Multiorbital Mott systems: new results from continuous-time Quantum Monte Carlo calculations

P. Werner and A. J. Millis Department of Physics Columbia University E. Gull and M. Troyer Theoretische Physik ETH Zurich Luca de Medici, Rutgers M Capone Rome -46169.

<u>Support</u>: DOE ER-46169, NSF-DMR-0705847

References:

Phys. Rev. Lett. 97, 056802 (2006).
Phys. Rev. B74, 155107 (2006).
Phys. Rev. B in press (cond-mat/0609438)
Phys. Rev. B in press (cond-mat/07040057)

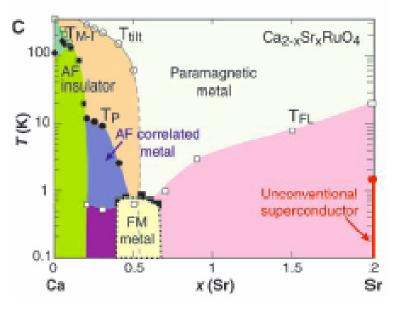
(see also Phys. Rev. **B75**, 085108 (2006) and condmat/0701730 (PRL in press))

Outline

- Physics problem=>theoretical problem
- New "CT-QMC" solver
- Results: 2 and 3 orbital models--
 - classifying Mott insulators
 - crystal field splitting and orbital selectivity
- Summary and prospects

Transition metal oxides with partly filled d-shells: many challenges

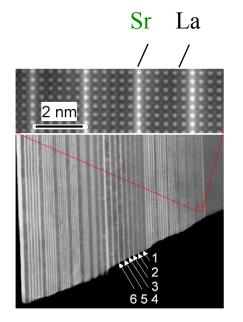
Ca/SrRuO: (Maeno/MacKenzie/....



Ru: t_{2g} d-orbitals (3x degenerate) SrRuO₃ : Ferromagnet Ca₂RuO₄: Mott insulator

Copyright A. J. Millis 2007

LaTiO₃/SrTiO₃ heterostructure (Ohtomo et al Nature 2002)



Ti: t_{2g} d-orbitals (3x degenerate) LaTiO₃ : Mott insulator SrTiO₃ : Band insulator

Work-horse of Theoretical Materials Science: Density Functional Theory

Basic Theorem (Hohenberg and Kohn): \exists functional Φ of electron density n(r): minimized at physical density; value at minimum gives ground state energy

$$\Phi[\{n(r)\}] = \Phi_{univ}[\{n(r)\}] + \int (dr) V_{lattice}(r)n(r)$$

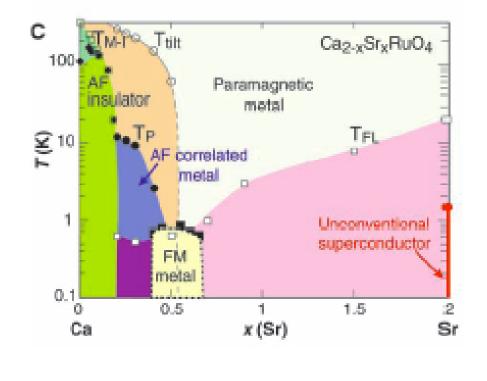
Useful because:

*Have uncontrolled (but apparently good) approximations to $~~\Phi$

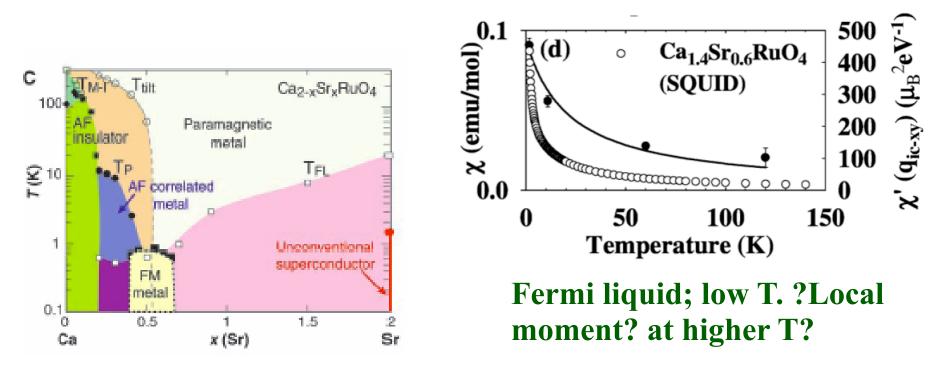
*Have efficient way to carry out minimization

Density Functional Theory: Difficulties $\Phi[\{n(r)\}] = \Phi_{univ}[\{n(r)\}] + \int (dr)V_{lattice}(r)n(r)$

Density is not the optimal variable: phases with quite different physical properties have almost the same density



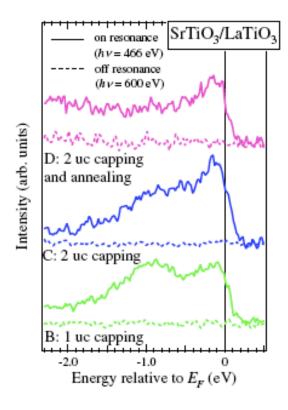
Ground state is not the only interest: different phases at different temperatures: need theory with local moments, entropic effects



Density functional theory: focus is on ground state but excitations are important

Density functional theory: focus is on ground state but excitations are important Example: photoemission from Sr/LaTiO3 heterostructure:

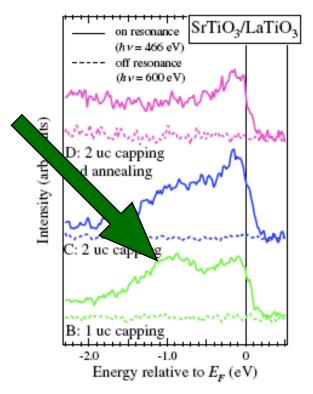
Density functional theory: focus is on ground state but excitations are important **Example: photoemission from Sr/LaTiO3 heterostructure:**



PRL 97 057601

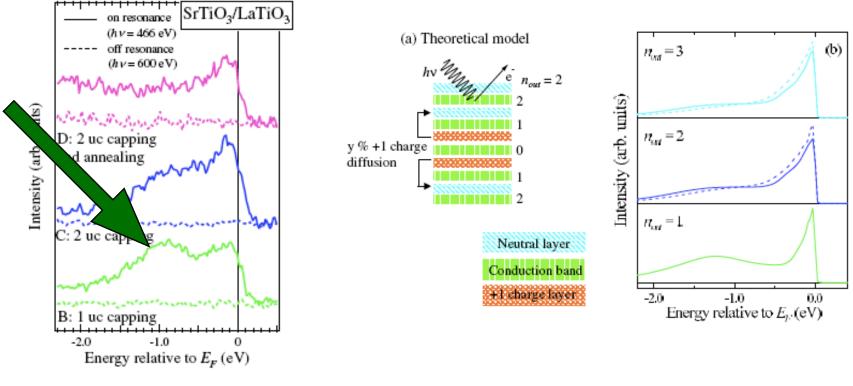
Density functional theory: focus is on ground state but excitations are important

Example: photoemission from Sr/LaTiO3 heterostructure: "shakeoff band": is this incipient "lower hubbard band"



PRL 97 057601

Density functional theory: focus is on ground state but excitations are important Example: photoemission from Sr/LaTiO3 heterostructure: "shakeoff band": is this incipient "lower hubbard band"?



PRL 97 057601

Dynamical Mean Field Method

Metzner/Vollhardt; Mueller Hartmann KOTLIAR/GEORGES

• Standard many-body theory=>exists a functional of self energy $F[\{\Sigma(p,\omega\}] = F_{univ}[\{\Sigma(p,\omega\}] + Tr\left[ln\left(G_0^{-1}(p,\omega) - \Sigma(p,\omega)\right)\right]$

extremized at correct self energy and from which ALL RESPONSE FUNCTIONS can be extracted.

• But: F_{univ} only known perturbatively=> general formalism not useful. (Kotliar/Georges): there is an ?accurate? approximation

$$\Sigma_p(\omega) \to \Sigma_p^{approx}(\omega) = \sum \phi_a(p) \Sigma_a(\omega)$$

and 'convenient' procedure for doing minimization over restricted sub-space of approximate self energies

Dynamical Mean Field II

$$\Sigma_p(\omega) \to \Sigma_p^{approx}(\omega) = \sum_a \phi_a(p) \Sigma_a(\omega)$$

Different choices of basis function $\phi_a(p) \Rightarrow$ **different** "flavors" of DMFT (1-site, DCA, CDMFT....).

This talk: single-site $\phi_a(p) \rightarrow \phi_a = 1$ "a": local orbitals

Dynamical Mean Field: III

$$F[\{\Sigma_p(\omega\}] \to F_{approx} = F_{univ}\left[\{\sum_a \phi_a(p)\Sigma_a(\omega)\}\right] + Trln\left[G_0^{-1} - \sum_a \phi_a(p)\Sigma_a(\omega)\right]$$

- F_{approx}: functional of a small number of functions of frequency <=> "quantum impurity model", i.e. a (0+1) dimensional quantum field theory
- Stationarity w.r.t variations in self energy: $\frac{\delta F_{univ}}{\delta \Sigma_a(\omega)} \equiv G_a^{QI}(\omega) = \int (dp) \frac{\phi_a(p)}{\omega - \varepsilon_p - \Sigma_p^{approx}(\omega)}$

Dynamical Mean Field IV

Challenge: accurate solution of quantum impurity model <=>find local (d-d) green functions of

$$H_{QI} = H_{loc}[\{d_a^{\dagger}, d_a\} + \sum_{p,a} \left(V_{pa} d_a^{\dagger} c_{pa} + H.c \right) + H_{bath}[\{c_{pa}^{\dagger} c_{pa}\}]$$

ex: Slater-Kanamori d-multiplet interactions

$$H_{e-e}^{(i)} = U \sum_{a} n_{ia\uparrow} n_{ia\downarrow} + (U' - J) \sum_{a>b,\sigma} n_{ia\sigma} n_{ib\sigma} + U' \sum_{a\neq b} n_{ia\uparrow} n_{ib\downarrow}$$
$$+ J \sum_{a\neq b} d_{ia\uparrow}^{\dagger} d_{ib\uparrow} d_{ib\downarrow}^{\dagger} d_{ia\downarrow}.$$
(4)

What can we do?

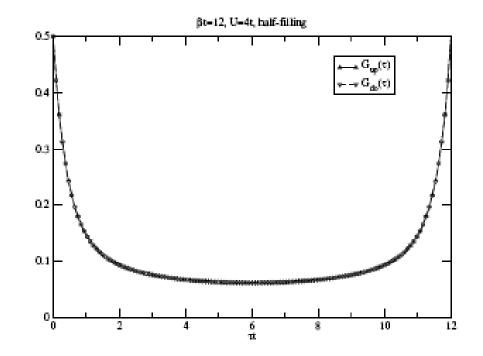
DMFT work-horse: "Hirsch-Fye" quantum Monte Carlo

Write model as (imaginary time) path integral Discretize time axis. At time step i, use discrete Hubbard-Stratonovich transformation

$$e^{\Delta \tau U (n_{\uparrow} - n_{\downarrow})^2} = \frac{1}{2} \left(e^{\lambda_i (n_{\uparrow} - n_{\downarrow})} + e^{-\lambda_i (n_{\uparrow} - n_{\downarrow})} \right)$$

=>problem reduces to solving non-interacting electron problem in some time dependent configuration of "magnetic" fields, then summing over all field configurations

 time discretization: need fixed time grid, but main contribution to the energy is in the details of the initial drop of G=> need many time slices



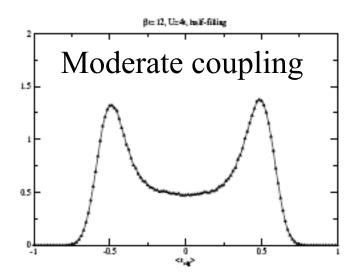
• partitioning of phase space--at strong coupling, simulation has trouble equilibrating

• partitioning of phase space--at strong coupling, simulation has trouble equilibrating

Plot: probability of average value of auxiliary field

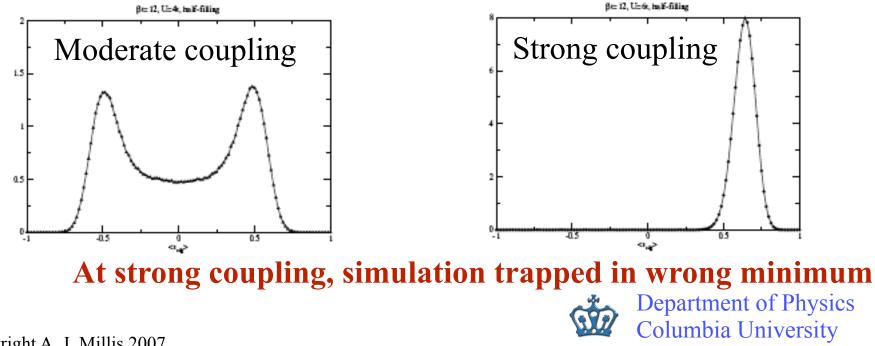
• partitioning of phase space--at strong coupling, simulation has trouble equilibrating

Plot: probability of average value of auxiliary field



 partitioning of phase space--at strong coupling, simulation has trouble equilibrating

Plot: probability of average value of auxiliary field



• For "Slater-Kanamori" multiplet interactions, no good decoupling exists

$$\begin{aligned} H_{e-e}^{(i)} &= U \sum_{a} n_{ia\uparrow} n_{ia\downarrow} + (U' - J) \sum_{a > b,\sigma} n_{ia\sigma} n_{ib\sigma} + U' \sum_{a \neq b} n_{ia\uparrow} n_{ib\downarrow} \\ &+ J \sum_{a \neq b} d_{ia\uparrow}^{\dagger} d_{ib\uparrow} d_{ib\downarrow}^{\dagger} d_{ia\downarrow}. \end{aligned}$$

$$(4)$$

*Too many terms *Rotational invariance hard to implement.

Much important work optimizing Hirsh-Fye methods

- N. Bluemer (Ph.D. thesis and recend condmat)--minimizing time discretization errors
- T. Sakai--Hubbard-Stratonovich for Slater-Kanamori interactions (many auxiliary fields!)

Needed: other methods

• "Exact diagonalization" (Caffarel/Krauth; Capone; Liebsch)

 $H_{QI} = H_{loc}[\{d_a^{\dagger}, d_a\} + \sum_{p,a} \left(V_{pa} d_a^{\dagger} c_{pa} + H.c \right) + H_{bath}[\{c_{pa}^{\dagger} c_{pa}\}]$

- approximate continuous bath by small number (typically 6-9) of appropriately chosen states
- "CT-QMC" (Rubtsov; Werner)

– Expand in H_{loc} (Rubtsov) or in V/T (Werner)

This talk: Expand in V/T

Basic idea:

$$H_{QI} = H_{loc}[\{d_a^{\dagger}, d_a\} + \sum_{p,a} \left(V_{pa} d_a^{\dagger} c_{pa} + H.c \right) . + H_{bath}[\{c_{pa}^{\dagger} c_{pa}\}]$$

• interaction representation with respect to H_{loc}, H_{band}

$$Z = Tr \left[T_{\tau} e^{\sum_{p,a} \left(V_{pa}^{I} d_{a}^{\dagger}(\tau) c_{pa}(\tau) + H.c. \right)} \right]$$

• formal expansion in V

$$=\sum_{k} \frac{1}{k!} \int_{0}^{\beta} d\tau_{1} ... d\tau_{k} Tr \left[T_{\tau} \hat{\mathbf{V}}^{\mathbf{I}}(\tau_{1}) ... \hat{\mathbf{V}}^{\mathbf{I}}(\tau_{k}) \right]$$

• sample series stochastically: add/remove V; accept or reject by usual importance sampling

Technical issues

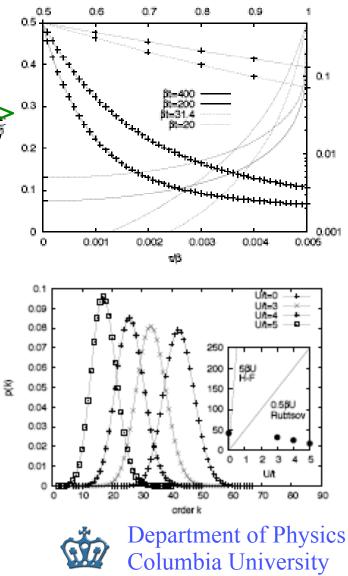
$$Tr\left[T_{\tau}\hat{\mathbf{V}}^{\mathbf{I}}(\tau_{1})...\hat{\mathbf{V}}^{\mathbf{I}}(\tau_{k})\right] = Tr\left[T_{\tau}d^{\dagger}dd^{\dagger}...\right] * Tr\left[T_{\tau}c_{pa}^{\dagger}c_{pa}...\right]$$

- Tr[c...]--determinant=> sum all contractions at once. Essential to do this, or face serious sign problem. No sign problem found so far in calculations Tr[d...]-product of matrices in Hilbert space of H_{loc}
- n orbitals=>4ⁿ dimensional matrices. As yet--no "fast update" for trace or quick way to know if Tr of product vanishes. Important limitation. 3 orbitals or 4-site cluster possible. Bigger system=>use tricks

Advantages:

 Continuous time=> more points where G varies fast=> Much better energies

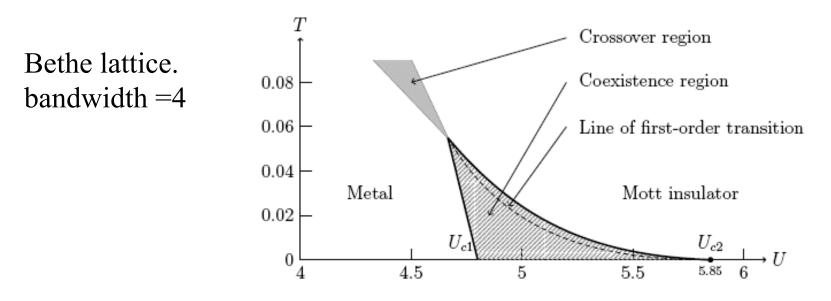
• Mean perturbation order lower at strong coupling



1 orbital Hubbard model

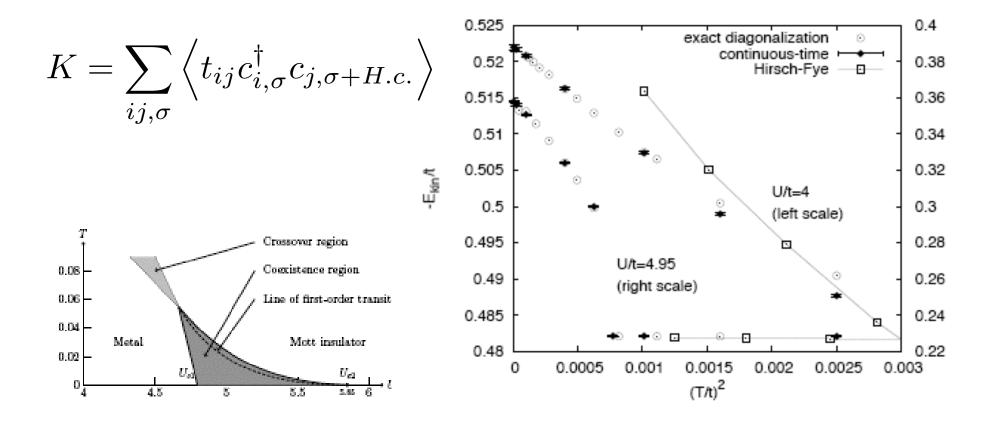
$$H = \sum_{ij,\sigma} t_{ij} c_{i,\sigma}^{\dagger} c_{j,\sigma} + U \sum_{i} n_{i\uparrow} n_{i,\downarrow}$$

Single-site DMFT phase diagram:

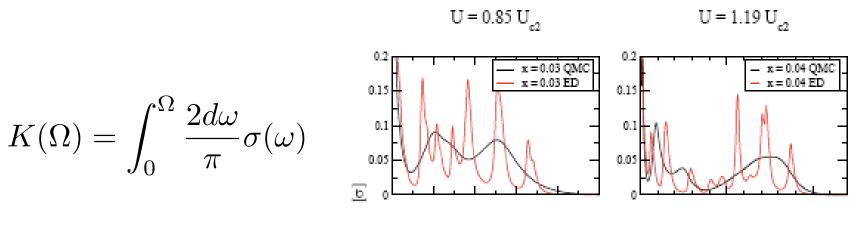


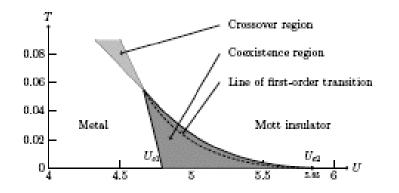
U<U_{c2} paramagnetic metal (if no AF order or correlations) U>U_{c2}: Mott insulator.

1 orbital Hubbard model Compare: Hirsh-Fye, CT-QMC, T-dep ED

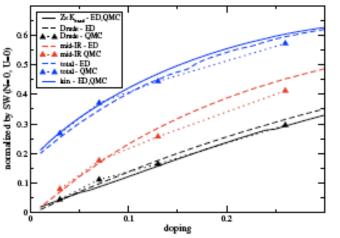


1 orbital Hubbard model Compare: CT-QMC+analytical continuation, ED





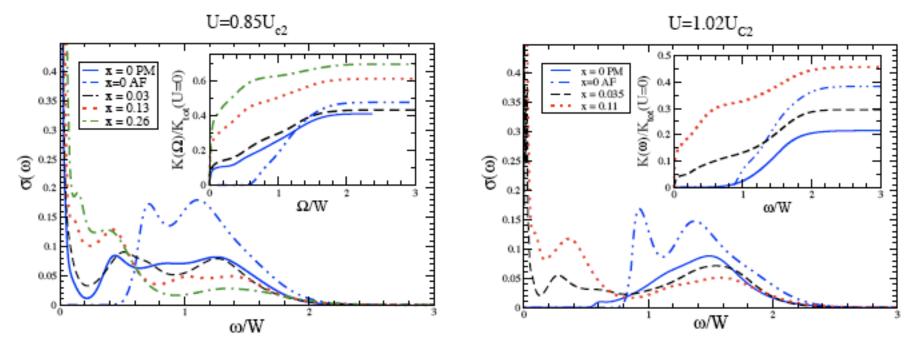
U = 7t, $\Omega_{IR} = 1.5t$



Columbia University

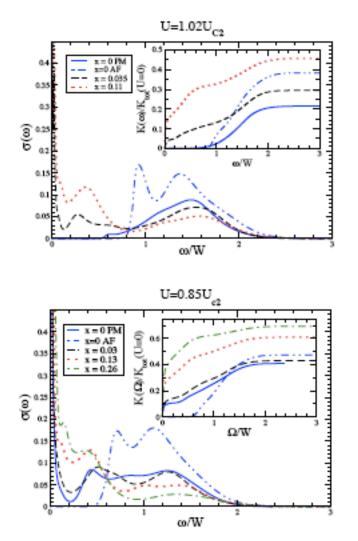
Conductivity of Hubbard model PM and AF phases

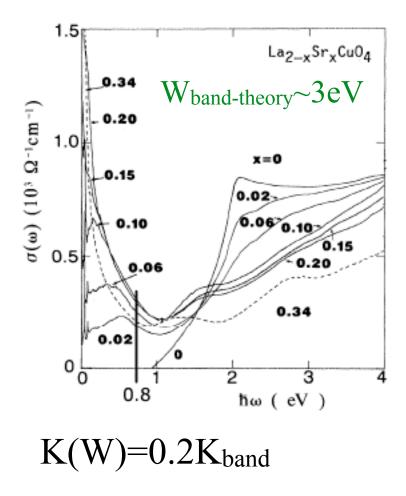
W=bandwidth



U>U_{c2}, paramagnetic (Mott) phase: only very small fraction of spectral weight near gap edge

Conductivity of Hubbard model Compare to Data





Query

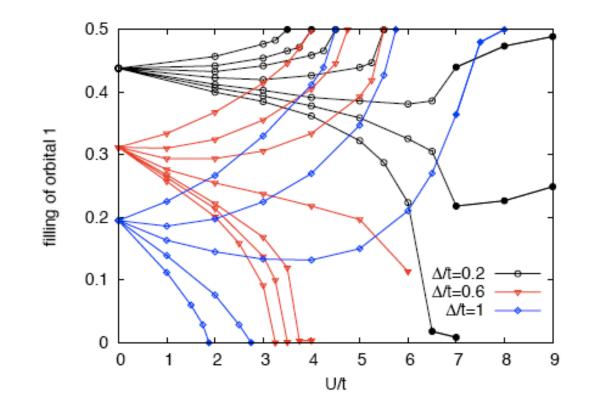
Should the cuprates be regarded as Mott insulators if $U < U_{c2}$ and antiferromagnetism (or at least correlations) is needed to stabilize insulating state???

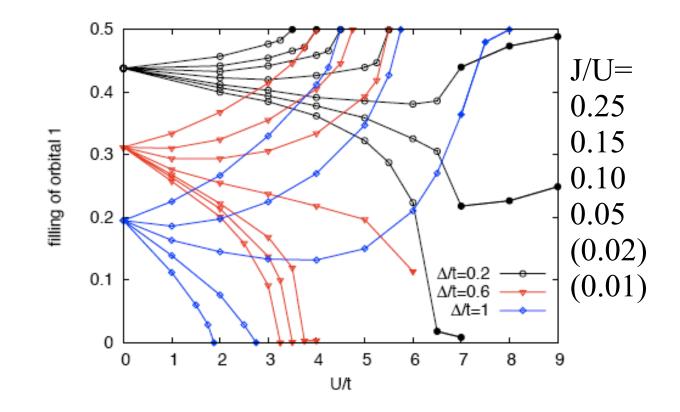
Multiorbital systems: Hunds coupling and response to crystal field

- Many transition metal oxides: partly filled orbitally degenerate d-shells
- Okamoto/AJM ((Sr/Ca)₂RuO₄) Bierman/ Georges (BaVaO₃): nontrivial interplay between Mott threshold, Hunds coupling, crystal field.
- Anisimov/Rice,Liebsch, Georges,...Orbitally selective Mott transition

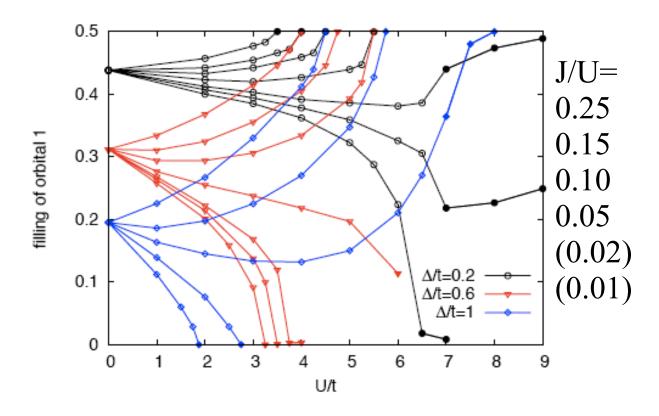
Multiorbital systems: "Two-orbital" model

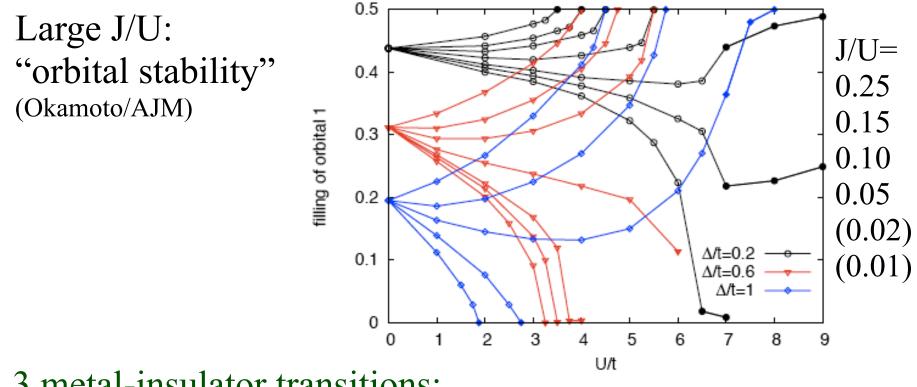
Issue: interplay between J and crystal field splitting Δ





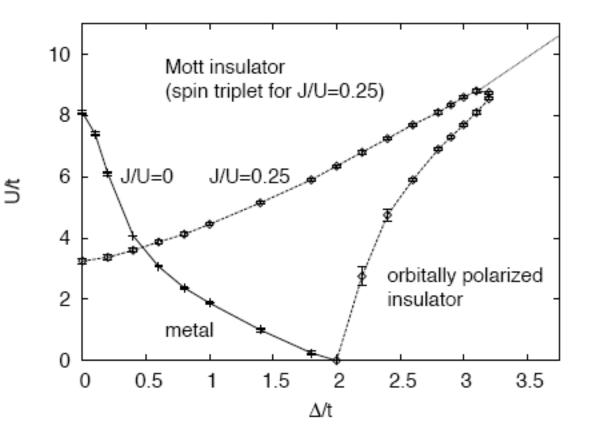
Large J/U: "orbital stability" (Okamoto/AJM)

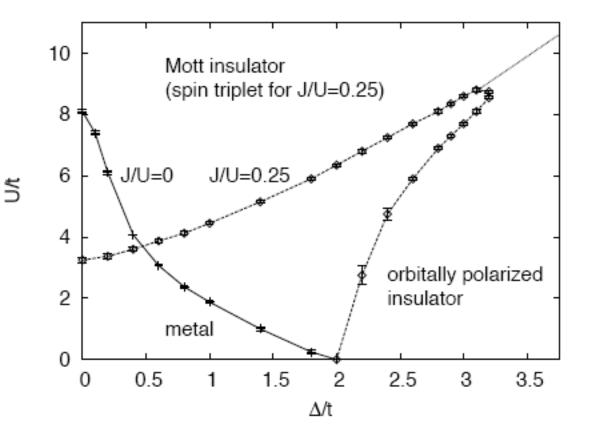




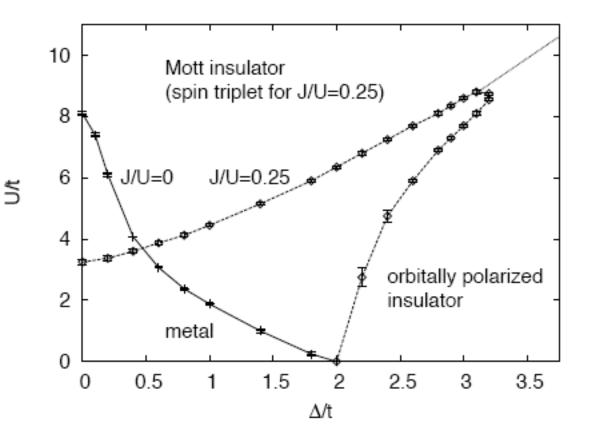
3 metal-insulator transitions: Band filling (n_1 ->0). Symmetric Mott (n_1 ->0.5) Asymmetric Mott (n_1 intermediate)

Department of Physics Columbia University



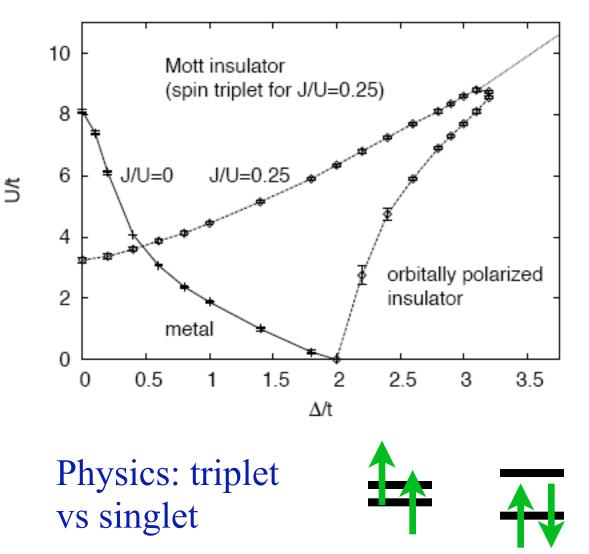


 Δ =0: increasing J drastically reduces Mott critical value



 Δ =0: increasing J drastically reduces Mott critical value

J>0: much wider metallic regime.

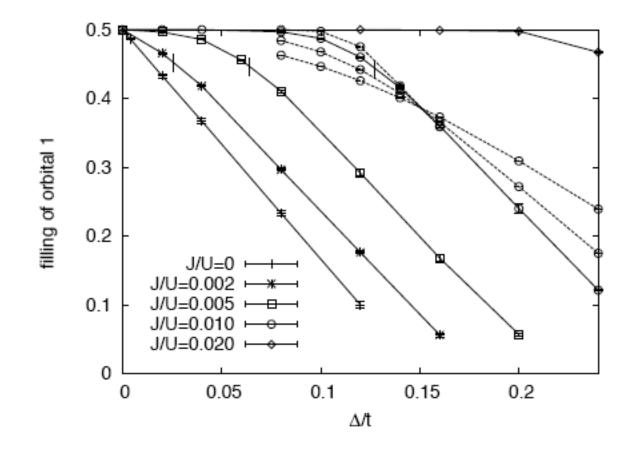


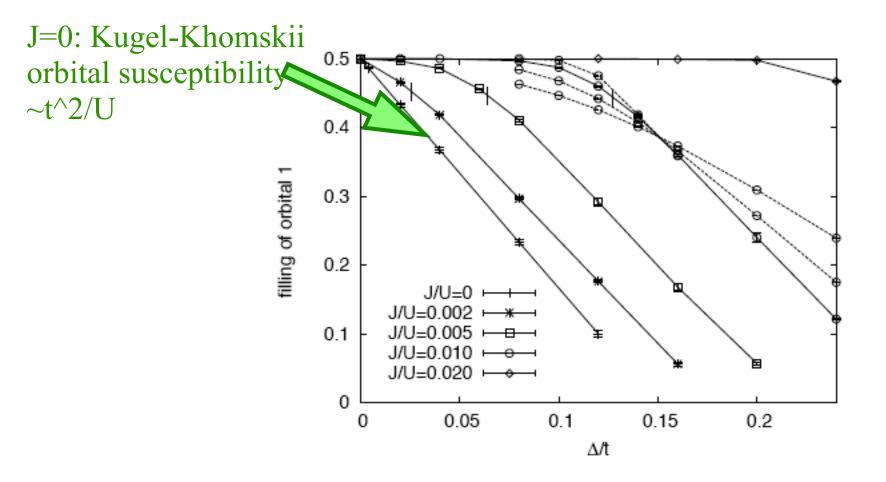
 Δ =0: increasing J drastically reduces Mott critical value

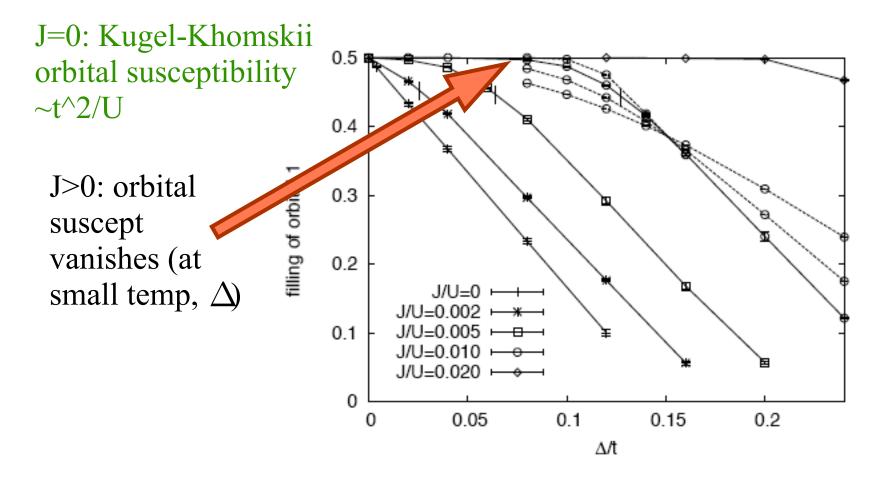
J>0: much wider metallic regime.

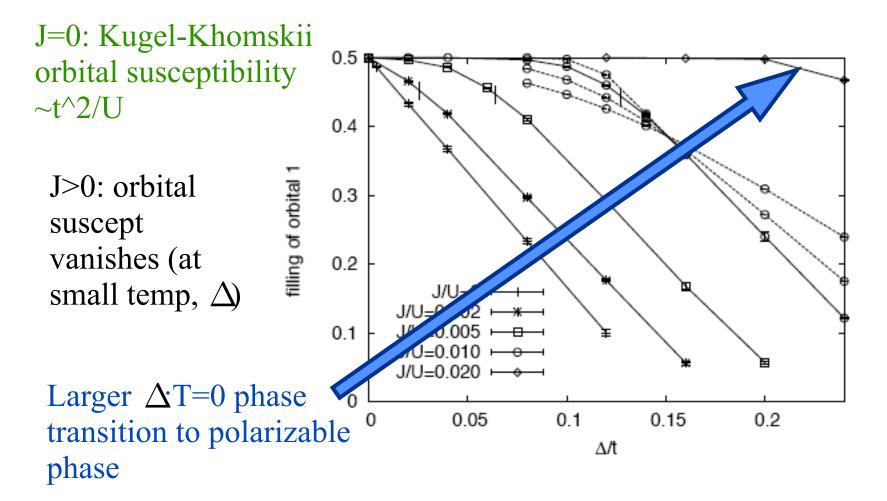
Department of Physics

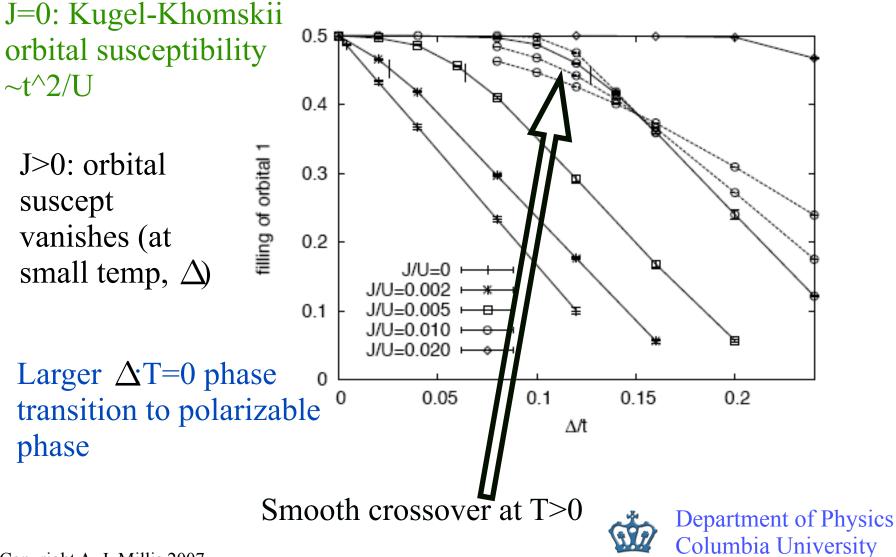
Columbia University

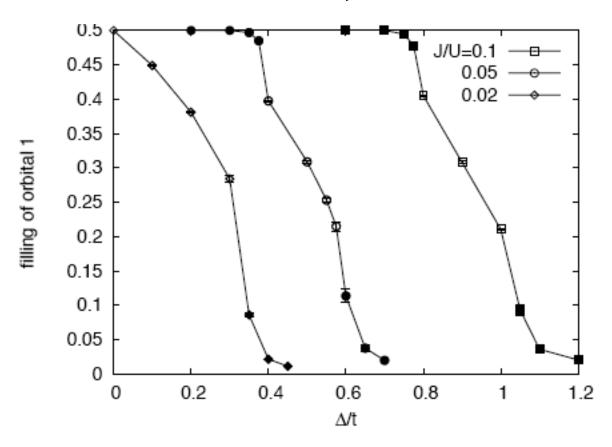


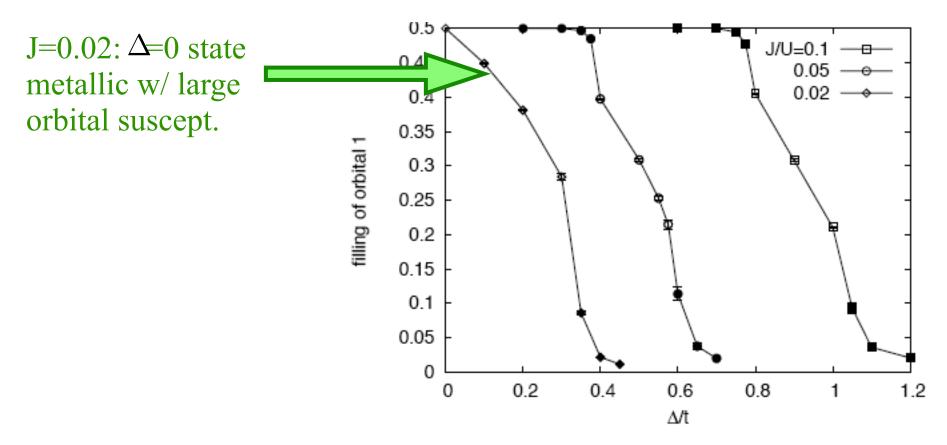


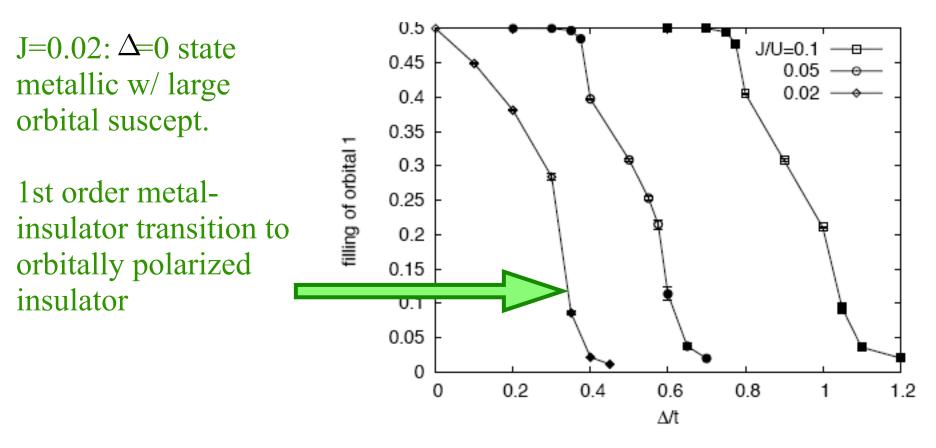


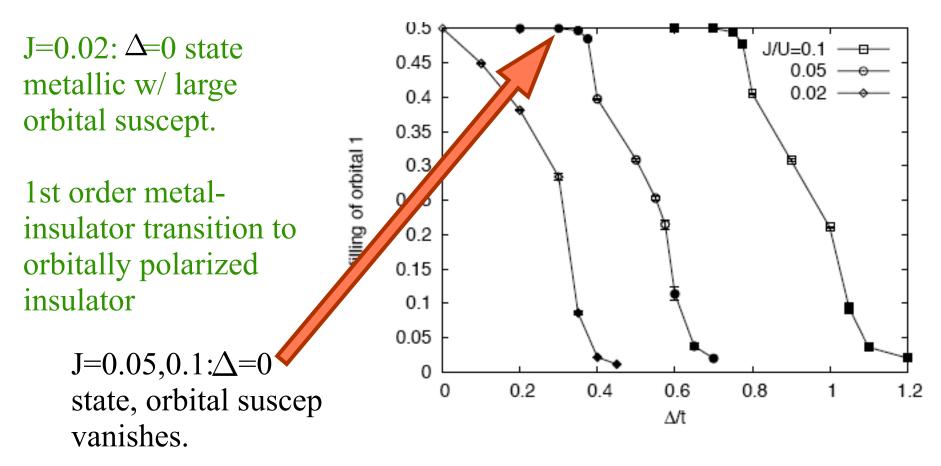


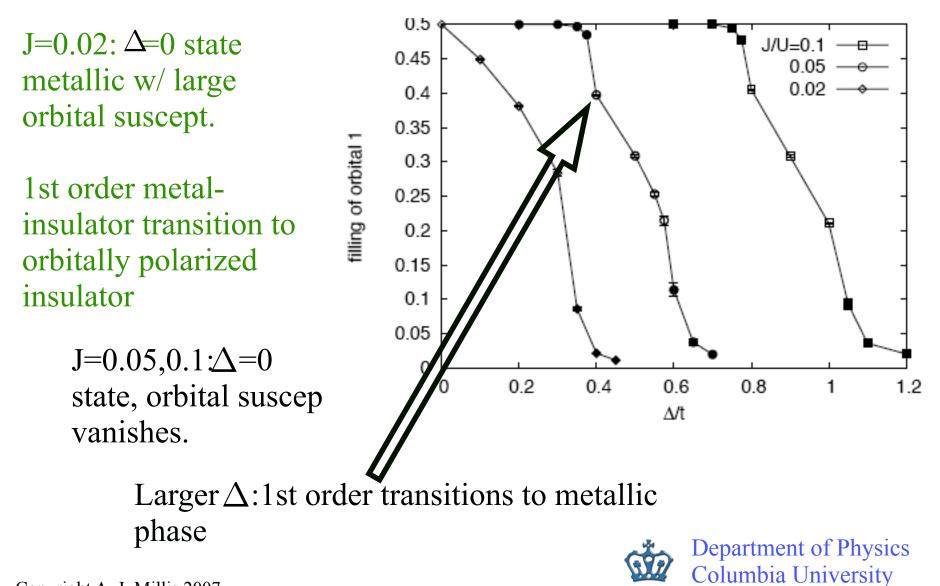












J=0.02: Δ =0 state 0.45 metallic w/ large 0.4 orbital suscept. 0.35 1st order metalinsulator transition to 0.2 orbitally polarized 0.15 insulator 0.1

> J=0.05,0.1: Δ =0 state, orbital suscept vanishes.

0.05 -0.02 -0.35 0.3 0.25 0.2 0.15 0.05 0 0.8 0.2 0.4 0.6 0 Δ/t

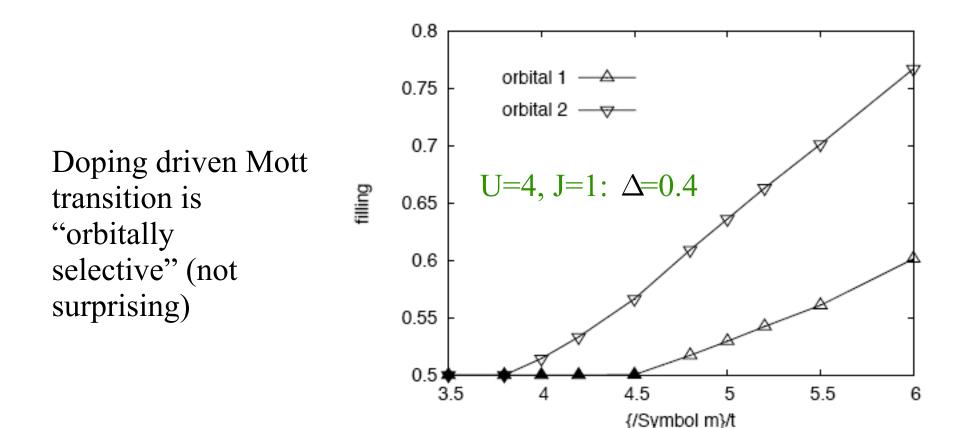
Larger $\triangle 1$ st order transitions to metallic phase, then to pol. insulator T=0 phase transition to polarizable phase

Department of Physics Columbia University

1.2

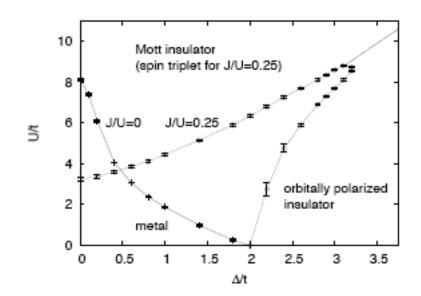
J/U=0.1 -

Two-orbital model phase diagram: Doping with $\Delta \neq 0$.

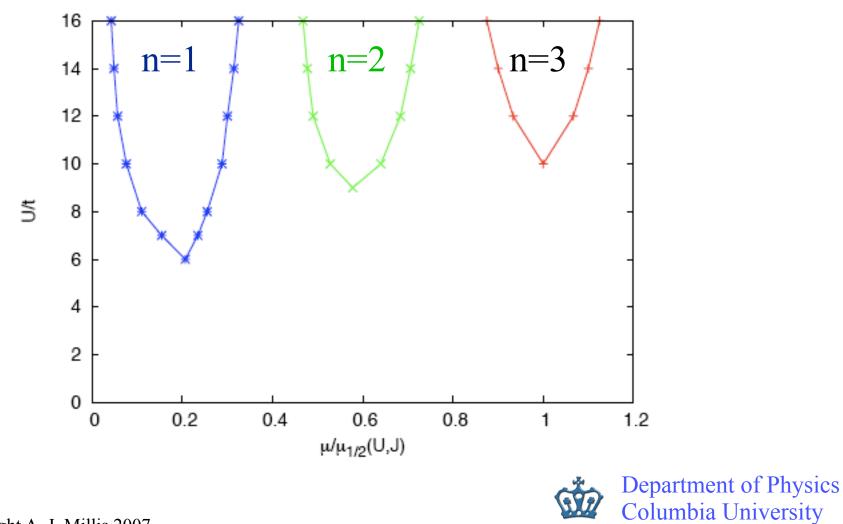


Summary: 2 orbital half-filled model

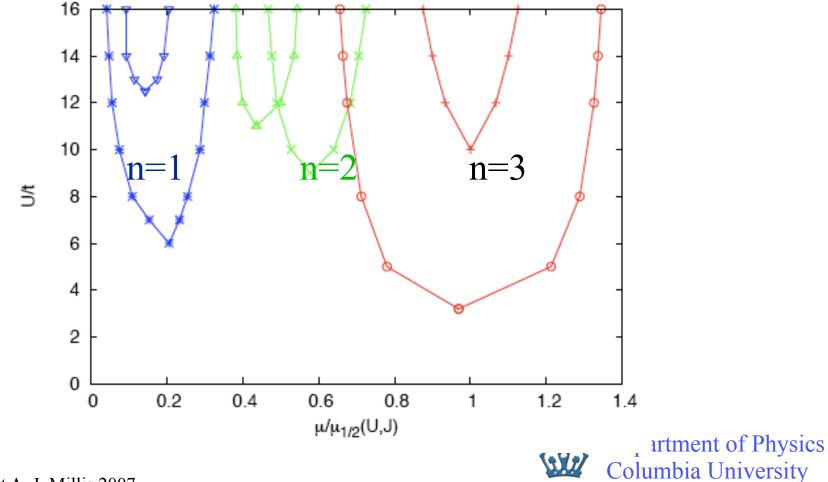
- Intricate interplay: J, Δ
- "new" Mott phase-vanishing χ_{orbital}
- =>? additional gauge symmetry
- sharp transition between Mott phases at T=0 only



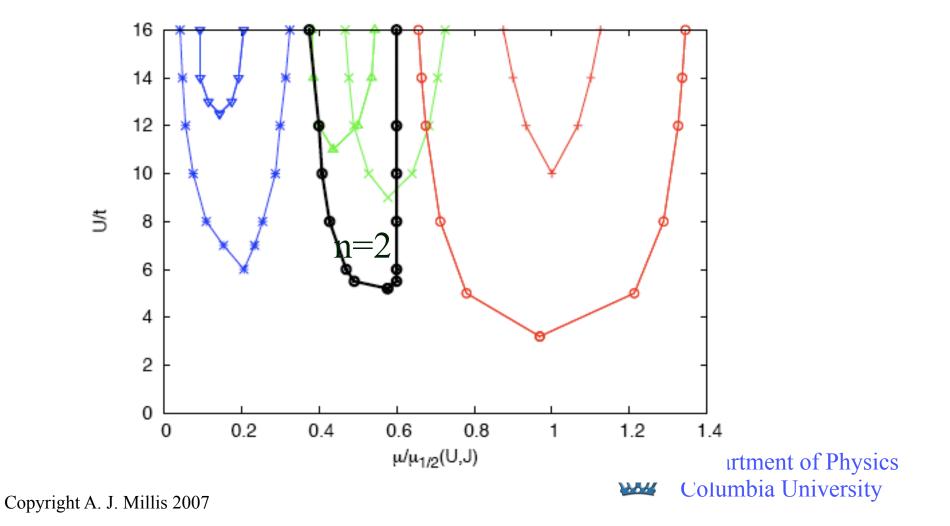
Mott phase boundary J=0 Δ =0



Mott phase boundary J=U/6 $\Delta = 0$

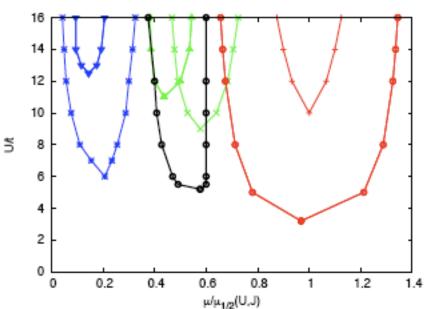


Mott phase boundary J=U/6 $\Delta = W/4$ (n=2 only)



3 orbitals--summary

- J helps insulator, n=3, hurts insulator, n=1,2
- Δ helps insulator; n=2
- Shifts are very large

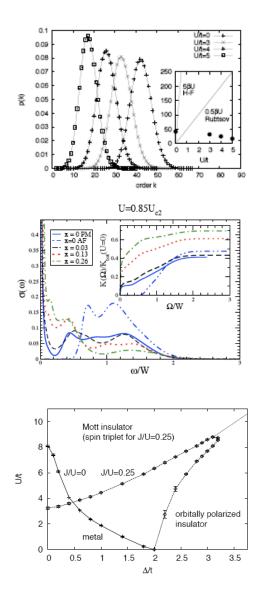


Important general issue: interplay between lattice distortions, spontaneous orbital order and Mott behavior

Directions

- Real materials
- Larger systems: reduce size of Hilbert space.
- Effective low energy theories
- Simple truncation (Haule)
- Nonequilibrium problems (Rabani)

Conclusions



- New method--seems very useful
- Cuprates: are the "Mott" insulators? what is a Mott insulator anyway
- Orbital degeneracy, Hunds coupling and crystal fields: new phases and new transitions

