A magnetic analog of the isotope effect in cuprates (and more)

Work of Yuval Lubashevsky, Rinat Ofer, and Amit Kanigel

Amit Keren

Technion-Israel

<u>Collaborators</u> G. Bazalitski-Technion A. Knizhnik-Technion J. Lord-ISIS A. Amato-PSI O. Chmaissem-ANL

Isotope Effect in metallic superconductor

- Maximum 4% variation of T_c in Sn.
- The $T_c \propto M^{-1/2}$ is not applicable for different materials.

Our Main Objective:

• To strengthen the J with no other changes, and see if T_c grows?

- This would be a magnetic equivalent of the isotope effect.
- Experimentally this is difficult but not inconceivable.

CLBLCO; Our Model Compound

- YBa₂Cu₃O_y structure.
- Tetragonal at all x and y.
- 2 planes per unit cell.
- Over doping is possible.
- T_c variation of 30%.
- Valance Ca=Ba=2, La=3.
- Similar level of disorder (NMR).
- Ionic radii variations are not relevant.
- $(Ca_{u}La_{1,v})(Ba_{1,75,v}La_{0,75+v})Cu_{2}O_{v}$ 80 X=0.1 X = 0.2X=0.3 60 X=0.4 <u>ک</u> 40 20 6.80 6.85 6.90 6.95 7.00 7.15 7.20 7.25 7.05 7.10 y

- CLBLCO allows T_c^{max} variations with minimal structural changes.
- What would T_N , T_g , and T^* do?

Goldschmidt et al., Phys. Rev. B 48, 532 1993

Principals of μ SR

Raw ZF µSR Data in CLBLCO

- There is weak relaxation above T_N or T_g .
- There are oscillations in the ordered phase but not in the spin glass phase.
- There are 2 contributors to $P_z(t)$. As one amplitude grows, the other decreases.

Phase Diagram (Ca_xLa_{1-x})(Ba_{1.75-x}La_{0.25+x})Cu₃O_y

- The family with the highest T_c at optimal doping has the highest T_N .
- How do we untangle this phase diagram?

Transformation of the entire doping range.

 $(Ca_xLa_{1-x})(Ba_{1.75-x}La_{0.25+x})Cu_3O_y$

 $T_N, T_g, T_c \to T_N / T_c^{\max}, T_g / T_c^{\max}, T_c / T_c^{\max}$ $\Delta p_m = K_x (y - y_x^{opt})$

- The scaling works for x=0.2 to 0.4 (15% variation in T_c^{max})!
- What about x=0.1?

The role of anisotropies

- T_N is determined by J and anisotropies.
- The spin Hamiltonian is given by

$$H = J\left(\sum_{\text{in plane}} \mathbf{S}_{i}\mathbf{S}_{j} + \alpha_{xy}\sum_{\text{in plane}} S_{i}^{z}S_{j}^{z} + \alpha_{\perp}\sum_{\text{between planes}} \mathbf{S}_{i}\mathbf{S}_{j}\right)$$

• Information on anisotropies can be obtained from M(T) measurements.

Arovas and Auerbach, Phys. Rev. B 38, 316 1998.

M(T)

 $\omega \propto M$

$$\frac{\omega(T)}{\omega(0)} = \frac{M(T)}{M_0}$$

Extracting the anisotropies

$$J = \frac{T_N}{t_N(\alpha_{eff})}$$

T_c^{max} versus J

Unified Phase Diagram

Ofer et al. PRB 74, 220508(R) 2006

There is a common energy scale *J* for AFM, SG, and SC.

What does vary between families?

•J increases with x mainly as a consequence of decreasing buckling angle.

The implications

t/J varies by 6% between families.

Alterative estimation of t/J

t/J can be extracted from M(T=0) (namely ω) versus doping.

Yamamoto and Kurihara PRB 75, 134520 (2007). Belkasri and Richard PRB 50, 12869 (1994). Khaliullin and Horsch PRB 47, 463 (1993).

- Single electron hopping does NOT eliminate M upon doping.
- Could electron-pair (bosons) hopping destroy M?

What about the PG

This phenomena was noticed by D. C. Johnston (1988).

The fitting function

We find a similar problem as in the T_c/T_N scaling.

 T^* scales with T_N .

Curie-Weiss temperature

This is another indication that the relevant parameter is Δp_m .

Conclusions

Open question

- What does *K* stands for?
- We know from NQR that it is not a doping efficiency parameter.

Experimental Estimate of Dephasing time in Molecular magnets

Ph.D. of Oren Shafir. Collaborators : E. Shimshoni, V. Marvaud.

A. Caneschi et al. JMMM 200, 182 (1999)

- Steps in the hysteresis loop are found at regular intervals of *H*, indicating magnetic quantum tunneling.
- The magnetization jumps are sweep rate dependent.

A. Caneschi et al. JMMM 200, 182 (1999)

• Below 300mK the step size is T independent, meaning pure tunneling.

Theoretical step size calculation

The Landau Zener model

$$H = \alpha t S_z + \Delta S_x$$

where α is sweep rate, Δ is tunnel splitting.

The probability P that a spin flips between energy states is

$$P = \left| \left\langle + \left| U \right| + \right\rangle \right|^2 = \exp\left(-\pi \frac{\Delta^2}{\hbar \alpha} \right).$$

Where U is the time propagation operator.

Stochastic LZ model* $H = \alpha t S_z + \Delta S_x + \mathbf{B}(t) \mathbf{AS}$

where A sets the symmetry of the noise field B(t) coupling, and

$$\langle \mathbf{B}(t)\mathbf{B}(0)\rangle = \langle B^2 \rangle \exp(-t/\tau_c).$$

There are 4 different time scales:

$$t_T = \frac{\hbar}{\Delta}, \ t_z = \frac{\Delta}{\alpha}, \ \tau_c, \ \tau_{\varphi} = \frac{\hbar^2}{\left\langle B^2 \right\rangle \tau_c},$$

and 12 possible theories (not including **A** variations).

Estimating the dephasing time could be very useful.

* Shimshoni, Gefen, and Stern

Our strategy

- Dephasing is a property of the environment, it should be molecule independent.
- In all molecular magnets, the environment is made of a sea of protons.
- Lets use isotropic molecule with no tunnel splitting, in zero field, to estimate τ_{o} , namely,

$$H = \alpha t \mathbf{S} + \mathbf{B}(t) \mathbf{A} \mathbf{S}$$

- In our experiment, the only variable is S, and we change it from 7/2 to 27/2.
- This is the first study of this kind.

The dynamic measurement

- Spin lattice relaxation of a muon varies with *T* and *H*.
- The muon T_1 is set by τ_{ϕ} of the molecules.
- No *T* dependence at low *T*.

 T_1 at 100mK

- T₁ varies considerably between samples.
- We can determine τ_ϕ from

$$\frac{1}{T_1} \propto \frac{\tau_{\varphi}}{1 + (\gamma H \tau_{\varphi})^2}.$$

Our major finding

Keren et al. PRL **98,** 257204 (2007)

The data is best explained by $\tau_{\phi}(S)$ =const.

Conclusions

- τ_{ϕ} is on the order of 10⁻⁸ s and is the shortest time scale in the problem of Fe8 where $t_T \sim 10^{-4}$ s, $t_T > t_z$, and $\tau_c \sim 10^{-6}$ s.
- This case was not examined theoretically.
- The S independence of τ_ϕ is consistent with a nuclear origin for the stochastic field B.

Ground state and excitation properties of Herbertsmithite ZnCu₃(OH)₆Cl₂

Ph.D. Oren Ofer Collaborators: Emily A. Nytko, and Daniel D. Nocera [MIT, USA]

S=¹/₂ Kagomé Ground State?

- Do $S=\frac{1}{2}$ spins freeze on the kagomé lattice?
- Is the ground state magnetic?
- What can be said about the density of excited states?
- Is there a gap in the spin energy spectra?
- Does the lattice distort to accommodate a spin-Peierls state?

Herbertsmithite $ZnCu_3(OH)_6Cl_2$

Ou

● O ● H

- XRD shows perfect S=1/2 kagomé.
- $q_{CW} = -314K$ [1].
- No magnetic order down to 1.2K was found.
- Field-independent M/H at high fields (useful later).
- Growth of χ slower than 1/T.

Raw µSR Data

- We measure rotation frequency and relaxation of the muon spin.
- The frequency shift is a result of the sample magnetization.
- The transverse-field relaxation is a result of static field inhomogeneities.

We fit
$$P_{TF} = A_{TF} \exp\left(-\left(t / T_2^*\right)^2\right) \cos(wt)$$
 to the data in the RRF.

The shift, $K = \frac{W - W_0}{W_0}$

Shift Calibration

 This calibration allows determination of χ from the muon frequency shift, *K*.

µSR Data

- We measured *K* hence χ down to 60mK.
- We found saturation of χ at *T*~200mK.

 As with the susceptibility, µSR shows no spin freezing, or long range order.

T_2^* Interpretation

Absence of Spin-Peierls

• $(T_2^*)^{-1}$ and χ behave similarly.

Field dependence of K

The field dependence is not clear!

35,37 Cl T₁ By NMR

- Muon T_1 is longer than muon life-time.
- Powdered Sample.
- Cl T₁ increases down to $T \sim 50$ K and slowly decreases.
- The decrease of T_1^{-1} with decreasing T is slow=gapless.

Spin lattice relaxation can be interpreted by Bosonic excitations: two magnon (or any Boson) Raman scattering,

$$(T_1)^{1} = Ag^{2} \stackrel{\mathbb{X}}{\stackrel{\mathbb{O}}}\stackrel{\mathbb{O}}{\stackrel{\mathbb{O}}\stackrel{\mathbb{O}}{\stackrel{\mathbb{O}}\stackrel{\mathbb{O}}{\stackrel{\mathbb{O}}\stackrel{\mathbb{O}}{\stackrel{\mathbb{O}}\stackrel{\mathbb{O}}{\stackrel{\mathbb{O}}\stackrel{\mathbb{O}}{\stackrel{\mathbb{O}}\stackrel{\mathbb{O}}{\stackrel{\mathbb{O}}\stackrel{\mathbb{O}\stackrel{\mathbb{O}}\stackrel{\mathbb{O}}\stackrel{\mathbb{O}}\stackrel{\mathbb{O}}\stackrel{\mathbb{O}}\stackrel{\mathbb{O}\stackrel{\mathbb{O}}\stackrel{\mathbb{O}}\stackrel{\mathbb{O}\stackrel{\mathbb{O}}\stackrel{\mathbb{O}}\stackrel{\mathbb{O}\stackrel{\mathbb{O}}\stackrel{\mathbb{O}\stackrel{\mathbb{O}}\stackrel{\mathbb{O}\stackrel{\mathbb{O}}\stackrel{\mathbb{O}\stackrel{\mathbb{O}}\stackrel{\mathbb{O}\stackrel{\mathbb{O}}\stackrel{\mathbb{O}\stackrel{\mathbb{O}}\stackrel{\mathbb{O}\stackrel{\mathbb{O}}\stackrel{\mathbb{O}\stackrel{\mathbb{O}}\stackrel{\mathbb{O}\stackrel{\mathbb{O}}\stackrel{\mathbb{O}\stackrel{\mathbb{O}\stackrel{\mathbb{O}}\stackrel{\mathbb{O}\stackrel{\mathbb{O}\stackrel{\mathbb{O}}\stackrel{\mathbb{O}\stackrel{\mathbb{O}\stackrel{\mathbb{O}\stackrel{\mathbb{O}\stackrel{\mathbb{O}\stackrel{\mathbb{O}\stackrel{\mathbb{O}}\stackrel{\mathbb{O}\stackrel{\mathbb{O}\stackrel{\mathbb{O}\stackrel{\mathbb{O}\stackrel{\mathbb{O}\stackrel{\mathbb{O}\stackrel{\mathbb{O}\stackrel{\mathbb{O}}\stackrel{\mathbb{O}\stackrel{\mathbb{$$

Imai's data

Oriented Powder and higher field.

With this data, $\Delta = 0.002(3)$ K $\alpha = 0.59(3)$

T. Imai et al., cond-mat/0703141 (2007)

D

Summary

• Do S=¹/₂ spins freeze on the kagomé lattice?

- The spins continue to fluctuate down to $\sim 60mK$.
- Is the ground state magnetic?
- Saturation of χ meaning no phase transition or singlet formation.

•What can be said about the density of excited states?

- The density of states $r \sim E^{1/2}$.
- Is there a gap in the spin energy spectra?
- Negligible or no gap.

• Does the lattice distort to accommodate a spin-Peierls state?

• $(T_2^*)^{-1}$ scales with χ meaning no evidence of spin-Peierls distortion.