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Chemical kinetics : Set-up

• Well stirred reaction volume V

• N different species S1, S2,..., SN in 
numbers X1, X2,..., XN

• random collisions and reactions  
through M channels R1, R2,... , RM

• Experiment length T

V

S1
S2

cj

ci
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Stochastic simulation: SSA

• For M reactions, time until any reaction

• Reaction index :  point-wise distribution

• One timestep:

• Sample τ 

• Sample the index j

• Update the Xi, t=t+τ 

• The SSA simulates every reaction event !
•

a0 =
M∑

j=1

aj

p(j = l) =
al

a0

τ ∼ E(1/a0)

Gillespie,
J. Comp. Phys. 1977
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Stochastic simulation: acceleration
• SSA : exact but slow

• τ leaping  : several reaction events over one time step, 

• Assumption : reaction propensities ai remain essentially 
constant over τ, in spite of several firings

• Over this given τ, the number of reaction firings KPj is 
governed by a Poisson distribution

KP
j ∼ P(ajτ)

Gillespie,
J. Chem. Phys. 2001

Cost ~  M Poisson samplings

X(t + τ) = X(t) +
M∑

j=1

KP
j νj .
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 τ leaping Consequences 

• τ leaping : Can generate  negative populations 

• Binomial τ leaping : Approximate the unbounded Poisson 
distributions with Binomial ones

• Modified τ leaping
• Critical reactions, i.e. those likely to drive some populations negative, handled by SSA

• Other reactions advanced by τ leaping

Tian & Burrage,
J. Chem. Phys. 2004

Chatterjee et al.,
J. Chem. Phys. 2005

Cao et al.,
J. Chem. Phys. 2005
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R-leaping : Accelerate SSA by reaction leaps 
Auger et al.,
J. Chem. Phys. 2006
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R-leaping : Accelerate SSA by reaction leaps 
Auger et al.,
J. Chem. Phys. 2006

• Leaps are in prescribed number of reaction firings L across all  
reaction  channels 
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R-leaping : Accelerate SSA by reaction leaps 
Auger et al.,
J. Chem. Phys. 2006

• Leaps are in prescribed number of reaction firings L across all  
reaction  channels 

• In this interval we will have           firings of channel   Km Rm

• with : 
M∑

m=1

Km = L

• Time increment τL is Gamma-distributed τL ∼ Γ(L, 1/a0(x))
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R-leaping : Accelerate SSA by reaction leaps 
Auger et al.,
J. Chem. Phys. 2006

• Leaps are in prescribed number of reaction firings L across all  
reaction  channels 

P (j = l) =
al(x)
a0(x)

for l = 1, . . . ,M.

• In R-leaping, as in SSA, the index j of every firing obeys a point-wise distribution 

• In this interval we will have           firings of channel   Km Rm

• with : 
M∑

m=1

Km = L

• Time increment τL is Gamma-distributed τL ∼ Γ(L, 1/a0(x))
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R-leaping : One step  Auger et al.,
J. Chem. Phys. 2006

• Define L 

• Sample the index j 

• Number of reactions for channel  m  

• Update species and time : 

P (j = l) =
al(x)
a0(x)

for l = 1, . . . , L.

Km =
L∑

l=1

δl,m

X(t + τL) = X(t) +
M∑

j=1

Kjνj

τL ∼ Γ(L, 1/a0(x))
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R-leaping : Accelerate SSA by reaction leaps 

• L firings distributed  across M reaction channels
• In τ leaping:  KPj are independent Poisson variables. 

• In R-leaping, Kj are not independent.

• L as a control parameter
• System can be brought to a desired state X

• Time is not a-priori specified 

• New approaches to controlling  negative species
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 R-leaping : How to  Sample the  the M   Kj

p(j = l) =
al

a0

The R0-sampling scales with L and, in particular when compared with τ -leaping that scales with M, the method is inefficient for large leap sizes, L ≫ M.

R0 Algorithm
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 R-leaping : How to  Sample the  the M   Kj

• Pointwise Sampling of  L independent 
reaction indices 

• Simple  BUT  scales with L - close to the work load of SSA!

p(j = l) =
al

a0

The R0-sampling scales with L and, in particular when compared with τ -leaping that scales with M, the method is inefficient for large leap sizes, L ≫ M.

R0 Algorithm
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 R-leaping : How to  Sample the  the M   Kj

• Pointwise Sampling of  L independent 
reaction indices 

• Simple  BUT  scales with L - close to the work load of SSA!

1 2 3 ... M
1
2
3
...
L
K

x
x

x
x

x
2 2 1

Fi
rin

g

Reaction index

p(j = l) =
al

a0

The R0-sampling scales with L and, in particular when compared with τ -leaping that scales with M, the method is inefficient for large leap sizes, L ≫ M.

R0 Algorithm
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R-Leaping Theorem 

 The distribution of          is a binomial distribution : 

and for every                                   the conditional distribution of 

given  the event                                                                                is

This  result is invariant under any permutation of the indices

K1

B(L, a1(x)/a0(x))

m ∈ {2, . . . ,M} Km

{(K1, . . . ,Km−1) = (k1, . . . , km−1)}

B
(

L−
m−1∑

i=1

ki,
am(x)

a0(x)−
∑m−1

i=1 ai(x)

)
.Km ∼
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Lemmas  for R-leaping Theorem

For every                              the random variables         follow a
Binomial distribution with parameters        and 

m = 1, . . . ,M Km

L

Km ∼ B(L, am(x)/a0(x))

am(x)/a0(x)

Lemma 1

PROOF : 
Assume that the indices                       have been drawn  from point-wise distributions.
Fix an integer 

For each index                        there are only two possible outcomes
•                   with probability 
•    or not with probability 

Each event                       is then Bernoulli distributed with probability  
Since           is the number of successes in these        independent Bernoulli sampling, it will follow 
the distribution 

(l = 1, . . . , L)
m ∈ [1,M ]

am(x)/a0(x)
1− am(x)/a0(x)

l = m
(l = 1, . . . , L)

l = m am(x)/a0(x)
Km L

B(L, am(x)/a0(x))
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Lemmas  for R-leaping Theorem

Lemma II

The following holds P (l = 2|l > 1) = a2(x)
a0(x)−a1(x)

P (l != 2|l > 1) = 1− a2(x)
a0(x)−a1(x)
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 R-leaping : How to  Sample the  the M   Kj

p(j = l) =
al

a0

The R0-sampling scales with L and, in particular when compared with τ -leaping that scales with M, the method is inefficient for large leap sizes, L ≫ M.

R0 Algorithm
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 R-leaping : How to  Sample the  the M   Kj

• Pointwise Sampling of  L independent 
reaction indices 

• Simple  BUT  scales with L - close to the work load of SSA!

p(j = l) =
al

a0

The R0-sampling scales with L and, in particular when compared with τ -leaping that scales with M, the method is inefficient for large leap sizes, L ≫ M.

R0 Algorithm
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 R-leaping : How to  Sample the  the M   Kj

• Pointwise Sampling of  L independent 
reaction indices 

• Simple  BUT  scales with L - close to the work load of SSA!

p(j = l) =
al

a0

The R0-sampling scales with L and, in particular when compared with τ -leaping that scales with M, the method is inefficient for large leap sizes, L ≫ M.

R0 Algorithm

B(L, aj/a0)

Km ∼ B
(

L−
m−1∑

i=1

ki,
am

a0 −
∑m−1

i=1 ai

)
If Ki = ki, ∀i < m,

• Sampling M correlated binomial variables

• Create correlations with conditional distributions 

R1 Algorithm
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 R-leaping : How to  Sample the  the M   Kj

• Pointwise Sampling of  L independent 
reaction indices 

• Simple  BUT  scales with L - close to the work load of SSA!

1 2 3 ... M
1
2
3
...
L
K

x
x

x
x

x
2 2 1

Fi
rin

g

Reaction index

p(j = l) =
al

a0

The R0-sampling scales with L and, in particular when compared with τ -leaping that scales with M, the method is inefficient for large leap sizes, L ≫ M.

R0 Algorithm

B(L, aj/a0)
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(

L−
m−1∑

i=1

ki,
am

a0 −
∑m−1

i=1 ai

)
If Ki = ki, ∀i < m,

• Sampling M correlated binomial variables

• Create correlations with conditional distributions 

R1 Algorithm
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 R-leaping : How to  Sample the  the M   Kj

• Pointwise Sampling of  L independent 
reaction indices 

• Simple  BUT  scales with L - close to the work load of SSA!
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p(j = l) =
al

a0

The R0-sampling scales with L and, in particular when compared with τ -leaping that scales with M, the method is inefficient for large leap sizes, L ≫ M.

R0 Algorithm

B(L, aj/a0)

Km ∼ B
(

L−
m−1∑

i=1

ki,
am

a0 −
∑m−1

i=1 ai

)
If Ki = ki, ∀i < m,

• Sampling M correlated binomial variables

• Create correlations with conditional distributions 

R1 Algorithm
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 R-leaping : Sorting for efficiency 
• Sampling the M Kj efficiently

• When                 , sampling is done!

• Minimize the average m by a permutation of the  
indices, such that       is decreasing

• E.g. 

Km ∼ B
(

L−
m−1∑

i=1

ki,
am

a0 −
∑m−1

i=1 ai

)

If Ki = ki, ∀i < m,

m−1∑

i=1

ki = L

aj′

aM > a3 > a1 >> · · ·
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 R-leaping : Sorting for efficiency 
• Sampling the M Kj efficiently

• When                 , sampling is done!

• Minimize the average m by a permutation of the  
indices, such that       is decreasing

• E.g. 

1 2 3 ... M

1

2

3

...

L

K

x

x

x

x

x

x

x

x

x

2 3 4

Fi
rin

g

Reaction index

Km ∼ B
(

L−
m−1∑

i=1

ki,
am

a0 −
∑m−1

i=1 ai

)

If Ki = ki, ∀i < m,

m−1∑

i=1

ki = L

aj′

aM > a3 > a1 >> · · ·

Have to sample M binomials

Original loop
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 R-leaping : Sorting for efficiency 
• Sampling the M Kj efficiently

• When                 , sampling is done!

• Minimize the average m by a permutation of the  
indices, such that       is decreasing

• E.g. 
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Km ∼ B
(

L−
m−1∑

i=1

ki,
am

a0 −
∑m−1

i=1 ai

)

If Ki = ki, ∀i < m,

m−1∑

i=1

ki = L

aj′
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Reaction index

Have to sample M binomials Have to sample 3 binomials

Permutation of indicesOriginal loop
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 R-leaping : Efficient  Sampling

• Sampling the M Kj efficiently

• M can be large (~102) for bio-chemical systems!

• Efficient sampling effectively loops over a fraction of M.

• The larger the system, the bigger the payoff.

• The more disparate the  reaction rates are, 
the smaller the fraction.

• Price to pay: carry out re-ordering often enough
(cheap!)

Number of binomial samples per time step
LacYLacZ activities in E. Coli., M=22

Original

Efficient

Efficient 
(averaged)
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Stochastic simulation: R-leaping
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• Controlling the leap approximation

Stochastic simulation: R-leaping
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• Controlling the leap approximation

• All three methods of τ leaping are transposable to R-
leaping

• Absolute change of aj

Stochastic simulation: R-leaping
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• Controlling the leap approximation

• All three methods of τ leaping are transposable to R-
leaping

• Absolute change of aj

• Relative change of aj

• Relative change of aj but efficiently through the 
relative changes in populations

Stochastic simulation: R-leaping
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Approximation control : τ leaping

• The L>1 fired reactions  are changing the propensities

• τ “small enough” or  bound the propensity change

• want to impose,                                 to get τ estimate 

• Only possible in a probabilistic sense

• Taylor expansion and truncation at first order gives 
bounds on τ

∀j , ∆aj < εaj

∀j , var(∆aj) < εaj

∀j , E(∆aj) < εaj

Gillespie & Petzold,
J. Chem. Phys. 2003
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τ leaping : Bounds on propensity changes

• Use the absolute change

• but if a0 is large, slow reactions can see their 
propensities go through huge changes!

• Use the relative changes

• Solves accuracy but...

• the computation of                   and                    involves the 
determination of influences of reaction firings over all 
the propensities

• M2 entries! Sparse but still heavy...

∀j , ∆aj < εaj

∀j , ∆aj < εa0

E(∆aj) var(∆aj)

computational cost, from M2 to M , by bounding the change in the molecular populations.

1. Bounding the propensity changes by a fraction of a0(x)

Following Ref. 7, we determine L such that during [t, t+τL), the change for each propensity

function is bounded by εa0(x)

|aj (X(t + τL)) − aj (x)| ≤ εa0 (x) , for j = 1, . . . , M

which may be expressed using the definition of Km (Eq. 4) as
∣∣∣∣∣aj(x +

M∑

m=1

Kmνm) − aj(x)

∣∣∣∣∣ ≤ εa0(x), for j = 1, . . . , M. (7)

The interpretation of this inequality can lead to different control mechanisms. In the context

of τ -leaping, Gillespie2 proposed the requirement that the expected value of the left-hand

side of Eq. 7 is smaller than εa0(x). This condition was further enhanced in Ref. 7 requiring

that, in addition to the expected value, the standard deviation of the left-hand side be

smaller than εa0(x)
∣∣∣∣∣E(aj(x +

M∑

m=1

Kmνm) − aj(x))

∣∣∣∣∣ ≤ εa0(x) (8)

var(aj(x +
M∑

m=1

Kmνm) − aj(x)) ≤ (εa0(x))2 . (9)

For R-leaping, those conditions are satisfied at first order under the following condition

R-leaping condition 1.

L ≤ a0(x) min
j=1...M





εa0(x)

|µj(x)| ,
ε2a2

0(x)

σ2
j (x) − µ2

j (x)

a0(x)




 (10)

where

µj(x) =
M∑

m=1

fjm(x)am(x) (11)

σ2
j (x) =

M∑

m=1

f 2
jm(x)am(x) (12)

with

fjm(x) =
N∑

l=1

∂aj(x)

∂xl
νlm (13)

10

= how much one firing 
of Rl changes aj
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 τ leaping : Bounds on the propensity changes

• Use the relative changes in populations

• For a first order reaction,
we have

• Bound on relative changes is satisfied! 

• Similar relations for second, third order 

• Leap control scales with N, M. No more large sparse 
(MxM) matrix involved

Figure 2 shows what Fig. 1 would have looked like if the
tau-leaping simulations had been carried out using formula
!18" instead of formula !13". Obviously, this gives a much
better agreement with the exact SSA results.

IV. A NEW TAU-SELECTION PROCEDURE

Although ! selection using formula !18" results in a
more accurate simulation than ! selection using formula !13",
the evaluation of the functions " j!x" and # j

2!x" in Eqs. !11"
and !12" prior to each leap tends to be very time consuming,
especially if both M and N are large. In this section we shall
develop a new !-selection procedure that approximately en-
forces condition !17", but does so in a way that is easier to
implement and faster to execute than the procedure specified
by formulas !11", !12", and !18".

The underlying strategy of this new !-selection proce-
dure is to bound the relative changes in the molecular popu-
lations in such a way that the relative changes in the propen-
sity functions will all be approximately bounded by a
specified value $ !0%$%1". Let

&!Xi # &!Xi!x" ! Xi!t + !" − xi given X!t" = x . !19"

Instead of basing ! selection on condition !17", we shall
base it on the condition

&!Xi ' max$$ixi,1%, ∀ i ! Irs. !20"

The values of $i=$i!$ ,xi" are assigned in a way that will
be specified shortly, and Irs denotes the set of indices of all
reactant species !so i! Irs if and only if xi is an argument of
at least one propensity function". Condition !20" evidently
requires the relative change in Xi to be bounded by $i, except
that Xi will never be required to change by an amount less
than 1.

To determine how $i in condition !20" should be chosen
so that the relative changes in all the propensity functions
will be bounded by $, we have to examine individually all
the possible types of reactions.

Consider first the case in which reaction Rj is the first-
order reaction Si→products. Its propensity function then has
the form aj!x"=cjxi. Since the change in aj is related to the
change in Xi by &aj =cj&xi, it follows that the relative
change in aj is related to the relative change in Xi by

&aj

aj
=

&xi

xi
. !21"

Therefore, if we bound the relative change in Xi by $i=$, we
will also bound the relative change in aj by $.

Consider next the case in which reaction Rj is the
second-order reaction S1+S2→products, so that its propen-
sity function has the form aj!x"=cjx1x2. In that case we have,
to a reasonably good approximation,

&aj & cjx2&x1 + cjx1&x2,

where we have neglected on the right the usually small term
cj&x1&x2. To that approximation, we have

&aj

aj
&

&x1

x1
+

&x2

x2
. !22"

If we bound the relative change in X1 by $1=$ /2, and the
relative change in X2 by $2=$ /2, then to a first approxima-
tion the relative change in aj will be bounded by $. The
approximate nature of this result arises not only from our
neglect of terms nonlinear in the small changes &x1 and &x2
!an approximation that the GP procedure makes as well" but
also from our neglect of any correlation between those
changes. Such a correlation would not affect the mean of Eq.
!22"; however, it could make the variance of the left side of
Eq. !22" a little larger or a little smaller than the sum of the
variances of the terms on the right side. So the relative
change in aj will actually be bounded by f$, where f is
something “close” to 1—close enough for our limited pur-
pose of satisfying the leap condition.

If the second-order reaction Rj has the form Si+Si
→products, then its propensity function will be aj!x"
=cj

1
2xi!xi−1", and ignoring terms proportional to !&xi"2 we

will have

&aj & cj
1
2 !xi − 1"&xi + cj

1
2xi&xi.

Then

&aj

aj
&

&xi

xi
+

&xi

xi − 1
=

&xi

xi
'2 +

1

xi − 1( . !23"

If we choose the bound $i on the relative change in Xi to be
$ divided by the factor in parentheses on the right, then this
equation shows that the relative change in aj will be approxi-
mately bounded by $. Note that since this reaction cannot
occur unless xi(2, the factor in parentheses will always be
between 2 !when xi=)" and 3 !when xi=2".

Finally, although third-order reactions are rare !they are
really approximations to sets of coupled first- and second-
order reactions", we should for the sake of completeness al-
low them. They come in three different forms, namely, with
all three reacting molecules being different species, or with
two of the reacting molecules the same species, or with all

FIG. 2. Histogram plots of X3!0.1" for reactions !15" computed from 106

runs each of the SSA !solid line with triangle" and the tau-leaping method
using the improved !!-selection formula !18" with $=0.03 !dotted line with
star".

044109-5 Efficient step size selection J. Chem. Phys. 124, 044109 !2006"

Downloaded 11 Apr 2006 to 129.132.12.44. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

Figure 2 shows what Fig. 1 would have looked like if the
tau-leaping simulations had been carried out using formula
!18" instead of formula !13". Obviously, this gives a much
better agreement with the exact SSA results.

IV. A NEW TAU-SELECTION PROCEDURE

Although ! selection using formula !18" results in a
more accurate simulation than ! selection using formula !13",
the evaluation of the functions " j!x" and # j

2!x" in Eqs. !11"
and !12" prior to each leap tends to be very time consuming,
especially if both M and N are large. In this section we shall
develop a new !-selection procedure that approximately en-
forces condition !17", but does so in a way that is easier to
implement and faster to execute than the procedure specified
by formulas !11", !12", and !18".

The underlying strategy of this new !-selection proce-
dure is to bound the relative changes in the molecular popu-
lations in such a way that the relative changes in the propen-
sity functions will all be approximately bounded by a
specified value $ !0%$%1". Let

&!Xi # &!Xi!x" ! Xi!t + !" − xi given X!t" = x . !19"

Instead of basing ! selection on condition !17", we shall
base it on the condition

&!Xi ' max$$ixi,1%, ∀ i ! Irs. !20"

The values of $i=$i!$ ,xi" are assigned in a way that will
be specified shortly, and Irs denotes the set of indices of all
reactant species !so i! Irs if and only if xi is an argument of
at least one propensity function". Condition !20" evidently
requires the relative change in Xi to be bounded by $i, except
that Xi will never be required to change by an amount less
than 1.

To determine how $i in condition !20" should be chosen
so that the relative changes in all the propensity functions
will be bounded by $, we have to examine individually all
the possible types of reactions.

Consider first the case in which reaction Rj is the first-
order reaction Si→products. Its propensity function then has
the form aj!x"=cjxi. Since the change in aj is related to the
change in Xi by &aj =cj&xi, it follows that the relative
change in aj is related to the relative change in Xi by

&aj

aj
=

&xi

xi
. !21"

Therefore, if we bound the relative change in Xi by $i=$, we
will also bound the relative change in aj by $.

Consider next the case in which reaction Rj is the
second-order reaction S1+S2→products, so that its propen-
sity function has the form aj!x"=cjx1x2. In that case we have,
to a reasonably good approximation,
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tion the relative change in aj will be bounded by $. The
approximate nature of this result arises not only from our
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!an approximation that the GP procedure makes as well" but
also from our neglect of any correlation between those
changes. Such a correlation would not affect the mean of Eq.
!22"; however, it could make the variance of the left side of
Eq. !22" a little larger or a little smaller than the sum of the
variances of the terms on the right side. So the relative
change in aj will actually be bounded by f$, where f is
something “close” to 1—close enough for our limited pur-
pose of satisfying the leap condition.
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→products, then its propensity function will be aj!x"
=cj

1
2xi!xi−1", and ignoring terms proportional to !&xi"2 we

will have

&aj & cj
1
2 !xi − 1"&xi + cj

1
2xi&xi.

Then

&aj

aj
&

&xi

xi
+

&xi

xi − 1
=

&xi

xi
'2 +

1

xi − 1( . !23"

If we choose the bound $i on the relative change in Xi to be
$ divided by the factor in parentheses on the right, then this
equation shows that the relative change in aj will be approxi-
mately bounded by $. Note that since this reaction cannot
occur unless xi(2, the factor in parentheses will always be
between 2 !when xi=)" and 3 !when xi=2".

Finally, although third-order reactions are rare !they are
really approximations to sets of coupled first- and second-
order reactions", we should for the sake of completeness al-
low them. They come in three different forms, namely, with
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• LacZ/LacY genes expression and enzymatic/
transport activities of LacZ/LacY proteins in E. Coli

• Moderately large system (M = 22)
• Disparate rates
• Scarce reactants and negative 

species

Results

Kierzek,
Bioiformatics 2002

Reaction Channel Reaction rate

R1 PLac + RNAP → PLacRNAP 0.17

R2 PLacRNAP → PLac + RNAP 10

R3 PLacRNAP → TrLacZ1 1

R4 TrLacZ1 → RbsLacZ + PLac + TrLacZ2 1

R5 TrLacZ2 → TrLacY2 0.015

R6 TrLacY1 → RbsLacY + TrLacY2 1

R7 TrLacY2 → RNAP 0.36

R8 Ribosome + RbsLacZ → RbsRibosomeLacZ 0.17

R9 Ribosome + RbsLacY → RbsRibosomeLacY 0.17

R10 RbsRibosomeLacZ → Ribosome + RbsLacZ 0.45

R11 RbsRibosomeLacY → Ribosome + RbsLacY 0.45

R12 RbsRibosomeLacZ → TrRbsLacZ + RbsLacZ 0.4

R13 RbsRibosomeLacY → TrRbsLacY + RbsLacY 0.4

R14 TrRbsLacZ → LacZ 0.015

R15 TrRbsLacY → LacY 0.036

R16 LacZ → dgrLacZ 6.42x10−5

R17 LacY → dgrLacY 6.42x10−5

R18 RbsLacZ → dgrRbsLacZ 0.3

R19 RbsLacY → dgrRbsLacY 0.3

R20 LacZ + lactose → LacZlactose 9.52x10−5

R21 LacZlactose → product + LacZ 431

R22 LacY → lactose + LacY 14

TABLE II: LacZ/LacY model (Kierzek8): reaction channels and rates.
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• LacZ/LacY genes expression and enzymatic/
transport activities of LacZ/LacY proteins in E. Coli
• Histogram errors vs CPU time

• Efficient sampling offers factor 2 in speed w.r.t. 
modified τ-leaping! 

Results

   modified τ-leaping 
x R-leaping
o R-leaping efficient sampling
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Summary

• R-leaping, an accelerated stochastic algorithm that is 
complementary to existing τ-leaping algorithms

• Efficient binomial sampling offers computational 
savings for large systems with disparate rates

• Efficient sampling exploits size and stiffness of system.
• Can be transposed to τ-leaping algorithms (!)...

• Treatment of negative species with a tunable 
compromise efficiency-accuracy

• An alternative to modified τ-leaping, which essentially recurs to SSA when in trouble
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OUTLOOK

• R-leaping for stiff problems ?

• R-leaping  of reaction-diffusion-convection  problems

Cao etal.,
J. Comp. Phys. 2005

E & Vanden-Eijnden,
J. Chem. Phys. 2005
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