Electronic Orbital Currents and Polarization in Mott Insulators

> L.N. Bulaevskii, C.D. Batista, LANL M. Mostovoy, Groningen Un. D. Khomskii, Koln Un.

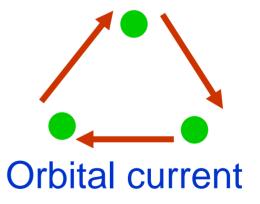
 Introduction: why electrical properties of Mott insulators differ from those of band insulators.

- ★ Magnetic states in the Hubbard model.
- ★ Orbital currents.
- ***** Electronic polarization.
- * Low frequency dynamic properties.
- Conclusions.

Difference between Mott and band insulators

$$H = -\sum_{ij\sigma} t_{ij} (c_{i\sigma}^{+} c_{j\sigma} + c_{j\sigma}^{+} c_{i\sigma}) + \frac{U}{2} \sum_{i} (n_{i} - 1)^{2}, \quad \langle n_{i} \rangle = 1.$$

- Only in the limit $U \rightarrow \infty$ electrons are localized on sites.
- At $t/U \neq 0$ electrons can hop between sites.



$$H_{s} = \frac{4t^{2}}{U}(\vec{S}_{1} \cdot \vec{S}_{2} - 1/4).$$

0

Definition of magnetic states for Hubbard Hamiltonian

$$H = -\sum_{ij\sigma} t_{ij} (c_{i\sigma}^{+} c_{j\sigma} + c_{j\sigma}^{+} c_{i\sigma}) + \frac{U}{2} \sum_{i} (n_{i} - 1)^{2}, \qquad \langle n_{i} \rangle = 1.$$

• $U \rightarrow \infty$ ground state $\Psi_{0\nu}$, 2^N spin-degenerate, S-subspace.

• Excited (polar) states are separated by the Hubbard gap, U .

• t_{ij} increases, degeneracy is adiabatically lifted \longrightarrow magnetic states $\Psi_{\nu} = e^{-S(t)} \Psi_{0\nu}.$

Magnetic state energies

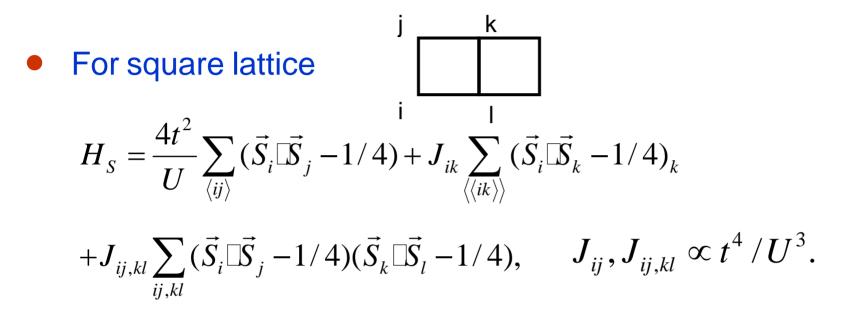
 $\langle \Psi_{\nu}^* | H | \Psi_{\nu} \rangle = \langle \Psi_{0\nu}^* | e^S H e^{-S} | \Psi_{0\nu} \rangle \longrightarrow H_s = P e^S H e^{-S} P.$

• Any other electron operator $\langle \Psi_{\nu}^* | O | \Psi_{\nu} \rangle \longrightarrow O_S = Pe^S Oe^{-S} P.$

• H_S, O_S are expressed in terms of spin operators S

$$S_i^{\alpha} = \sum_{\mu\nu} c_{i\mu}^+ \sigma_{\mu\nu}^{\alpha} c_{i\nu}.$$

Spin Hamiltonian



- Only even number of spin operators.
- Some excited magnetic states (collective modes) lay below the Hubbard gap resulting in low-T thermodynamic and lowfrequency dynamic properties of Mott insulators.

Spin current operator and scalar spin chirality

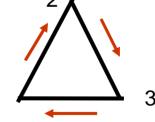
Bogolyubov, 1949.

Current operator for Hubbard Hamiltonian on bond ij:

$$\vec{I}_{ij} = \frac{iet_{ij}\vec{r}_{ij}}{\hbar r_{ij}} \sum_{\sigma} (c_{i\sigma}^{+}c_{j\sigma} - c_{j\sigma}^{+}c_{i\sigma}).$$

 Projected current operator: odd # of spin operators, scalar in spin space. For smallest loop, triangle, ²

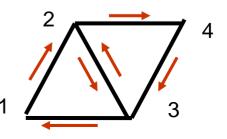
$$\vec{I}_{S,12}(3) = \frac{\vec{r}_{ij}}{r_{ij}} \frac{24et_{12}t_{23}t_{31}}{\hbar U^2} [\vec{S}_1 \times \vec{S}_2] \Box \vec{S}_3.$$



Current via bond 23

$$I_{S,23} = I_{S,23}(1) + I_{S,23}(4).$$

• On bipartite nn lattice I_s is absent.

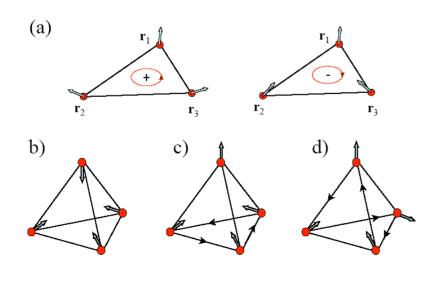


Orbital currents in the spin ordered ground state $\langle \vec{S}_i \rangle \neq 0$

 Necessary condition for orbital currents is nonzero average chirality

$$\chi_{12,3} = [\vec{S}_1 \times \vec{S}_2] \Box \vec{S}_3, \qquad \langle \chi_{ij,k} \rangle \neq 0.$$

It may be inherent to spin ordering or induced by magnetic field



Triangles with \pm chirality

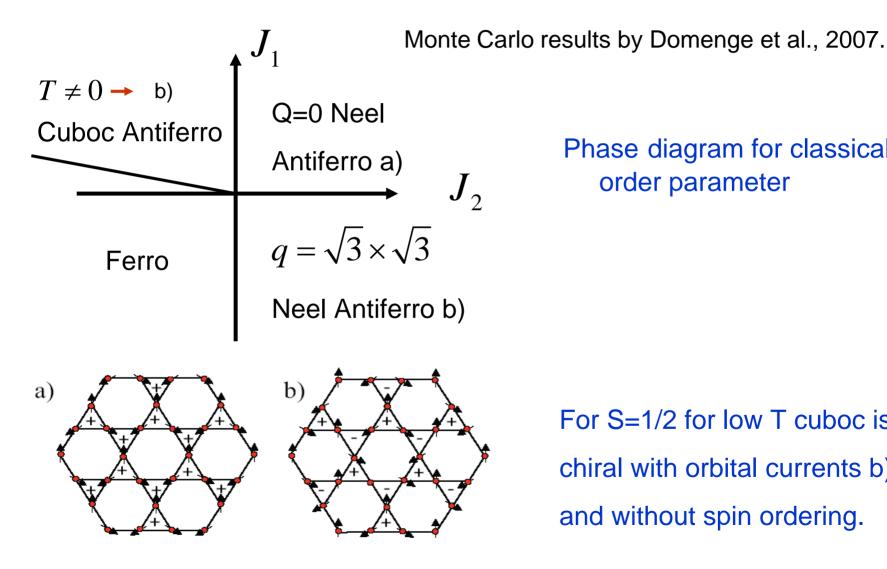
On tetrahedron chirality may be nonzero but orbital currents absent. Chirality in the ground state without magnetic ordering

•
$$\left\langle \chi_{12,3} \right\rangle = \left\langle [\vec{S}_1 \times \vec{S}_2] \Box \vec{S}_3 \right\rangle \neq 0, \quad \left\langle \vec{S}_i \right\rangle = 0.$$

- Geometrically frustrated 2d system \rightarrow Mermin-Wagner theorem $\rightarrow \langle \vec{S}_i \rangle = 0.$
- State with maximum entropy may be with broken discrete symmetry $\langle \chi_{12,3} \rangle \neq 0$.
- Example: $J_1 J_2$ model on kagome lattice:

$$H_{S} = J_{1} \sum_{\langle ij \rangle} \vec{S}_{i} \Box \vec{S}_{j} + J_{2} \sum_{\langle \langle ij \rangle \rangle} \vec{S}_{i} \Box \vec{S}_{k}.$$

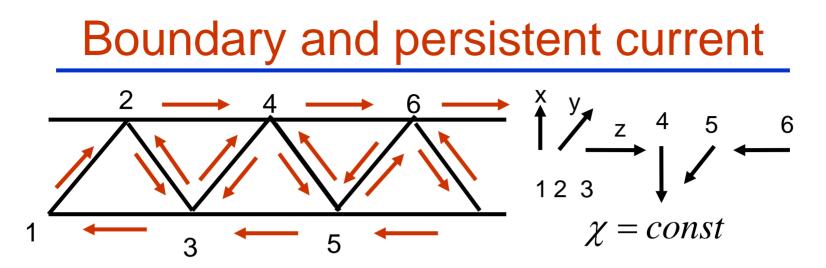
Ordering in $J_1 - J_2$ model on kagome lattice at T=0



order parameter

Phase diagram for classical

For S=1/2 for low T cuboc is chiral with orbital currents b) and without spin ordering.



Boundary current in gaped 2d insulator

Spin dependent electronic polarization

• Charge operator on site i: $Q_i = e \sum c_{i\sigma}^+ c_{i\sigma}$.

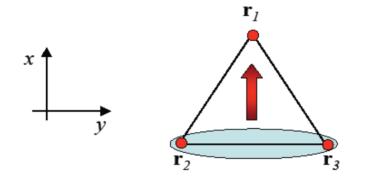
• Projected charge operator $n_{S,i} = Pe^{S}n_{i}e^{-S}P$, \bigwedge^{2}

$$n_{S,1}(2,3) = 1 - \frac{8t_{12}t_{23}t_{31}}{U^2} [\vec{S}_1 \Box (\vec{S}_2 + \vec{S}_3) - 2\vec{S}_2 \Box \vec{S}_3].$$

• Polarization on triangle $\vec{P}_{123} = e \sum_{i=1,2,3} n_{S,i} \vec{r}_i, \qquad \sum_i n_{S,i} = 3.$

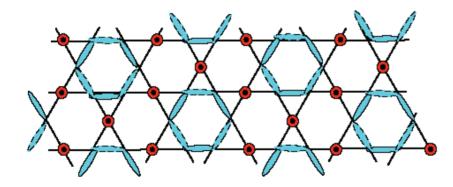
Charge on site i is sum over triangles at site i.

Electronic polarization on triangle



 Magnitostriction results in similar dependence of polarization on spins.

Charges on kagome lattice



Charge ordering for spins 1/2 in magnetic field at $\langle S_z \rangle = S/3$. Low frequency dynamic properties: circular dichroism

• Responses to ac electric and ac magnetic field are comparable for $J \square 100$ K:

$$\begin{split} \varepsilon_{ik}(\omega) &= \varepsilon_0 \delta_{ik} + \frac{8\pi}{V} \sum_n \frac{\omega_{n0} \left\langle 0 \mid P_{S,i} \mid n \right\rangle \left\langle n \mid P_{S,k} \mid 0 \right\rangle}{\omega_{n0}^2 - \omega^2 + i\delta}, \\ \hbar \omega_{n0} &= E_n - E_0, \qquad H_S \left| n \right\rangle = E_n \left| n \right\rangle. \end{split}$$

- Compare $P \square 8eat^3 / U^3$, and $M \square g \mu_B S$.
- Nonzero orbital moment $L_z \propto \partial/\partial \varphi \rightarrow$ $\langle 0 | P_x | n \rangle, \langle 0 | P_y | n \rangle \propto \cos \varphi, \sin \varphi \neq 0 \rightarrow$
- Rotation of electric field polarization in chiral ground state.

Low frequency dynamic properties: negative refraction index

Responses to ac electric and ac magnetic field are comparable for $J \square 100 \, \text{K}_{\text{S}}$

$$\varepsilon_{ik}(\omega) = \varepsilon_0 \delta_{ik} + \frac{8\pi}{V} \sum_{n} \frac{\omega_{n0} \left\langle 0 \mid P_{S,i} \mid n \right\rangle \left\langle n \mid P_{S,k} \mid 0 \right\rangle}{\omega_{n0}^2 - \omega^2 + i\delta},$$

- Spin-orbital coupling may lead to common poles in $\mathcal{E}_{ik}(\omega)$ and $\mu_{ik}(\omega)$
- Negative refraction index if dissipation is weak.

Low frequency dynamic properties of isolated triangles

- Trinuclear spin complex V15 $K_6[V_{15}^{IV}As_6O_{42}(H_2O)]$ BH_2O .
- Energy levels of the Heisenberg Hamiltonian

$$H_{S} = J(\vec{S}_{1} \square \vec{S}_{2} + \vec{S}_{2} \square \vec{S}_{3} + \vec{S}_{1} \square \vec{S}_{3} - 3/4):$$

- ★ ground state: quartet S=1/2, $\chi = T_z = \pm 1$, (pseudospin), $S_z = \pm 1/2$, ★ quartet S=3/2 separated by 3J/2.
 - Polarization and orbital current in low-energy subspace:

$$P_{S,x} = -CT_x, \qquad P_{S,y} = CT_y, \qquad (\hbar a/U)I_S = T_z,$$

 $C = 12\sqrt{3}ea(t/U)^{3}$

S=1/2

S=3/2

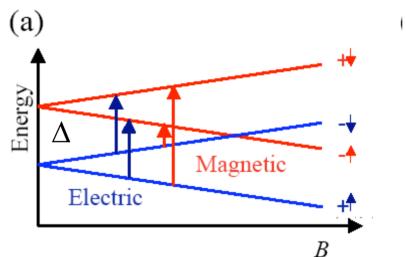
Isolated triangle: accounting for DM interaction

• DM coupling:
$$H_{DM} = \sum_{ij} D_{ij} \vec{S}_i \times \vec{S}_j$$
.

- For V15 $H_{DM} \approx D_z L_z S_z$.
- Splits lowest quartet into 2 doublets $|+\uparrow\rangle, |-\downarrow\rangle$ and $|+\downarrow\rangle, |-\uparrow\rangle$ separated by energy $\Delta = D_z$.
- Ac electric field induces transitions between $\chi = \pm 1$.
- Ac magnetic field induces transitions between

$$S_z = \pm 1/2.$$

Isolated triangle with DM interaction



Frequnces of EPR and microwave absorption differ in field.

- Near resonance strong rotation of electric field polarization.
- Below resonance at B=0 both $\mathcal{E}_{ik}(\omega)$ and $\mu_{ik}(\omega)$ are negative if dissipation is low enough.

Conclusions

- Dissipationless orbital microscopic currents, macroscopic boundary currents, macroscopic current around the ring like in superconductor.
- Spin-dependent electronic polarization and multiferroic behavior.
- Chirality results in circular dichroism, option to probe chirality when magnetic ordering is absent.
- Crystal with negative refraction index ?