R-Leaping

Accelerating the SSA by Reaction leaps

Petros Koumoutsakos

WITH : A. Auger, P. Chatelain

Computational Science \& Engineering Laboratory
http://www.cse-lab.ethz.ch

Outline

- Stochastic simulations
- Exact-> SSA
- Approximate -> T-leaping
- Approximate -> R-leaping
- Comparisons and Results
- Outlook

Chemical kinetics : Set-up

- Well stirred reaction volume V
$S_{1} \quad S_{2}$

- random collisions and reactions through M channels $R_{1}, R_{2}, \ldots, R_{M}$
- N different species $S_{1}, S_{2}, \ldots, S_{N}$ in numbers $X_{1}, X_{2}, \ldots, X_{N}$
- Experiment length T

Stochastic simulation: SSA

- For M reactions, time until any reaction

Gillespie,
J. Comp. Phys. 1977

$$
\tau \sim \mathcal{E}\left(1 / a_{0}\right)
$$

- Reaction index : point-wise distribution

$$
p(j=l)=\frac{a_{l}}{a_{0}}
$$

- One timestep:

Sample \mathbf{T}
Sample the index j
Update the $X_{i}, t=t+T$

- The SSA simulates every reaction event!

Stochastic simulation: acceleration

- SSA : exact but slow
- T leaping : several reaction events over one time step,
- Assumption : reaction propensities ai remain essentially constant over \mathbf{T}, in spite of several firings
- Over this given \mathbf{T}, the number of reaction firings $K^{P}{ }_{j}$ is governed by a Poisson distribution

$$
\begin{aligned}
& K_{j}^{\mathcal{P}} \sim \mathcal{P}\left(a_{j} \tau\right) \\
& \mathbf{X}(t+\tau)=\mathbf{X}(t)+\sum_{j=1}^{M} K_{j}^{\mathcal{P}} \boldsymbol{\nu}_{j} .
\end{aligned}
$$

Cost ~ M Poisson samplings

т leaping Consequences

- T leaping: Can generate negative populations
- Binomial t leaping : Approximate the unbounded Poisson distributions with Binomial ones
- Modified T leaping
- Critical reactions, i.e. those likely to drive some populations negative, handled by SSA
- Other reactions advanced by t leaping

Cao et al.,
J. Chem. Phys. 2005

R-leaping : Accelerate SSA by reaction leaps

R-leaping : Accelerate SSA by reaction leaps

Leaps are in prescribed number of reaction firings L across all reaction channels

R-leaping : Accelerate SSA by reaction leaps

Leaps are in prescribed number of reaction firings L across all reaction channels

- Time increment \mathbf{T}_{L} is Gamma-distributed $\tau_{L} \sim \Gamma\left(L, 1 / a_{0}(\mathbf{x})\right)$
- In this interval we will have K_{m} firings of channel R_{m}
- with : $\sum_{m=1}^{M} K_{m}=L$

R-leaping : Accelerate SSA by reaction leaps

Leaps are in prescribed number of reaction firings L across all reaction channels

- Time increment \mathbf{T}_{L} is Gamma-distributed $\tau_{L} \sim \Gamma\left(L, 1 / a_{0}(\mathbf{x})\right)$
- In this interval we will have K_{m} firings of channel R_{m}
- with : $\sum_{m=1}^{M} K_{m}=L$

In R-leaping, as in SSA, the index j of every firing obeys a point-wise distribution

$$
P(j=l)=\frac{a_{l}(\mathbf{x})}{a_{0}(\mathbf{x})} \text { for } l=1, \ldots, M
$$

R-leaping : One step

Define L

$$
\tau_{L} \sim \Gamma\left(L, 1 / a_{0}(\mathbf{x})\right)
$$

Sample the index j

$$
P(j=l)=\frac{a_{l}(\mathbf{x})}{a_{0}(\mathbf{x})} \text { for } l=1, \ldots, L
$$

Number of reactions for channel m

$$
K_{m}=\sum_{l=1}^{L} \delta_{l, m}
$$

Update species and time :

$$
\mathbf{X}\left(t+\tau_{L}\right)=\mathbf{X}(t)+\sum_{j=1}^{M} K_{j} \boldsymbol{\nu}_{j}
$$

R-leaping : Accelerate SSA by reaction leaps

- L firings distributed across M reaction channels
- In Tleaping: K_{j}^{P} are independent Poisson variables.

In R-leaping, K_{j} are not independent.

- L as a control parameter

System can be brought to a desired state X
Time is not a-priori specified
New approaches to controlling negative species

R-leaping : How to Sample the the $\mathbf{M} \mathrm{K}_{\mathrm{j}}$

$R_{0} \quad$ Algorithm

$$
p(j=l)=\frac{a_{l}}{a_{0}}
$$

R-leaping : How to Sample the the $\mathbf{M} \mathrm{K}_{\mathrm{j}}$

$R_{0} \quad$ Algorithm

- Pointwise Sampling of Lindependent reaction indices

$$
p(j=l)=\frac{a_{l}}{a_{0}}
$$

Simple BUT scales with L-close to the work load of SSA!

Ro-sampling scales with L and, in particular when compared with \mathbf{T}-leaping that scales with M, the method is inefficient for large leap sizes, $L \gg M$.

R-leaping : How to Sample the the $\mathbf{M} \mathrm{K}_{\mathrm{j}}$

$R_{0} \quad$ Algorithm

- Pointwise Sampling of Lindependent reaction indices

$$
p(j=l)=\frac{a_{l}}{a_{0}}
$$

Simple BUT scales with L-close to the work load of SSA!

Ro-sampling scales with L and, in particular when compared with T-leaping that scales with M, the method is inefficient for large leap sizes, $L \gg M$.

R-Leaping Theorem

The distribution of K_{1} is a binomial distribution :

$$
\mathcal{B}\left(L, a_{1}(\mathbf{x}) / a_{0}(\mathbf{x})\right)
$$

and for every $m \in\{2, \ldots, M\}$ the conditional distribution of K_{m}
given the event $\left\{\left(K_{1}, \ldots, K_{m-1}\right)=\left(k_{1}, \ldots, k_{m-1}\right)\right\}$ is

$$
K_{m} \sim \mathcal{B}\left(L-\sum_{i=1}^{m-1} k_{i}, \frac{a_{m}(\mathbf{x})}{a_{0}(\mathbf{x})-\sum_{i=1}^{m-1} a_{i}(\mathbf{x})}\right)
$$

This result is invariant under any permutation of the indices

Lemmas for R-leaping Theorem

Lemma I

For every $m=1, \ldots, M$ the random variables K_{m} follow a Binomial distribution with parameters L and $a_{m}(\mathbf{x}) / a_{0}(\mathbf{x})$

$$
K_{m} \sim \mathcal{B}\left(L, a_{m}(\mathbf{x}) / a_{0}(\mathbf{x})\right)
$$

PROOF :

Assume that the indices $(l=1, \ldots, L)$ have been drawn from point-wise distributions.
Fix an integer $m \in[1, M]$
For each index $(l=1, \ldots, L)$ there are only two possible outcomes

- $l=m$ with probability $a_{m}(\mathbf{x}) / a_{0}(\mathbf{x})$
- or not with probability $1-a_{m}(\mathbf{x}) / a_{0}(\mathbf{x})$

Each event $\quad l=m \quad$ is then Bernoulli distributed with probability $a_{m}(\mathbf{x}) / a_{0}(\mathbf{x})$ Since K_{m} is the number of successes in these L independent Bernoulli sampling, it will follow the distribution $\mathcal{B}\left(L, a_{m}(\mathbf{x}) / a_{0}(\mathbf{x})\right)$

Lemmas for R-leaping Theorem

Lemma II

The following holds

$$
\begin{aligned}
& P(l=2 \mid l>1) \quad=\frac{a_{2}(\mathbf{x})}{a_{0}(\mathbf{x})-a_{1}(\mathbf{x})} \\
& P(l \neq 2 \mid l>1) \quad=1-\frac{a_{2}(\mathbf{x})}{a_{0}(\mathbf{x})-a_{1}(\mathbf{x})}
\end{aligned}
$$

R-leaping : How to Sample the the $\mathbf{M} \mathrm{K}_{\mathrm{j}}$

R_{0} Algorithm

$$
p(j=l)=\frac{a_{l}}{a_{0}}
$$

R-leaping: How to Sample the the $\mathbf{M} \mathrm{K}_{\mathrm{j}}$
R_{0} Algorithm

- Pointwise Sampling of Lindependent reaction indices

$$
p(j=l)=\frac{a_{l}}{a_{0}}
$$

Simple BUT scales with L-close to the work load of SSA!

Ro-sampling scales with L and, in particular when compared with T-leaping that scales with M, the method is inefficient for large leap sizes, $L \gg M$.

R-leaping: How to Sample the the $\mathbf{M} \mathrm{K}_{\mathrm{j}}$

$R_{0} \quad$ Algorithm

- Pointwise Sampling of Lindependent reaction indices

$$
p(j=l)=\frac{a_{l}}{a_{0}}
$$

Simple BUT scales with L-close to the work load of SSA!

$R_{1} \quad$ Algorithm

- Sampling M correlated binomial variables

$$
\mathcal{B}\left(L, a_{j} / a_{0}\right)
$$

Create correlations with conditional distributions

$$
\begin{aligned}
& \text { If } K_{i}=k_{i}, \forall i<m, \\
& K_{m} \sim \mathcal{B}\left(L-\sum_{i=1}^{m-1} k_{i}, \frac{a_{m}}{a_{0}-\sum_{i=1}^{m-1} a_{i}}\right)
\end{aligned}
$$

R-leaping : How to Sample the the $\mathbf{M} \mathrm{K}_{\mathrm{j}}$

$R_{0} \quad$ Algorithm

- Pointwise Sampling of Lindependent reaction indices

$$
p(j=l)=\frac{a_{l}}{a_{0}}
$$

Simple BUT scales with L-close to the work load of SSA!

$R_{1} \quad$ Algorithm

- Sampling M correlated binomial variables

$$
\mathcal{B}\left(L, a_{j} / a_{0}\right)
$$

Create correlations with conditional distributions

$$
\begin{aligned}
& \text { If } K_{i}=k_{i}, \forall i<m \\
& K_{m} \sim \mathcal{B}\left(L-\sum_{i=1}^{m-1} k_{i}, \frac{a_{m}}{a_{0}-\sum_{i=1}^{m-1} a_{i}}\right)
\end{aligned}
$$

R-leaping: How to Sample the the $\mathbf{M} \mathrm{K}_{\mathrm{j}}$

$R_{0} \quad$ Algorithm

- Pointwise Sampling of Lindependent reaction indices

$$
p(j=l)=\frac{a_{l}}{a_{0}}
$$

Simple BUT scales with L-close to the work load of SSA!

$R_{1} \quad$ Algorithm

- Sampling M correlated binomial variables

$$
\mathcal{B}\left(L, a_{j} / a_{0}\right)
$$

Create correlations with conditional distributions

$$
\begin{aligned}
& \text { If } K_{i}=k_{i}, \forall i<m \\
& K_{m} \sim \mathcal{B}\left(L-\sum_{i=1}^{m-1} k_{i}, \frac{a_{m}}{a_{0}-\sum_{i=1}^{m-1} a_{i}}\right)
\end{aligned}
$$

Reaction index

R-leaping : Sorting for efficiency

- Sampling the $\mathbf{M} K_{j}$ efficiently

If $K_{i}=k_{i}, \forall i<m, K_{m} \sim \mathcal{B}\left(L-\sum_{i=1}^{m-1} k_{i}, \frac{a_{m}}{a_{0}-\sum_{i=1}^{m-1} a_{i}}\right)$

- When $\sum_{i=1}^{m-1} k_{i}=L$, sampling is done!
- Minimize the average m by a permutation of the indices, such that $a_{j^{\prime}}$ is decreasing
- E.g. $a_{M}>a_{3}>a_{1} \gg \cdots$

R-leaping : Sorting for efficiency

- Sampling the $\mathbf{M} K_{j}$ efficiently

If $K_{i}=k_{i}, \forall i<m, K_{m} \sim \mathcal{B}\left(L-\sum_{i=1}^{m-1} k_{i}, \frac{a_{m}}{a_{0}-\sum_{i=1}^{m-1} a_{i}}\right)$

- When $\sum_{i=1}^{m-1} k_{i}=L$, sampling is done!
- Minimize the average m by a permutation of the indices, such that $a_{j^{\prime}}$ is decreasing
- E.g. $a_{M}>a_{3}>a_{1} \gg \cdots$

R-leaping : Sorting for efficiency

- Sampling the $\mathbf{M} K_{j}$ efficiently

If $K_{i}=k_{i}, \forall i<m, K_{m} \sim \mathcal{B}\left(L-\sum_{i=1}^{m-1} k_{i}, \frac{a_{m}}{a_{0}-\sum_{i=1}^{m-1} a_{i}}\right)$

- When $\sum_{i=1}^{m-1} k_{i}=L$, sampling is done!
- Minimize the average m by a permutation of the indices, such that $a_{j^{\prime}}$ is decreasing
- E.g. $a_{M}>a_{3}>a_{1} \gg \cdots$

R-leaping : Efficient Sampling

Sampling the $\mathbf{M} K_{j}$ efficiently

- M can be large ($\sim 10^{2}$) for bio-chemical systems!
- Efficient sampling effectively loops over a fraction of \boldsymbol{M}.

Number of binomial samples per time step LacYLacZ activities in E. Coli., M=22

- The larger the system, the bigger the payoff.
- The more disparate the reaction rates are, the smaller the fraction.
- Price to pay: carry out re-ordering often enough (cheap!)

Stochastic simulation: R-leaping

Stochastic simulation: R-leaping

- Controlling the leap approximation

Stochastic simulation: R-leaping

- Controlling the leap approximation
- All three methods of \mathbf{t} leaping are transposable to Rleaping

Absolute change of a_{j}

Stochastic simulation: R-leaping

- Controlling the leap approximation
- All three methods of \mathbf{T} leaping are transposable to Rleaping

Absolute change of a_{j}
Relative change of aj_{j}
Relative change of a_{j} but efficiently through the relative changes in populations

Approximation control : T leaping

- The $L>1$ fired reactions are changing the propensities
- т "small enough" or bound the propensity change
- want to impose, $\forall j, \Delta a_{j}<\epsilon a_{j}$ to get T estimate
- Only possible in a probabilistic sense

$$
\forall j, \mathbb{E}\left(\Delta a_{j}\right)<\epsilon a_{j}
$$

- Taylor expansion and truncation at first order gives bounds on \mathbf{T}

$$
\forall j, \operatorname{var}\left(\Delta a_{j}\right)<\epsilon a_{j}
$$

T leaping: Bounds on propensity changes

- Use the absolute change $\forall j, \Delta a_{j}<\epsilon a_{0}$
- but if ao is large, slow reactions can see their propensities go through huge changes!
- Use the relative changes $\forall j, \Delta a_{j}<\epsilon a_{j}$ Solves accuracy but...
- the computation of $\mathbb{E}\left(\Delta a_{j}\right)$ and $\operatorname{var}\left(\Delta a_{j}\right)$ involves the determination of influences of reaction firings over all the propensities

$$
f_{j m}(\mathbf{x})=\sum_{l=1}^{N} \frac{\partial a_{j}(\mathbf{x})}{\partial x_{l}} \nu_{l m}
$$

$=\begin{array}{c}\text { how much one firing } \\ \text { of } R_{l} \text { changes } a_{j}\end{array}$

M^{2} entries! Sparse but still heavy...

T leaping : Bounds on the propensity changes

- Use the relative changes in populations
- For a first order reaction, $S_{i} \rightarrow$ products $a_{j}(\mathbf{x})=c_{j} x_{i}$ we have

$$
\frac{\Delta a_{j}}{a_{j}}=\frac{\Delta x_{i}}{x_{i}}
$$

Bound on relative changes is satisfied!
Similar relations for second, third order
Leap control scales with \mathbf{N}, \mathbf{M}. No more large sparse (MxM) matrix involved

Stochastic simulation: R-leaping

Stochastic simulation: R-leaping

- Controlling negative species with \mathbf{L} as a leap parameter

Stochastic simulation: R-leaping

- Controlling negative species with L as a leap parameter
- Bound \mathbf{L} by maximum number of firings L_{j} allowed by reactants

$$
L<L_{j}
$$

Strict control of negative species

Stochastic simulation: R-leaping

- Controlling negative species with L as a leap parameter
- Bound \mathbf{L} by maximum number of firings L_{j} allowed by reactants

Strict control of negative species

$$
L<L_{j}
$$

Too strict!

Stochastic simulation: R-leaping

- Controlling negative species with L as a leap parameter
- Bound \mathbf{L} by maximum number of firings L_{j} allowed by reactants
- Strict control of negative species

$$
L<L_{j}
$$

Too strict!

- Bound the expected number of firings for reaction j by L_{j}

$$
L \frac{a_{j}}{a_{0}}<L_{j}
$$

- Introduces negative species

Stochastic simulation: R-leaping

- Controlling negative species with L as a leap parameter
- Bound \mathbf{L} by maximum number of firings L_{j} allowed by reactants
- Strict control of negative species
- Bound the expected number of firings for reaction j by L_{j}

Introduces negative species

$$
L<L_{j}
$$

$$
L \frac{a_{j}}{a_{0}}<L_{j}
$$

Too lax!

Stochastic simulation: R-leaping

- Controlling negative species with L as a leap parameter
- Bound \mathbf{L} by maximum number of firings L_{j} allowed by reactants

Strict control of negative species

$$
L<L_{j}
$$

Too strict!

- Bound the expected number of firings for reaction j by L_{j}

Introduces negative species

$$
L \frac{a_{j}}{a_{0}}<L_{j}
$$

Too lax!

- Introduce trade-off

With parameter θ

$$
L \leq(1-\theta) L_{j}+\theta \frac{a_{0}}{a_{j}} L_{j}
$$

Allows negative species at a controlled frequency

Stochastic simulation: R-leaping

- Controlling negative species with L as a leap parameter
- Bound \mathbf{L} by maximum number of firings L_{j} allowed by reactants

Strict control of negative species

$$
L<L_{j}
$$

Too strict!

- Bound the expected number of firings for reaction j by L_{j}
- Introduces negative species

$$
L \frac{a_{j}}{a_{0}}<L_{j}
$$

Too lax!

- Introduce trade-off

With parameter θ
Allows negative species at a controlled frequency

$$
L \leq(1-\theta) L_{j}+\theta \frac{a_{0}}{a_{j}} L_{j}
$$

Tunable compromise between efficiency and accuracy

Results

- Accuracy and complexity
- Decaying-dimerizing system
- no negative species

$$
\begin{gathered}
S_{1} \xrightarrow{c_{1}} 0, \quad S_{1}+S_{1} \xrightarrow{c_{2}} S_{2}, \quad S_{2} \xrightarrow{c_{3}} S_{1}+S_{1}, \quad S_{2} \xrightarrow{c_{4}} S_{3} \\
c_{1}=1, \quad c_{2}=0.002, \quad c_{3}=0.5, \quad c_{4}=0.04 . \\
X_{1}(0)=4150, X_{2}(0)=39565, \quad X_{3}(0)=3445
\end{gathered}
$$

Results

- Accuracy and complexity
- Decaying-dimerizing system

$$
\begin{gathered}
S_{1} \xrightarrow{c_{1}} 0, \quad S_{1}+S_{1} \xrightarrow{c_{2}} S_{2}, \quad S_{2} \xrightarrow{c_{3}} S_{1}+S_{1}, \quad S_{2} \xrightarrow{c_{4}} S_{3} \\
c_{1}=1, \quad c_{2}=0.002, \quad c_{3}=0.5, \quad c_{4}=0.04 .
\end{gathered}
$$

- no negative species

$$
X_{1}(0)=4150, X_{2}(0)=39565, X_{3}(0)=3445
$$

Histogram of X_{2} at $t=10$

Results

- Accuracy and complexity
- Decaying-dimerizing system

$$
\begin{gathered}
S_{1} \xrightarrow{c_{1}} 0, \quad S_{1}+S_{1} \xrightarrow{c_{2}} S_{2}, \quad S_{2} \xrightarrow{c_{3}} S_{1}+S_{1}, \quad S_{2} \xrightarrow{c_{4}} S_{3} \\
c_{1}=1, \quad c_{2}=0.002, \quad c_{3}=0.5, \quad c_{4}=0.04 .
\end{gathered}
$$

- no negative species

$$
X_{1}(0)=4150, X_{2}(0)=39565, X_{3}(0)=3445
$$

Histogram of X_{2} at $t=10$

Results

- Accuracy and complexity
- Decaying-dimerizing system

$$
\begin{gathered}
S_{1} \xrightarrow{c_{1}} 0, \quad S_{1}+S_{1} \xrightarrow{c_{2}} S_{2}, \quad S_{2} \xrightarrow{c_{3}} S_{1}+S_{1}, \quad S_{2} \xrightarrow{c_{4}} S_{3} \\
c_{1}=1, \quad c_{2}=0.002, \quad c_{3}=0.5, \quad c_{4}=0.04 .
\end{gathered}
$$

- no negative species

$$
X_{1}(0)=4150, X_{2}(0)=39565, X_{3}(0)=3445
$$

$\varepsilon=0.01$ (Absolute change in propensities)

Histogram of X_{2} at $t=10$

Results

- Accuracy and complexity
- Decaying-dimerizing system

$$
\begin{gathered}
S_{1} \xrightarrow{c_{1}} 0, S_{1}+S_{1} \xrightarrow{c_{2}} S_{2}, \quad S_{2} \xrightarrow{c_{3}} S_{1}+S_{1}, \quad S_{2} \xrightarrow{c_{4}} S_{3} \\
c_{1}=1, \quad c_{2}=0.002, \quad c_{3}=0.5, \quad c_{4}=0.04 .
\end{gathered}
$$

- no negative species

$$
X_{1}(0)=4150, X_{2}(0)=39565, X_{3}(0)=3445
$$

$\varepsilon=0.01$ (Absolute change in propensities)

Histogram of X_{2} at $t=10$

Histogram error vs. CPU time

Results

- LacZ/LacY genes expression and enzymatic/ transport activities of LacZ/LacY proteins in E. Coli

Kierzek, Bioiformatics 2002${ }^{2} 2$

- Moderately large system ($M=22$)
- Disparate rates
- Scarce reactants and negative species

Reaction Channel	Reaction rate
PLac + RNAP \rightarrow PLacRNAP	0.17
PLacRNAP \rightarrow PLac + RNAP	10
PLacRNAP \rightarrow TrLacZ1	1
TrLacZ1 \rightarrow RbsLacZ + PLac + TrLacZ2	1
TrLacZ2 \rightarrow TrLacY2	0.015
TrLacY1 \rightarrow RbsLacY + TrLacY2	1
TrLacY2 \rightarrow RNAP	0.36
Ribosome + RbsLacZ \rightarrow RbsRibosomeLacZ	0.17
Ribosome + RbsLacY \rightarrow RbsRibosomeLacY	0.17
RbsRibosomeLacZ \rightarrow Ribosome + RbsLacZ	0.45
RbsRibosomeLacY \rightarrow Ribosome + RbsLacY	0.45
RbsRibosomeLacZ \rightarrow TrRbsLacZ + RbsLacZ	0.4
RbsRibosomeLacY \rightarrow TrRbsLacY + RbsLacY	0.4
TrRbsLacZ \rightarrow LacZ	0.015
TrRbsLacY \rightarrow LacY	0.036
LacZ \rightarrow dgrLacZ	6.42×10^{-5}
LacY \rightarrow dgrLacY	6.42×10^{-5}
RbsLacZ \rightarrow dgrRbsLacZ	0.3
RbsLacY \rightarrow dgrRbsLacY	0.3
LacZ + lactose \rightarrow LacZlactose	9.52×10^{-5}
LacZlactose \rightarrow product + LacZ	431
LacY \rightarrow lactose + LacY	14

14

Results

- LacZ/LacY genes expression and enzymatic/ transport activities of LacZ/LacY proteins in E. Coli
- Histogram errors vs CPU time

Efficient sampling offers factor 2 in speed w.r.t. modified \mathbf{T}-leaping!

Summary

- R-leaping, an accelerated stochastic algorithm that is complementary to existing \mathbf{T}-leaping algorithms
- Efficient binomial sampling offers computational savings for large systems with disparate rates
- Efficient sampling exploits size and stiffness of system.
- Can be transposed to t-leaping algorithms (!)...
- Treatment of negative species with a tunable compromise efficiency-accuracy
- An alternative to modified t-leaping, which essentially recurs to SSA when in trouble

OUTLOOK

E \& Vanden-Eijnden,
 J. Chem. Phys. 2005

- R-leaping for stiff problems ?

Cao etal.,
J. Comp. Phys. 2005

- R-leaping of reaction-diffusion-convection problems

