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Outline

• Physics problem=>theoretical problem

• New “CT-QMC” solver

• Results: 2 and 3 orbital models--

• classifying Mott insulators

• crystal field splitting and orbital selectivity

• Summary and prospects
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Transition metal oxides with partly 

filled d-shells: many challenges

Sr La

LaTiO3/SrTiO3 heterostructure

(Ohtomo et al Nature 2002)

Ti: t2g d-orbitals (3x degenerate)

LaTiO3 : Mott insulator

SrTiO3 : Band insulator

Ca/SrRuO:

(Maeno/MacKenzie/....

Ru: t2g d-orbitals (3x degenerate)

SrRuO3 : Ferromagnet 

Ca2RuO4: Mott insulator
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Work-horse of Theoretical Materials Science:

Density Functional Theory

Φ[{n(r)}] = Φuniv[{n(r)}] +

∫
(dr)Vlattice(r)n(r)

Basic Theorem (Hohenberg and Kohn):     functional     of 

electron density n(r):  minimized at physical density; value at 

minimum gives ground state energy       

∃ Φ

Useful because:

*Have uncontrolled (but apparently good) approximations to

 

*Have efficient way to carry out minimization

Φ
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Density Functional Theory: Difficulties 

Φ[{n(r)}] = Φuniv[{n(r)}] +

∫
(dr)Vlattice(r)n(r)

Density is not the optimal variable: phases with quite 

different physical properties have almost the same density
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Density Functional Theory: Difficulties 

Ground state is not the only interest: different 

phases at different temperatures: need theory with 

local moments, entropic effects

Fermi liquid; low T. ?Local 

moment? at higher T?



  Department of Physics
Columbia University

Copyright A. J. Millis 2007 

Density Functional Theory: Difficulties 

Density functional theory: focus is on 

ground state but excitations are important
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• Standard many-body theory=>exists a functional of self energy 

         
extremized at correct self energy and from which ALL 

RESPONSE FUNCTIONS can be extracted. 

•  But: F
univ

 only known perturbatively=> general formalism not 

useful. (Kotliar/Georges): there is an ?accurate? approximation

and ‘convenient’ procedure for doing minimization over 

restricted sub-space of approximate self energies

Dynamical Mean Field Method
Metzner/Vollhardt; Mueller Hartmann KOTLIAR/GEORGES

F [{Σ(p, ω}] = Funiv[{Σ(p, ω}] + Tr
[

ln
(

G−1

0
(p, ω) − Σ(p, ω)

)]

Σp(ω) → Σapprox

p
(ω) =

∑

a

φa(p)Σa(ω)
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Dynamical Mean Field II

Different choices of basis function           => different 

“flavors” of DMFT (1-site, DCA, CDMFT....). 

This talk: single-site                                “a”:  local orbitals

Σp(ω) → Σapprox

p
(ω) =

∑

a

φa(p)Σa(ω)

φa(p)

φa(p) → φa = 1
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δFuniv

δΣa(ω)
≡ GQI

a (ω) =

∫
(dp)

φa(p)

ω − εp − Σapprox
p (ω)

Funiv

[

{
∑

a

φa(p)Σa(ω)}

]

+ Trln

[

G−1

0
−

∑

a

φa(p)Σa(ω)

]

Dynamical Mean Field: III

F [{Σp(ω}] → Fapprox =

fixes form of quantum impurity model 
(n.b.: issues remain with choosing interaction term)

• F
approx

: functional of a small number of  functions of 

frequency <=> “quantum impurity model”, i.e. a (0+1) 

dimensional quantum field theory 

• Stationarity w.r.t variations in self energy:
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Dynamical Mean Field IV

Challenge: accurate solution of quantum impurity model

<=>find local (d-d) green functions of 

HQI = Hloc[{d
†
a, da} +

∑

p,a

(

Vpad†acpa + H.c
)

. + Hbath[{c†pacpa}]

ex: Slater-Kanamori d-multiplet interactions



  Department of Physics
Columbia University

Copyright A. J. Millis 2007 

What can we do?

=>problem reduces to solving non-interacting electron 

problem in some time dependent configuration of 

“magnetic” fields, then summing over all field 

configurations

DMFT work-horse: “Hirsch-Fye” quantum Monte Carlo

e
∆τU(n↑−n↓)2

=
1

2

(

e
λi(n↑−n↓)

+ e
−λi(n↑−n↓)

)

Write model as (imaginary time) path integral Discretize 

time axis. At time step i, use discrete Hubbard-

Stratonovich transformation
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Issues with Hirsh-Fye

• time discretization: 

need fixed time grid, 

but main contribution 

to  the energy is in the 

details of the  initial 

drop of G=> need 

many time slices
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Issues with Hirsh-Fye II

• partitioning of phase space--at strong 

coupling, simulation has trouble equilibrating
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Issues with Hirsh-Fye II

Moderate coupling Strong coupling

Plot: probability of average value of auxiliary field 

• partitioning of phase space--at strong 

coupling, simulation has trouble equilibrating

At strong coupling, simulation trapped in wrong minimum
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Issues with Hirsh-Fye III

*Too many terms

*Rotational invariance hard to implement.

• For “Slater-Kanamori” multiplet interactions, 

no good decoupling exists
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Much important work optimizing Hirsh-

Fye methods

• N. Bluemer (Ph.D. thesis and recend cond-

mat)--minimizing time discretization errors

• T. Sakai--Hubbard-Stratonovich for Slater-

Kanamori interactions (many auxiliary fields!)
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Needed: other methods

HQI = Hloc[{d
†
a, da} +

∑

p,a

(

Vpad†acpa + H.c
)

. + Hbath[{c†pacpa}]

• “CT-QMC”  (Rubtsov; Werner)

– Expand in Hloc (Rubtsov) or in V/T (Werner)

This talk: Expand in V/T

• “Exact diagonalization”  (Caffarel/Krauth; Capone; Liebsch)

– approximate continuous bath by small number (typically 6-9) 

of appropriately chosen states
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Basic idea:

HQI = Hloc[{d
†
a, da} +

∑

p,a

(

Vpad†acpa + H.c
)

. + Hbath[{c†pacpa}]

Z = Tr

[

Tτe

∑

p,a
(V

I
pad

†
a(τ)cpa(τ)+H.c.)

]

=
∑

k

1

k!

∫ β

0

dτ1...dτkTr

[

Tτ V̂
I(τ1)...V̂

I(τk)
]

• interaction representation with respect to Hloc, Hband

• formal expansion in V

• sample series stochastically: add/remove V; accept 

or reject by usual importance sampling
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Technical issues

Tr

[

Tτ V̂
I(τ1)...V̂

I(τk)
]

= Tr
[

Tτd
†
dd

†
...

]

∗ Tr
[

Tτ c
†
pacpa...

]

• Tr[c...]--determinant=> sum all  contractions at once. 

Essential to do this, or face serious sign problem. No 

sign problem found so far in calculations Tr[d...]--

product of matrices in Hilbert space of Hloc 

• n orbitals=>4n dimensional matrices. As yet--no “fast 

update” for trace or quick way to know if Tr of 

product vanishes. Important limitation. 3 orbitals 

or 4-site cluster possible. Bigger system=>use tricks
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Advantages:

• Continuous time=> more 

points where G varies fast=> 

Much better energies

• Mean perturbation order 

lower at strong coupling
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1 orbital Hubbard model

Single-site DMFT phase diagram: 

U<Uc2 paramagnetic metal (if no AF order or correlations)
U>Uc2: Mott insulator. 

Bethe lattice.

bandwidth =4
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1 orbital Hubbard model

Compare: Hirsh-Fye, CT-QMC, T-dep ED 

K =

∑

ij,σ

〈

tijc
†
i,σcj,σ+H.c.

〉
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1 orbital Hubbard model

Compare: CT-QMC+analytical continuation, ED 

K(Ω) =

∫ Ω

0

2dω

π
σ(ω)
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Conductivity of Hubbard model

PM and AF phases

U>Uc2, paramagnetic (Mott) phase: only very 

small fraction of spectral weight near gap edge

W=bandwidth
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Conductivity of Hubbard model

Compare to Data

Wband-theory~3eV

K(W)=0.2Kband
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Query

Should the cuprates be regarded as 

Mott insulators if U<Uc2 and 

antiferromagnetism (or at least 

correlations) is needed to stabilize 

insulating state???
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Multiorbital systems:

Hunds coupling and response to crystal field

• Many transition metal oxides: partly filled 

orbitally degenerate d-shells

• Okamoto/AJM ((Sr/Ca)2RuO4) Bierman/

Georges (BaVaO3): nontrivial interplay 

between Mott threshold, Hunds coupling, 

crystal field.

• Anisimov/Rice,Liebsch, Georges,...Orbitally 

selective Mott transition
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Multiorbital systems:

“Two-orbital” model

U’=U-2J

Issue: interplay between J 

and crystal field splitting ∆

Temp=0.005W
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Two-orbital model: orbital filling vs crystal field

2 electrons per site; plot filling/spin
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Two-orbital model: orbital filling vs crystal field

2 electrons per site; plot filling/spin

J/U=
0.25
0.15
0.10
0.05
(0.02)
(0.01)
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Two-orbital model: orbital filling vs crystal field

2 electrons per site; plot filling/spin

J/U=
0.25
0.15
0.10
0.05
(0.02)
(0.01)

Large J/U: 

“orbital stability”  
(Okamoto/AJM)
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Two-orbital model: orbital filling vs crystal field

2 electrons per site; plot filling/spin

J/U=
0.25
0.15
0.10
0.05
(0.02)
(0.01)

Large J/U: 

“orbital stability”  
(Okamoto/AJM)

3 metal-insulator transitions:

Band filling (n1->0).  Symmetric Mott (n1->0.5)

Asymmetric Mott (n1 intermediate)
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Two-orbital model phase diagram: 

U vs crystal field; 2 electrons.
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Two-orbital model phase diagram: 

U vs crystal field; 2 electrons.

  =0: increasing J 

drastically reduces 

Mott critical value 

∆

J>0: much wider 

metallic regime. 

Physics: triplet 

vs singlet
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Two-orbital model phase diagram: 

Characterize insulator: small J; U=2.25W
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Two-orbital model phase diagram: 

Characterize insulator: small J; U=2.25W

J=0: Kugel-Khomskii 
orbital susceptibility 
~t^2/U
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Two-orbital model phase diagram: 

Characterize insulator: small J; U=2.25W

J=0: Kugel-Khomskii 
orbital susceptibility 
~t^2/U

J>0: orbital 
suscept 
vanishes (at 
small temp,    )∆

Larger    :T=0 phase 
transition to polarizable 
phase

∆

Smooth crossover at T>0
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Two-orbital model phase diagram: 

Characterize transitions: small J; U=1.5W
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J=0.02:   =0 state 
metallic w/ large 
orbital suscept. 

Two-orbital model phase diagram: 

Characterize transitions: small J; U=1.5W

∆
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J=0.02:   =0 state 
metallic w/ large 
orbital suscept. 

1st order metal-
insulator transition to 
orbitally polarized 
insulator

Two-orbital model phase diagram: 

Characterize transitions: small J; U=1.5W
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J=0.02:   =0 state 
metallic w/ large 
orbital suscept. 

1st order metal-
insulator transition to 
orbitally polarized 
insulator

Two-orbital model phase diagram: 

Characterize transitions: small J; U=1.5W

J=0.05,0.1:   =0 
state, orbital suscept 
vanishes.

∆

∆
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J=0.02:   =0 state 
metallic w/ large 
orbital suscept. 

1st order metal-
insulator transition to 
orbitally polarized 
insulator

Two-orbital model phase diagram: 

Characterize transitions: small J; U=1.5W

J=0.05,0.1:   =0 
state, orbital suscept 
vanishes.

Larger    :1st order transitions to metallic 
phase

∆

∆

∆
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J=0.02:   =0 state 
metallic w/ large 
orbital suscept. 

1st order metal-
insulator transition to 
orbitally polarized 
insulator

Two-orbital model phase diagram: 

Characterize transitions: small J; U=1.5W

J=0.05,0.1:   =0 
state, orbital suscept 
vanishes.

Larger    :1st order transitions to metallic 
phase, then to pol. insulator T=0 phase 
transition to polarizable phase

∆

∆

∆
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Two-orbital model phase diagram: 

Doping with            .   

Doping driven Mott 
transition is 
“orbitally 
selective” (not 
surprising)

∆ != 0

U=4, J=1:    =0.4∆
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Summary: 2 orbital half-filled model

∆

χorbital

• Intricate interplay: J,

• “new” Mott phase--

vanishing

• =>? additional gauge 

symmetry

• sharp transition between 

Mott phases at T=0  only 
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Work in progress: 3 orbitals

(Ruthenates; C-60)
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n=1 n=3n=2
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Work in progress: 3 orbitals

(Ruthenates; C-60)

∆Mott phase boundary J=U/6     =W/4 (n=2 only)

n=2
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3 orbitals--summary

∆

Important general issue: interplay between lattice 

distortions, spontaneous orbital order and Mott 

behavior

• J helps insulator, n=3, 

hurts insulator, n=1,2

•     helps insulator; n=2

• Shifts are very large
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Directions

• Real materials

• Larger systems: reduce size of Hilbert 

space. 

– Effective low energy theories

– Simple truncation (Haule)

• Nonequilibrium problems (Rabani)
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Conclusions

• New method--seems very 

useful

• Cuprates: are the “Mott” 

insulators? what is a Mott 

insulator anyway

• Orbital degeneracy, Hunds 

coupling and crystal fields: 

new phases and new 

transitions


