG. 9. The normalized pdf p(!) for a leaf of Gloeospermum
and its decomposition into three pdfs p(!LI), p(! IS), and p(!LS),

in which the relative radii of the segments have been taken into

account.
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is very similar to Fig. 3C. The reorganization manifests itself by a
broad distribution of the angles between veins (Fig. 5F), as in the
full model (Fig. 4D) and as is observed in mature leaves (Bohn

et al., 2002). We also investigated the effect of modifying the rules
for areole division (Fig. 5D): dividing all areoles into two (rather
than into two or three depending on their shape), while it
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Fig. 4. Geometrical properties of the vein network. (A) At each junction, the veins are labeled according to their width as large (L), intermediate (I), and small (S). The
parameters used to describe the junction are the widths wL;S;I , the angles aLI;LS;IS , and the virtual forces ~FL;S;I having magnitudes proportional to the widths of the veins. (B)
Distribution of vein widths. Simulation (bold line) and data from Bohn et al. (2002) for leaves of Gloeospermum (dashed line; in that case, the unit length is 20mm, which is
of the order of one cell size). Due to numerical limitations, the distribution of vein widths in the simulations is not as broad as that in actual leaves, which extends beyond
the limits of the figure. (C) Correlation between the widths: average of wI=wL versus wS=wL . Simulation (bold line) and data from Bohn et al. (2002) for leaves of
Gloeospermum (dashed line). The two straight lines wI ¼ wS and wI þwS ¼ wL are limits imposed by the definition wI # wS and by the force balance ~FI þ~FS þ~FL ¼ ~0. (D)
Distributions of the angles between veins in the simulations. (E) Correlations between the angles and widths: averages of aLI , aLS , aIS versus wS=wL . Simulation (bold lines)
and data from Bohn et al. (2002) for leaves of several species (other lines). The variation of aLI is a signature of the force model. The geometry of junctions was analyzed as in
Bohn et al. (2002); junctions between more than three veins (which are rare) or too close to another junction (separated by a distance smaller than the width of the
connecting segment) were discarded.
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Venation networks
reorganisation in young leaves

Sawchuck et al. 2007
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Venation networks
Modèle simplifié

croissance uniforme réorganisation

Importance des différences

Propriétés mécaniques uniformes
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Conclusion

•A ‘simple’ growth program leads to complex forms

•venation networks growth and reorganisation 
seems to be driven by mechanical forces — assuming 
differences in stiffness

•experimental tests: A. Peaucelle ; N. Nakayama ; E. Sharon

•Future: integrate genetic & hormonal regulation

Thursday, September 3, 2009



Naomi Nakayama
Bern University

Basile Audoly
Paris 6 University

Mokhtar Adda-Bedia
ENS

Alexis Peaucelle
INRA Versailles

Francis Corson
ENS, now Rockefeller University

Eran Sharon
HUJI

Yohai Bar Sinai
HUJI, now ENS

Ruffles

Venation

Experimental collaborations

Thursday, September 3, 2009



Main entrance ENS Lyon

Department of Biology, Ecole Normale Supérieure, Lyon

Come & join the adventure

Old city of Lyon

Thursday, September 3, 2009



Thursday, September 3, 2009



Thursday, September 3, 2009


