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(Very general) motivation:

Generically, H =  H1 +  H2

characteristic energy scale

Very often, ground-state of H1 is VERY different from ground-state of H2.

How about ground-state of H, what does it look like ?                    (from now on, GS = ground-state)

If  << , H =  (H1 +  H2), with = /  <<1  do perturbation in 

If  << , H =  (H2 + -1 H1), with -1= /  <<1  do perturbation in 1/

Quantity of interest

e.g. GS energy

= /1

What happens here?

(numerical simulations)

In this talk: for a particular

problem (Holstein

polaron)  one analytical

approx. that works well
for all .

Hopefully it will prove

possible to generalize this

to other systems.



Polarons: (first) model of interest: the Holstein Hamiltonian

The simplest lattice Hamiltonian describing electron-phonon (phonons = lattice vibrations) interactions:
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Suppose we have a single electron in the system:

Eigenstates are linear combinations of states with electron at different sites, surrounded by a lattice

distortion (cloud of phonons) in its vicinity.

This composite object: electron dressed by surrounding cloud of phonons is called a polaron. We
would like to learn its properties: for e.g., the stronger the el-ph interactions are (larger ), the

bigger this cloud/deformation is  the slower (heavier) the polaron.

(Landau, 1933. Holstein model proposed in 1959).
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Main idea: if you want to learn something about what’s going on in an unknown place, send in spies!

Here: add one extra particle (electron) in the system of interest, and extract it at a later time
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Quantity of interest: the Green’s function G(k, ) and the spectral weight A(k, )

If the system is invariant to translations, it is more convenient to work with energy and momentum,
then with time and spatial location  work with Fourier transform G(k, )

 is measured by (inverse) angle-resolved photoemission

spectroscopy = ARPES



weak coupling                                                          Lang-Firsov  impurity limit
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How does the spectral weight evolve between these two very different limits?
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Calculating the Green’s function:

For Holstein polaron,  we need to sum to orders well above g2/ 2 to get convergence.

42913242145211, SCBA

17083941104108162706741021, exact

87654321n

Traditional approach: find a subclass of diagrams that can be summed, ignore the rest

 self-consistent Born approximation (SCBA) – sums only non-crossed diagrams (much fewer)



First: MA(0) – simplest (least accurate) version

Replace each                       in the self-energy diagrams by

 one can sum all the resulting self-energy diagrams:
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both for g=0 and for

t=0

 trivial to evaluate

New proposal: the MA(n) hierarchy of approximations:

Idea:  keep ALL self-energy diagrams, but approximate each such that the summation can be

carried out analytically. (Alternative explanation: generate the infinite hierarchy of coupled

equations of motion for the propagator, keep all of them instead of factorizing and truncating, but

simplify coefficients so that an analytical solution can be found).
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Why should this be a reasonable thing to do?

(i) Real-space argument: MA(0) means 0 , 0 , 0( , ) (0, ) ( )i j i jG i j n G n g n=
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At low energies  ~ EGS < -2dt  free electron Greens’ functions decrease exponentially

with distance |i-j|  MA(0) keeps the most important (diagonal) contribution. The
approximation becomes better the more phonons are present, since the lower  – n  is,

the faster the decay.

 Expect ground-state properties to be described quite accurately.
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(ii) Spectral weight sum rules (see PRB 74, 245104 (2006) for details)
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MA(0) satisfies exactly the first 6 sum rules, and with good accuracy all the higher ones.

Note: it is not enough to only satisfy a few sum rules, even if exactly. ALL must be satisfied as well

as possible.

Examples: 1. SCBA satisfies exactly the first 4 sum rules, but is very wrong for higher order sum

rules  fails miserably to predict strong coupling behavior (proof coming up in a minute).

2. Compare these two spectral weights:

0 w0-w0
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found correctly if n=0 diagram kept correctly  dominates if t >> g,   0

found correctly if we sum correct no. of
diagrams  dominates if g >>t,  >>1

Since G(k,w) is a sum of diagrams, keeping the correct no. of diagrams is extremely important!
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2D results for ground-state properties  excellent agreement with numerics
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3D Polaron dispersion

L. -C. Ku, S. A. Trugman and S. Bonca, Phys. Rev. B 65, 174306 (2002).



A(k, ) in 1D

G. De Filippis et al, PRB 72, 014307 (2005)

MA becomes exact for small, large 

 = 0.5  = 1

 = 2



For lots more comparisons against available numerics, see PRB 74, 245104 (2006).

Conclusion so far: MA(0) is remarkably good, especially considering how simple it is.

However, it is an approximation, and it does have its problems:

 self-energy is momentum independent!

 the accuracy worsens if /t  0





For lots more comparisons against available numerics, see PRB 74, 245104 (2006).

Conclusion so far: MA(0) is remarkably good, especially considering how simple it is.

However, it is an approximation, and it does have its problems:

 self-energy is momentum independent!

 the accuracy worsens if /t  0

 wrong location (at weak coupling) or outright absence (moderate and strong coupling)
of the polaron+one-phonon continuum: this must always appear at precisely EGS+ .



1D,  =0.5t,  =0.25

EGS +  – continuum starts above this energy



Improve the approximation:

MA(n) keep free propagators of frequency  – m , m < n exactly in the self-energy

diagrams; all propagators with more phonons (lower energy) are momentum averaged

MA(1) – G0(k-q, ) contributions exact, lines with 2 or more phonons are momentum

averaged.

MA(2) – G0(k-q, ), G0(k-q, 2 ) contributions exact, lines with 3 or more phonons

are momentum averaged, etc.

Still can sum all diagrams in the self-energy, calculation still numerically trivial
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(models with g(q) coupling have a k-dependent self-energy from level MA(0))

details in M. Berciu and G. Goodvin, PRB 96, 165109 (2007)



1D, =0.5t

 = 0.6

 = 1.1

1D, =0.1t

Sum rules:

MA(0) exact up to n=5 and accurate above; MA(1) exact up to n=7 and more accurate

above; MA(2) exact up to n=9 and yet more accurate above, …



1D,  =0.5t,  =0.25



1D, k=0, =0.5t

MA(0) MA(2)

(quasi-variational explanation for continuum)



Conclusions:

 MA = a hierarchy of approximations providing more and more accurate (but at higher

– though still trivial – numerical cost) approximations for the Green’s function of a

Holstein polaron  proof of principle that such approximations do exist!

 generalization to multiple phonon modes (L. Covaci and M. Berciu, EPL 80, 67001 (2007) )

 generalizations to electron-phonon models with g(q) coupling: being written up

 generalizations to bi-polarons and hopefully many-electron systems – in progress

 generalizations to multiple electron (and phonon) bands (e.g. graphene, spin-orbit

coupling, etc) being written up

 combinations …. suggestions for other models coupling fermions to bosons?

 New strategy to obtain good approximations for intermediary couplings



Coupling to breathing-mode phonon:

Numerics: Bayo Lau, M. Berciu and G. A. Sawatzky, Phys. Rev. B 76, 174305 (2007)
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