Orbital order in the spinel ZnV_2O_4

Roser Valentí

Institute of Theoretical Physics, J.W.Goethe-University of Frankfurt

Collaborator: Tulika Maitra (Univ. Twente)

Financial support: DFG (FOR 419, SFB/TRR 49)

- Frustrated spinel structure
- ZnV_2O_4 , spin=1 Orbital ordering?

 $\textbf{spin} \leftrightarrow \textbf{orbital} \leftrightarrow \textbf{lattice}$

ab initio DFT + lattice models

Maitra, Valentí PRL (2007) in press

Spinel structure AB_2O_4 ____

- Cubic closed-packed array of O, cations A, B: AB₂O₄, A and B cations
- A atoms occupy tetrahedral sites
- **BO**₆ octahedra

B₄ tetrahedra

GEOMETRIC FRUSTRATION!

Spinel structure AB_2O_4

- Space Group $Fd\bar{3}m$ (227) O_h^7 $O_h: 1, \bar{1}, 9(2), 9(\bar{2}), 4(\pm 3), 4(\pm \bar{3}), 3(\pm 4), 3(\pm \bar{4})$
 - A: (8*a*) (1/8,1/8,1/8)
 - **B: (16d)** (1/2, 1/2, 1/2)
 - **O: (**32*e***)** (*u*,*u*,*u*)

Perfect Spinel u = 1/4

Spinel structure AB_2O_4 .

Crystal Field splitting

B 3d ion

 t_{2g}

trigonally distorted octahedral crystal field:

 $u = 1/4 + \delta$ $\delta > 0$ trigonal expansion $\delta < 0$ trigonal compression e_g^{π}

 \underline{a}_{1g}

Spinel ZnV₂**O**₄ **—** V^{3+} : $3d^2$ **–**

Experiment

• powder: $T_c=51K$ cubic \rightarrow tetragonal

(Ueda *et al.* JPSP (1997), Reehuis *et al.* EPJB (2003))

 $Fd\bar{3}m \to I4_1/amd$ (*c*/*a* = 0.995)

orbital order?

 T_N =40K Antiferromagnetic order

Antiferromagnetic order

Spinel ZnV₂**O**₄ **—** V^{3+} : $3d^2$ **—**

Experiment \rightarrow sensitive to sample preparation

• single crystal: spin glass, no phase transition

(S.G. Ebbinghaus et al. Jour. All. a. Comp. ('04))

• single crystal, powder: $T_c=50K$ cubic \rightarrow tetragonal (S.H. Lee *et al.* PRL (2004)

 $F\bar{4}3m \rightarrow I\bar{4}m2$ or $I\bar{4}$ (non-centrosymmetric)

- Which is the driving mechanism of the two phase transitions?
- How is the magnetic ordering stabilized?

- Geometrical frustration \rightarrow huge degeneracy of the ground state.
- 3d² system, strong correlation effects → spin and orbital degrees of freedom
- spin-orbit coupling (L=1, S=1)

Spinel ZnV₂**O**₄ **___ V**³⁺: **3** d^2 **_**

Theory \rightarrow interplay of lattice, orbital and spin degrees of freedom?

Effective-model approach:

(Y. Yamashita et al. PRL '00, H. Tsunetsugu et al. PRB '03, O. Tchernyshyov PRL '04, Di Matteo et al. PRB '05)

- 1) Jahn-Teller coupling
- 2) spin-orbital Kugel-Khomskii interaction (superexchange V-V interaction)
- 3) spin-orbit coupling (L=1, S=1) $-\lambda L \cdot S$

orbital order?

Spinel ZnV₂**O**₄ **___ V**³⁺: **3** d^2 **_**

Theory \rightarrow interplay of lattice, orbital and spin degrees of freedom?

Effective-model approach:

(Y. Yamashita et al. PRL '00, H. Tsunetsugu et al. PRB '03, O. Tchernyshyov PRL '04, Di Matteo et al. PRB '05)

- 1) Jahn-Teller coupling
- 2) spin-orbital Kugel-Khomskii interaction (superexchange V-V interaction)
- 3) spin-orbit coupling (L=1, S=1)

Spinel ZnV₂**O**₄ **—** V^{3+} : $3d^2$ **–**

Theory \rightarrow interplay of lattice, orbital and spin degrees of freedom?

Effective-model approach:

(Y. Yamashita et al. PRL '00, H. Tsunetsugu et al. PRB '03, O. Tchernyshyov PRL '04, Di Matteo et al. PRB '05)

1) Jahn-Teller coupling

2) spin-orbital Kugel-Khomskii interaction (superexchange V-V interaction)

3) spin-orbit coupling (L=1, S=1)

Spinel ZnV₂**O**₄ **___ V**³⁺: **3** d^2 **_**

Theory \rightarrow interplay of lattice, orbital and spin degrees of freedom?

Effective-model approach:

(Y. Yamashita et al. PRL '00, H. Tsunetsugu et al. PRB '03, O. Tchernyshyov PRL '04, Di Matteo et al. PRB '05)

1) Jahn-Teller coupling

2) spin-orbital Kugel-Khomskii interaction (superexchange V-V interaction)

3) spin-orbit coupling (L=1, S=1)

Spinel ZnV_2O_4 — V^{4+} : $3d^2$.

ab initio DFT calculations (T. Maitra, R. Valentí PRL '07)

FPLAPW (WIEN2k)

 ZnV_2O_4 in $I4_1/amd$: tetragonal+trigonal distorsion

LSDA-DOS

Spinel ZnV_2O_4 — V^{4+} : $3d^2$.

ab initio DFT calculations (T. Maitra, R. Valentí PRL '07) FPLAPW (WIEN2k)

 ZnV_2O_4 in $I4_1/amd$: tetragonal+trigonal distorsion

LSDA-DOS

LSDA+U-DOS U = 4-6 eV

Spinel ZnV_2O_4 **—** electron density

LSDA+U isovalue 0.6 e/Å³

DFT: $d_{xz} \pm d_{yz}$

Tsunetsugu, Motome PRB'03: d_{xz} , d_{yz} Jahn-Teller + Kugel-Khomskii

orbital order: A-type Antiferro-orbital along *c* and ferro-orbital in *ab*

alternating $d_{xz} + d_{yz}$, $d_{xz} - d_{yz}$

Spinel ZnV_2O_4 _____ inclusion spin-orbit coupling .

relativistic ab initio DFT calculation: LSDA+U+SO second variational method

electron density: tetragonal

no A-type orbital order trigonal distortion $d_{xz} \pm i d_{yz}$

(compare di Matteo et al., Tchernyshyov)

 l_z =0.75 μ_B , *s*=1.69 μ_B *j* = 0.94 μ_B compares to experimental *j*=0.63 μ_B . cubic

Spinel ZnV₂**O**₄ **____ Bandstructure ___**

LSDA+U

LSDA+U+SO

- SO pushes unoccupied V d bands up in energy \rightarrow increase band gap
- decrease of bandwidth

Spinel ZnV_2O_4 _____

Possible AFM configurations:

the experimental configuration (Rehuuis *et al.* EPJB '03, Lee *et al.* PRL '04) is energetically favorable (*ab initio* DFT) LSDA+U+SO

Magnetic excitations ____

Perkins, Sikora to be published '07

spin-wave excitation spectrum above the magnetically ordered state

- orbital ordering with/without SO affects the spin-wave excitation spectrum
- decrease of bandwidth

Conclusions

• **ZnV**₂**O**₄ orbital order is a subtle interplay:

correlations effects \leftrightarrow spin-orbit coupling \leftrightarrow Jahn-Teller distortion

- relativistic *ab initio* DFT \rightarrow no A-type orbital order
- orbital distribution favors the observed AFM phase
- total magnetic moment agrees with experiment

• ZnV₂O₄ orbital order is a subtle interplay:

correlations effects \leftrightarrow spin-orbit coupling \leftrightarrow Jahn-Teller distortion

- relativistic *ab initio* DFT \rightarrow no A-type orbital order
- orbital distribution favors the observed AFM phase
- total magnetic moment agrees with experiment

need for experiments!