Spin-state transitions and two-phase competition in perovskite Cobaltites **Despina Louca** Department of Physics University of Virginia

Outline

- o The nature of spin state transitions in the parent compound with a non-magnetic and insulating ground state.
 - o The importance of A ion in the stability of the low-spin state
- o The evolution to a magnetic and conducting state and spin transitions.
 - o The importance of the B ion in stabilizing the excited spin state.
- o Evidence provided for the coexistence of a commensurate and an incommensurate magnetic phase below the magnetic transition with charge doping. Ca? Sr? Ba?
- o Evidence provided for the induction of Jahn-Teller distortions above the transition with charge doping. Ca? Sr? Ba?
- o Summary

People involved in this work:

At UVa

Danny Phelan – PhD student

Juan Yu – PhD student

Kazuya Kamazawa – powder characterization

S.-H. Lee – on the single crystal work

At NIST

Y. Qiu and J. Copley – inelastic powder measurements

At ANL

- S. Rosenkranz on the single crystal work
- J. F. Mitchell Sr single crystals

At LANL

Mike Hundley – characterization

J. L. Sarrao – Sr powders

At Tohoku U.

K. Yamada – on Ba and Ca single crystal growth

Spin-state transitions

The ground state in LaCoO₃ is not magnetic

Octahedral field splitting Total spin, S = 0

Jahn-Teller active

Magnetic component: 3 important contributions

1) Inelastic low energy excitations

Upturn marks
the onset of
excitations

- o Low energy magnetic excitation present. $E_{char} \sim 0.6$ meV. Single ion effect
- o It is superimposed on the quasi-elastic signal corresponding to the paramagnetic state. Together, the 0.6 meV and inelastic signal are thermally enhanced.

Inelastic intensity follows χ_{bulk}

$$\chi''(\hbar\omega) = \frac{\chi_0 \Gamma_0 \omega}{\omega^2 + \Gamma_0^2} + \frac{\chi_1 \Gamma_1 |\omega \pm \omega_0|}{(\omega \pm \omega_0)^2 + \Gamma_1^2}$$

The first term (inelastic continuum intensity) contains χ_o , and is compared to the bulk susceptibility. Origin of intensity is truly magnetic.

Phelan, et al., PRL 96, 027201 (2006).

The other two components

Correlations between spins in the excited state

2) Ferromagnetic

3) Antiferromagnetic!!!

- o Constant Q scans at several points including (001), $\frac{1}{2}\frac{1}{2}$ and $\frac{1}{2}\frac{1}{2}\frac{1}{2}$
- o The energy excitation is present even at 100 K (washed out in the powder measurement).
- o Excitation present at ferromagnetic and anti-ferromagnetic points although it is stronger at (001). FM correlations were observed by Asai et al several years ago.

Strong ferromagnetism and weaker antiferromagnetism Correlations are DYNAMIC

- A constant "background" is observed in both: this is a momentum transfer-independent component due to paramagnetic fluctuations
- The correlations between the ions become stronger with temperature.

What does this mean for LaCoO $_{3}$?

Possible scenarios: S = 0 ground singlet splits to an S=1 or an S=2

• The FM and AFM correlations are dynamic and short ranged (characteristic $\xi = 3.6 \text{ Å}$)

$$\frac{\mathbf{F}}{\mathbf{E}} = \mathbf{0.6} \text{ meV}$$

$$\mathbf{S} = \mathbf{1}$$

• Assumed that orbital ordering is short-range and dynamic just like the magnetic correlations

LaMnO₃

Similar measurements were performed by Goodenough's group

PrCoO3: The critical role of oxygen

- The 0.6 meV excitation is absent up to 150 K!
- With Pr, the crystal symmetry changes to orthorhombic.
- Pr is a small ion that induces chemical pressure. Cooperative Oh rotations relieves the pressure. The difference in crystal field and Hund's exchange energy increases due to change in the band width.
- This might stabilize the LS state over a wider temperature range.

PrCoO3: Co-O bondlengths are longer

Yan et al.

In the local structure, the Co-O bonds increase with Pr doping.

		LaCoO ₃			PrCoO ₃		
		Bond length	DW factor	R-	Bond length	DW factor	R-
		(Å)	$(\times 10^{-3} \text{ Å}^2)$	factor	(Å)	$(\times 10^{-3} \text{ Å}^2)$	factor
Г	6 model		4.1(2)	0.0040		3.5(4)	0.0056
2	?+4 model		4.5(8)			3.0(1.2)	
			2.3(4)	0.0025		2.7(6)	0.0048
	Average						
	XRD						

EXAFS by Pandey et al.

- Pr and oxygen hybridize more strongly than La and oxygen.
- This pulls the oxygen ions away from Co that in turn suppresses the IS state. (Yu and Louca, unpublished).

In nickelates, charge disproportionation to Ni²⁺ and Ni⁴⁺ How about in Cobaltites?

- No Jahn-Teller distortions observed in heavily doped Ni cobaltites
- Ni³⁺ might undergo a charge disproportionation to Ni²⁺ and Co⁴⁺ or Ni⁴⁺ and Co²⁺. Could the 1.2 meV be the result of spin transitions between Ni³⁺ e_g spin and Co³⁺ empty e_g state??

Magnetic phases

Addition of charge carriers

- A ferromagnetic metallic state is observed in Sr, Ba and Ca. In Sr and Ba, no symmetry change is observed.
- ➤ What happens with the spin state transitions?

➤ How do the orbital and lattice effects correlate with the magnetic properties?

Louca et al., PRB 60, R10378 (1999).

Phelan & Louca, PRB (2007)

Ca-case

Phelan & Louca, PRB (2007)

- Only the Ca compounds show a structural phase transition.
- The Co-O-Co bonds are bent even with high concentrations of Ca.
- This has important implications on the formation of the intermediate spin state. (Louca and Phelan, submitted (2007))

Low CMR effect: not a very good metal

Similar to ...

Only a 10 % increase in cobaltites compared to 10^6 % increase in manganites. No sharp changes observed at T_c .

Tomioka et al., PRB 53, R1689 (1996)

Urushibara et al., PRB 51, 14103 (1995)

Introducing charges to the lattice changes the magnetic dynamics

- The 0.6 meV mode (due to single ion effect) disappears with doping.
- The AFM correlations are absent.
- Dynamic FM correlations are also suppressed. However, static FM correlations appear.

Magnetic correlations become static and spatially isotropic

- ➤ Elastic measurements around the (001) ferromagnetic point shows a circular object.
- > Spatial extent of the FM correlations is isotropic for all compositions.

Correlation length increases with charge

- Ferromagnetic clusters are small in the insulating phase. They grow in the metallic state. Percolation through the clusters enhances conductivity.
- At 20 %, the correlation length is finite indicating that this is not a long-range ferromagnet.

Phelan et al., PRL **96**, 027201 (2006).

New competing state

Double exchange FM vs incommensurability

hhl scans

The isotropic feature centered at (001) due to FM correlations

- An x-shaped pattern of weak diffuse intensity
- Satellite peaks at the four corners. Superlattice reflections appear at incommensurate positions along (111) direction.
- The positions of the peaks change with charge doping.

Cuts along (111) Two ordering temperatures

Onset temperature for FM or SG ordering occurs first Secondary ordering follows

- Peaks are absent above the long-range transition.
- ■The order parameter of the secondary spin ordering deviates more with the IM transition.
- ■Incommensurate peaks are magnetic as they follow the form factor dependence.

How the incommensurability varies with x

- Correlation length is longer in the perpendicular direction to (111) than in the parallel direction.
- Normalized intensity drops with the IM transition showing that peaks get weaker.

IC features in Ba!!

10 % single crystal

- o IC peak observed at (1/4, 1/4, 1/4).
- o It is more intense that in Sr 10 %.
- o Its order parameter follows the susceptibility.
- o It takes a lot more Ba to make system ferromagnetic!

Ca-doped: no IC peaks

5 and 10 % single crystals showed no evidence of IC. FM coupling does not get significantly stronger with doping.

Two competing phases in the insulating state Jahn-Teller vs low spin

Evidence for static Jahn-Teller in Ba, Sr but not Ca!

- The peak is split above the insulator to metal transition.
- Local and static JT distortions are present even as the symmetry is rhombohedral.
- Distortions are present even as the presumed band width becomes wider with Sr or Ba.

% of JT polarons with ionic radius

- o Critical radius of 1.22 Å: For values above, the number of JT sites increase.
- o For values below that, no JT polarons are formed.

Co-O-Co bond angle

- o Bond angle increases linearly above the critical radius of 1.22 Å.
- o For values less than that, bond angle does not change with x.

Broadening of the bandwidth favors the excited state The IS state is stabilized by the static Jahn-Teller distortions

New phase diagram

Consequences of ordering: -spin-charge localization -rise in the resistivity

In conclusion

- Two magnetic phases coexist and compete in the perovskite cobaltites.
- If the competition between the two is strong, they can phase separate.
- IC peaks are present in Sr- and Ba-doped but not in Ca-doped alloys.
- The existence and organization of such structures appears to be a common feature in strongly correlated electron systems.