

Dimer Phases in Orbitally Degenerate Quantum Magnets

George Jackeli

Max Planck Institute, Stuttgart

(P)ÉCOLE POLYTECHNIQUE

FÉDÉRALE DE LAUSANNE

In collaboration with:

D. Ivanov EPFL, Lausanne

S. Di Matteo LNF, Frascati

C. Lacroix CNRS, Grenoble

N. Perkins Univ. of Wisconsin

PRB 74, 132407 (2007)

PRB 72, 024431 (2005)

PRL 93, 077208 (2004)

Introduction

Isotropic quantum spin systems: Two examples:

Long-range spin order

Square lattice HAFM

Goldstone mode: Gapless spin waves

Valence-Bond Crystal

Shastry-Sutherland model

$$= \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right)$$

Gapped triplet excitations

Experimental examples

```
√ MgTi<sub>2</sub>O<sub>4</sub>--- Pyrochlore lattice
```

$$\sqrt{\text{Sr}_2\text{VO}_4}$$
 --- Square lattice

Experimental examples - MgTi₂O₄

Schmidt et al. PRL'04

Isobe and Ueda JPSJ'02

Experimental examples - NaTiO₂

Takeda et al JPSJ'92 Clarke et al Chem.Mat.'98

Experimental examples - Sr₂VO₄

What these systems have in common?

A) Orbital Degeneracy

What these systems have in common?

B) Directional hopping of orbitals

XZ

XY

YZ

Coupled spin-orbital model

$$-\sum_{\langle ij\rangle} [J_{\rm O} + J_{\rm F} \vec{S}_i \cdot \vec{S}_j] O_{ij}^{\rm OAF} \qquad \Longrightarrow$$

Couplings:

$$J_{
m AF} \simeq J_{
m O} \sim J = t^2/U$$
 $J_{
m F} \sim \eta J, \quad \eta = J_{
m H}/U \ll 1$

Orbital degrees are static Pott's-like!

Example of orbital and spin-coupling pattern

The limit of zero Hund's coupling

Reduction of Dimensionality: Factorization in non interacting clusters of open 1D chains

$$H = E_0 + 4J \sum_{\langle ij \rangle} \left[\vec{S}_i \cdot \vec{S}_j + S^2 \right] O_{ij}^{OF}$$

Extensive degeneracy of classical Neel type states ($S_iS_j+S^2=0$)

This is a feature of the Model but not of the underling lattice

The ground state manifold

Conclusion: The ground state manifold is generated by hard-core dimer coverings with additional "no-chain" constraint.

Extensive orientational degeneracy

The Dimer GS is a feature of the Model but not of the underling lattice

Lifting the orientational degeneracy of dimers

Possible scenarios:

By weak Interdimer coupling $(\eta \Rightarrow 0)$:

Order-out-of disorder by triplet fluctuations

By other interactions:
Spin-Peierls like mechanism
(relevant for MgTi2O4)

Order-out-of- disorder by triplet fluctuations

Weak FM interdimer coupling ~11

Different dimer coverings => different pattern of interdimer coupling: Thus different zero point energy due to quantum fluctuations

Order-out-of- disorder by triplet fluctuations

Tree-like graphs with N links contribute

to the leading order as 11 2n

Loop-like graphs with \(\backslash links contribute

to the leading order as n

VBC on Triangular lattice

VBC on Square lattice

Lifting of degeneracy by magneto elastic coupling

Magnetoelastic coupling

$$\Delta E_{ij}^{mag} = \left[\frac{\partial J(d)}{\partial d}\right]_{d=d_0} \delta d_{ij} (\vec{S}_i \cdot \vec{S}_j)$$

Shortening of the strong bond =Gain of magnetic energy

Elastic energy

$$\Delta E_{ij}^{el} = \frac{C_0}{2} \frac{(\delta d_{ij})^2}{d_0^2}$$

Different distortion pattern Costs different elastic energy

Selection of ground state

Lifting of degeneracy by magneto elastic coupling

Application to a pyrochlore lattice

- O Dimers condense in Valence Bond crystal forming a helical pattern
- Orbital order is Ferro-type along helix and Antiferro between them

Schmidt et al. PRL'04

Dimerized helical pattern

Conclusions & Outlook

- Orbital induced frustration of spins
 - ⇒ Spin gap formation and spontaneous dimerization in D>1
- Exact realization of classical dimer problems
- Degeneracy lifting by perturbations
 - → Formation of different types of VBC

Open Issues:

- Finite temperature properties:
 - ⇒ Susceptibility, thermodynamics, VBC melting
- Role of quantum fluctuations of orbitals