Decision making in the assembly of sensory-motor circuits

Victor Luria Department of Genetics & Motor Neuron Center Columbia University, New York

Morphodynamics KITP, Santa Barbara September 16, 2009

Columbia, New York

Ed Laufer Tom Jessell

Angela Christiano

McGill & U de Montréal

Bryan Crenshaw Carol Mason Mark Henkemeyer

Penn Columbia UT Southwestern

Funding Muscular Dystrophy Association NY Spinal Cord Research Foundation Motor Neuron Center, Columbia Christopher & Dana Reeve Foundation

Laufer, Jessell, Mason, Christiano Labs Alex Paul Susan Brenner-Morton Julia Kaltschmidt Scott Williams Ming Zhang

Imperial College & Cambridge

Aldo Faisal

John Murray

Kavli Institute for Theoretical Physics, UC Santa Barbara

Fred Wolf Sara Solla

Gonzalo de Polavieja Boris Shraiman *Princeton* Michael Berry

Neurons send growth cones to faraway targets

Kathryn Tosney

Neural circuit construction is a serial decision process

Topographic mapping

NERVOUS SYSTEM

NON-PERMISSIVE TISSUES

Tosney & Landmesser, *J. Neurosci.* 1985 Jessell, *Nat. Rev. Genet.* 2000

Tosney & Landmesser, J. Neurosci. 1985

Motor axon decision: towards *flexors* or *extensors*?

Landmesser, J. Physiol. 1978

I. MOLECULAR LOGIC - What are the effector molecules that control LMCm trajectories?

II. Quantitative models, experimental predictions and tests

I. What are the effector molecules that control LMCm trajectories?

ephrin-A/EphA, GDNF/c-ret, Sema/Npn signaling influence LMCI trajectories

Kania et al., 2000 Helmbacher et al, 2000 Eberhart et al, 2002 Kania and Jessell, 2003 Huber et al., 2005 Kramer et al., 2006

Hypothesis EphB+ LMCm axons are repelled by ephrin-B+ dorsal limb

Distribution of EphBs receptors and ephrin-Bs ligands

RECEPTOR in NEURONS

LIGAND in NON-TARGET TISSUE

Is EphB1 sufficient to guide LMC axons to the ventral limb?

EphB1 can redirect LMC axons to the ventral limb

EphB1 is necessary for LMCm ventral targeting

EphB1 does not influence LMCI projections

EphBs are necessary for LMCm ventral targeting

LMCm projections are *randomized* AND *more variable* in compound mutants

mistargeted LMCI

mistargeted LMCm

Mirror symmetry ephrin-Eph signaling controls motor axon trajectories to the limb

		Ligands	Receptors
EXPRESSION	Dorsal limb	b	Α
	Ventral limb	а	B
FUNCTIONAL			
EphA4 Compared to the second	E	phB1	ephrin-B Lmx1b
LMCI ──→ EphA4 ─→ Dor	sal limb LMCm	→ EphE	B1 → Ventral limb
Luria et al. <i>Neuron</i> . 2008			

II. Quantitative models, experimental predictions and tests

Neural connectivity is *almost* exact, but defects are NOT corrected

Wild type

~95% - 5%

Various guidance gene mutants

d'Avella & Bizzi. **PNAS 2005** Shared and specific muscle synergies in natural motor behaviors

Andrea d'Avella*[†] and Emilio Bizzi^{‡§}

*Department of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00179 Rome, Italy; "Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139; and *European Brain Research Institute, 00143 Rome, Italy

AD

SM

VI

VE

GA

PE

RA

ST

SA

BI

IP

TA

shared AC SM VI VE GA PE RA ST SA BI IP TA

swim RI AD SM VI VE GA PE RA ST SA BI IP TA

Lmx1b^{-/-}

Kania et al., Cell 2000

Bmprla^{flox/-}

Luria et al., Neural Dev. 2007

EphA4-/-

Helmbacher et al.. Development 2000

Sema3F^{-/-}, Npn2^{-/-}

Huber et al., Neuron 2005

EphB1-/in optic chiasma

Williams et al., Neuron 2003

EphB1,3,13,123-/-

ephrin-B2-/-Luria et al.. Neuron 2008

Axons integrate multiple cues at choice points

Individual cues are noisy, the summed cue even more so

Cue noise can explain guidance defects of mutants

Growth cone machinery is a dynamic structure susceptible to stochastic events

Dynamical model of cue integration

$$\frac{d h_{L,R}}{dt} = \alpha h_{res} - r_d (s_{L,R}) + \eta$$
$$\frac{d h_{res}}{dt} = -\frac{d h_L}{dt} - \frac{d h_R}{dt}$$

Degradation rate: $r_d(s) = 2r_0 \left(\frac{1}{1 + \exp(\beta s)}\right)$

Conservation: $h_{tot} = h_L + h_R + h_{res} + h_{noise}$

Stochastic choice behavior & positive/negative asymmetry

Competing cues and system stability

--> *stable* trajectories

Summed cue strength is limited by sensor noise and amplification

Cue number depends on sensor noise and mean cue strength

Too-much-information hypothesis Noise and finite sensing capacity *limit* information

Construction of neural circuits

Luria et al., Neuron 2008

Neuronal firing rates

Van Vreeswisjk & Sompolinsky, Science 1996

Drosophila photoreceptor fields 70% - 30% unequal partitioning

Wernet et al., Nature 2006

Embryonic stem cells transient differentiation

Rex1(GFP) + Rex1(GFP) -

Toyooka et al., Development 2008

Finance - the anti-portfolio effect

Vlad et al., PNAS 2007

Consumer choices

Lurie and Swaminathan, Organizational Behavior and Human Decision Processes 2009

Olfactory behavior choices

Kepecs et al., Nature 2008

Accuracy (%) Other behavioral decisions?...

60-

0

32

Every Round Every 3 Round Every 6 Rounds

- Optima

11 13 15 17 19 21 23 25 27 Round

44 56 68 100

Odour mixture (% A)

SUMMARY AND FUTURE WORK

1. Control of axon trajectories A/B ephrin-Eph *mirror symmetry*

2. *EphBs* suppress phenotypic variability

General variability suppressors - *Hsp90*, Rutherford and Lindquist, *Nature* 1998, 2003 Specific variability suppressors - *Eph* genes

EphA4, Helmbacher et al., *Development* 2000 *EphBs*, Luria et al., *Neuron* 2008

3. Theoretical modeling

suggests how genetic variability is translated into phenotypic variability suggests noise limits the amount of information controlling binary decisions generates experimental predictions

Genetic experiments

Growth cones reorient in response to electrical fields

Cue strength: quantification using benchmarks

