

From Genome to Phenotype: Modeling the interaction of physical and chemical signals in plant meristems

Meyerowitz Lab and many collaborators

Needs to understand tissues, morphogenesis and development:

Image Analysis

Computational Models of Chemical Signals

Physical Models

Connection between Physical and Chemical Models and Substrate

Connection between Chemical and Physical Models

0 Gy 100 Gy

ATM/ATM

Where the action is: The *Arabidopsis* shoot apical meristem

shoot meristem

Shoot apical meristem

35S::YFP29-1, every 2 hours and 30minutes 65 hours

Developing lineages were traced by tracking individual cell divisions over 5 days

Animation of tracked and smoothed nuclear trajectories

Principal directions of growth

Flower Development, Too

Vegetative SAM

Inflorescence SAM

Jones, A.M. Science (1998) 282, 2201

Previous work has shown:-

- •Application of auxin paste to plant meristems causes lateral organ outgrowth at the site of application (Snow and Snow, 1937).
- •When auxin transport is blocked, either in *pin1* mutants or in plants treated with chemical phytotropins lateral organs do not initiate (Okada et al., 1991).
- •Auxin application can rescue organ initiation when transport is blocked (Reinhardt et al., 2000).

Taken together, these data suggest that endogenous auxin is required in some way for lateral outgrowth on the meristem flanks.

Micro-array analysis of auxin-induced genes in *pin1-1* mutants

Two days after treatment

Three days after treatment

Examples of expression profiles

PIN1
AUX1
IAA4
AP2-like
Zinc finger
SAUR-like

Zinc finger Giberellin beta-hydroxylase

Polyubiquitin

PIN1 expression is auxin induced

Auxin induced genes on pin1-1 apex

30 mins 5 hrs 3 hrs

PIN1:GFP and DR5 expression

Time lapse imaging of PIN1GFP in the meristem confirms expression dynamics

Green: PIN1-GFP Red: Plasma Membrane Dye

Clues to a model.....

Model

- Auxin efflux carrier moves auxin, and its gene is auxininduced - so rate of transport from a cell depends on the auxin level in the cell
- 2) Local high auxin concentration causes new primordia, and it gets high locally by transport and diffusion
- 3) Auxin efflux carrier is polarized in cells, and points toward neighboring cells with the highest auxin concentration

Equations

$$\frac{dP_i}{dt} = F_{creation}(a_i) - K_{Pd}P_i$$

$$\frac{da_{i}}{dt} = K_{p} - K_{d}a_{i} - T\sum_{k}^{N_{j}} \left(a_{i}P_{ij} - a_{j}P_{ji}\right) + D\left(\sum_{j}^{N_{i}} a_{j} - N_{i}a_{i}\right)$$

$$P_{ij} = P_i \frac{a_j}{\sum_{k}^{N_i} a_k} \propto P_i a_j$$

P_i,a_i – PIN1,auxin concentration in cell i

T – transport strength, D – diffusion strength

Peak formation including radial growth

Polarity reversal is abrupt and has a sharp boundary

The auxin concentration model may account for PIN1 reversal

Conclusions

- •The distribution of auxin is involved in patterning PIN1 expression and can influence PIN1 polarity.
- •PIN1 polarity also responds to signals generated by neighboring cells.
- •These observations support a proposed model for phyllotaxis based on feedback between PIN1 polarity and auxin levels within neighboring cells.
- •THIS IS A NEW CLASS OF DEVELOPMENTAL MODEL - NOT REACTION-DIFFUSION, NOT MUTUAL INHIBITION, BUT REGULATED TRANSPORT OF A MORPHOGEN

pinoid apex, pPIN1::PIN1-GFP

IAA spot added at arrow

Question

How does a cell *directionally* detect the auxin concentration of its neighbors?

- •Auxin itself as a signal?
- •Auxin induces a different diffusible substance?
- •Auxin induces an ephrin-type cell-to-cell protein?
- •Auxin causes cell expansion, physical force affects neighboring cells?: Could this explain expansin and PME experiments?

Can stress really be directionally sensed by meristem cells?

Microtubule patterns in the SAM

Stress Pattern in SAM

Model surface extracted from real template - Calculated stress match real microtubules.

MT orientations 6 hrs following compression

Simulation of cell ablation

Double cell ablations also match and argue against chemical morphogen model

Question

How does a cell *directionally* detect the auxin concentration of its neighbors?

Why do cell wall relaxers have the same effect as auxin in inducing new primordia?

•Auxin causes cell expansion, PIN1 moves to the membrane adjacent to the most stressed wall?

Responses to single cell ablations indicate local signaling can modulate PIN1 polarity

Response occurs within two hrs

PIN1 and microtubule interphase are generally aligned

PIN1

PIN1 MTs

Reorientation (at a distance) is NPA insensitive

Plants treated with 100uM NPA for 24 hrs

Most stressed wall/PIN1?

Conclusion

- •Cell polarity in response to ablation is not easily perturbed by inhibition of auxin transport but fits patterns predicted by mechanical models
- Phyllotaxis is likely to involve a mechanical-chemical coupling

Fig. S1

Needs to understand tissues, morphogenesis and development:

Image Analysis

Computational Models of Chemical Signals

Physical Models

Connection between Physical and Chemical Models and Substrate

Connection between Chemical and Physical Models

Eric Mjolsness UC Irvine

Henrik Jönsson Lund University

Marcus Heisler Caltech/EMBL

Venu Reddy Caltech/UCR

Adrienne Roeder Caltech

Vijay Chickarmane Caltech

Sean Gordon Caltech

Bruce E. Shapiro Caltech/JPL

http://www.computableplant.org

Jan Traas INRA Lyon

Olivier Hamant Lyon

Yves Couder ENS Paris

Arezki Boudaoud CNRS Paris

