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Frustration, degeneracy, & emergent phenomena

Frustration = all interactions not SF =
satisfiable simultaneously I

General principle: The presence of
many competing states often leads to
Interesting physics

— Quantum Hall effect

— High-T, superconductors

— Frustrated magnets (Mott insulators)

-—3

Magnetic field (T)

= Highly degenerate ground states
(pyrochlore, kagome, FCC, etc.)

— High sensitivity to perturbations
— Spin-glass behavior

— Spin-liquid physics

— Order-by-disorder




Experimental signatures of frustration

| High-T paramagnet
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Experimental signatures of frustration

Long-range |
, order | “Spin liquid” : High-T paramagnet _
| | |
T
L Ocy
| 1
At high temperatures, ~ . ~_ (Exchanae J's
Curie-Weiss law holds. % T_@CW’ Ocw ( ge.J's)

At low temperatures, systems typically order.

Useful diagnostic: “frustration parameter” f = ‘@cw‘ / T,

Highly frustrated systems = f >5-10

Low-T7 ordering 2 Characterizing “spin

- Key challenges: . i :
y J mechanisms liquid” correlations



Frustrated diamond lattice antiferromagnets: Materials

Many materials take Ll A = diamond lattice

on the normal spinel
structure: AB,X,

@ B =pyrochlore

Focus: spinels with magnetic A-sites (only)

CoRh,0, Co,0, MnSc.S, Fesc,S,
— = e
1 |5 10 \ 20 900 f =|Oyyl|/T.
MnAI,QO, CoAl O,

Very limited theoretical understanding...

V. Fritsch et al. PRL 92, 116401 (2004); N. Tristan et al. PRB 72, 174404 (2005); T. Suzuki et al. (unpublished)
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Frustration on the bipartite diamond lattice??

Naive .
Hamiltonian: H = lesi Sjﬁ\
(ij) Classical spins

(s =3/2, 5/2 for
materials of interest)

Diamond lattice =
2 FCC sublattices
coupled via J;




Frustration on the bipartite diamond lattice??

Najive H = lesi 'Sj
i)

Hamiltonian:




Frustration on the diamond lattice

Remedy:
20dneighbor  H=J,)S,-S, +J,>'S,-S,
exchange ()

&) 2

Generates
strong
frustration

J, and J, expected to be comparable due to similarity in exchange paths
W. L. Roth, J. Phys. (Paris) 25, 507 (1964)



T = 0 physics: ground states

H=J,)S,-S, +J,>S,'S,
{7) U

Neel
I

0 1/8 J,/J,

Useful rewrite of Hamiltonian:

4 3
H=J)[S;+(S,+S,+S,+S,)/4]°

+(J,—J,18))'S,S,
G



T = 0 physics: ground states

H=J,)S,-S, +J,)>S,'S,
(&) K

Highly degenerate
coplanar spirals

0 1/8 § J,/J,

Direction & pitch of spirals characterized by
a wavevector residing on a surface in
momentum space!

“Spiral surfaces”
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Low-T physics: Can long-range order occur?

Stability nontrivial due to massive spiral degeneracy.

- Expand Hamiltonian in fluctuations:
Arbitrary ground

éSl. = Si — <Sl> 4——" state order

- At T = 0, branch of normal modes has infinite # of zeros!

o, (q) -0 For all g

on surface

Naively, d’>
=) fluctuations <é‘52> ~ T_[ > 1 > 90
diverge w; (Q)



“Order-by-disorder” stabilization

Key ideas:
— Only symmetry-required zeros in oy(q) are the “Goldstone modes”

— Thermal fluctuations lifts the remaining “accidental” zeros =
entropy stabilizes long-range order!

Needed: finite-T corrections to wy(q) on “spiral surface”
— Perturbation theory insufficient
— Use self-consistent approach instead

Answer: a)ﬁ (q) = a)g () + T2/32(CI)

=) <é812> ~ Tj‘ﬂ ~ T3 (Fluctuations

2 small at low 7)

Non-analytic T-dependence = unconventional thermodynamic

behavior, e.g., 3
C,=A+BT



Aside on self-consistent approach

- Expand Hamiltonian in fluctuations: “Interaction” terms

~

AN
p
ési:Si_<Si>1 H=H,+H,+H,+...
- Get self-energy self-consistently for divergent mode

y'a Full propagator

Y= )+ o

1

m 3(q) =T [T(q,k)G(K); G(Kk)= 22 (K) + (k)

- For g on surface, assume i(q) ~T°2(q)

| @ (q) = (0) + T7°Z(0)




“*Order-by-disorder” selection

Long-range order occurs—but which state does entropy select?

* Need Free Energy for all F(Q) =F — TS(Q)

Q on spiral surface

» Entropy favors states with highest density of nearby
low-energy states

 Complex phase structure emerges:

) T

o
1/8 1/4 ~1/2 ~2/3 J,/J,

Green = Free energy minima, red = low, blue = high
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Monte Carlo simulations

Parallel tempering algorithm employed to dramatically improve

thermal equilibration
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Monte Carlo simulations

Parallel tempering algorithm employed to dramatically improve

thermal equilibration
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Spin liquid physics

e QOrder-by-disorder occurs at low temperatures
e Broad spin liquid regime emerges due to low 7.

« Can probe this physics experimentally via neutron scattering

Order by High-T

disorder Spin liquid : paramagnet
| s

|
|
0 T\ Oy r

Spin structure factor directly images
“spiral surface” & entropic free energy
corrections!




Structure factor in spiral spin liquid regime

Analytic free energy Numerical structure factor
J,/J,=0.85
MnSc,S,

* Free energy corrections visible for 7, < T< 1.3 T,
« “Spiral surface” more robust: persists for 7. < 7< 3 T,

Physics dominated by

Order by Spira| Spin / spiral ground states
disorder  liquid

I l

| |

1.37, 3T, r

!
|
0 T

C



Spin liquid correlations analytically

o “Spherical model”

— Describes spin liquids in kagome, 82 =1 —> ZSZ =N
pyrochlore antiferromagnets J - /
— Predicts structure factor data collapse (5

Peaked near # of sites

surface
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Spin liquid correlations analytically

o “Spherical model”

— Describes spin liquids in kagome, 82 =1 —> ZSZ =N
pyrochlore antiferromagnets J - /
— Predicts structure factor data collapse (5

Peaked near # of sites

T /J 0.85 s / surface
2 1 _ 1; § > Monte Carlo data 7'=0.24 Jl

2 | — analytical fit
S
S,
=

]:Structtfjre 3 Quantitative

actor for one “

agreement!
1 L

FCC sublattice % (except very
L
= near 7,)
-
5
=
v

Nontrivial : o waney _
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experimental 0 0 1 AN 5
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What can we expect for experiments?

Realistic = ' |
mealie H—Jlgj;si Sj +J2<<Zj>:>si Sj +§]{\

Degeneracy-
breaking
perturbations

 Entropic free energy corrections vanishas 7— 0

* Energetic corrections from oH inevitably dominate
at lowest T

» If oH small enough, expect order-by-disorder phase
to appear at higher T



Comparison with experiment: MnSc,S,,

q = 2n (3/4,3/4,0)
Spiral order

\

l

| | | | g
0 1.9K 23K O r

(f \ : : : :
. Theoretical implications

I — J, is ferromagnetic here
R R R ~ J,IJ;| = 0.85
\\tt’f-‘—\\! i "J'h:— . .
SRS A EA N — Lowest-T order determined energetically,
PN not entropically
I & | % [T o = N

I & = % 1 7 =
~ | A -

N | # e % I e =
e L N e "I | -

¢ . EXperiment sees
110 order (favored
by AFM J3)
Entropy favors
~100 order

A. Krimmel et al. PRB 73, 014413 (2006); M. Mucksch et al. (unpublished)



Comparison with experiment: MnSc,S, (cont’d)

Spiral order +

scattering
Spin liquid with Qi = 2n
| I I diffuse scattering :
I | |
0 1.9K 2.3K
Experiment
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2

0.4 0.5 0.6 0.7 0.8 85 0.75 1 1.25 15
Q (A" Q [2n/a]

 Intensity shifts from |g| to “spiral surface” as T washes out J,
« Consistent with “spiral spin liquid”

A. Krimmel et al. PRB 73, 014413 (2006); M. Mucksch et al. (unpublished)



Comparison with experiment: CoAl,O,

e Much less known here

— Strong frustration, sample dependent 200
— No sharp transition observed yet *% mo'
O
: kS
 Powder neutron data + frustration >
. K7 0
suggest J,/ J; = 1/8 for this 5 |
material = -100
0.5 1 i 0.5
= 04 [ 0.4 7
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N. Tristan et al. PRB 72, 174404 (2005); A. Krimmel et al. Physica B 378-380, 583 (2006); T. Suzuki et al. (unpublished)



Summary

Many spinels constitute frustrated diamond lattice
antiferromagnets
— MnSc,S,, CoAl,O,, etc.

Simple J;-J, model captures essential physics
— Continuous spiral ground state degeneracy
— Important ordering mechanism is order-by-disorder

— Spin correlations in “spiral spin liquid” reveals surface +
entropic effects

Theoretical predictions consistent with existing
experiments



Future Directions

Single crystals wanted
— Allow for more direct comparison
— Concrete experimental realization of order-by-disorder??

Explore spin dynamics for inelastic neutron scattering?
Effects of disorder?
Details of low-7" order in MnSc,S,? Commensurate lock-in?

Physics of spin + orbitally frustrated FeSc,S,? Exotic quantum
ground state?
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