Orbital and Magnetic Physics in Vanadium Spinels

Yukitoshi Motome (Univ. of Tokyo)

KITP Program

Moments and Multiplets in Mott Materials
Sep. 25, 2007

Outline

Outline

© introduction to spinels and $\mathrm{t}_{2 \mathrm{~g}}$ orbital physics
© controversy on orbital ordering in $\mathrm{ZnV}_{2} \mathrm{O}_{4}$

- different models for spin/orbital order in $\mathrm{ZnV}_{2} \mathrm{O}_{4}$: relative importance of Kugel-Khomskii superexchange, Jahn-Teller and relativistic spin-orbit couplings
- symmetry analysis: lesson from experiments in $\mathrm{MnV}_{2} \mathrm{O}_{4}$

3 self-organized 7 -site cluster (heptamer) in $\mathrm{AlV}_{2} \mathrm{O}_{4}$

- heptamer scenario:'molecule' of bonding states with anisotropic $t_{2 g}$ orbitals
- implication to heavy-fermion compound $\mathrm{LiV}_{2} \mathrm{O}_{4}$

Lattice Structure of Spinels $\mathrm{AB}_{2} \mathrm{O}_{4}$

Lattice Structure of Spinels $\mathrm{AB}_{2} \mathrm{O}_{4}$

B spinels: A-site cations are nonmagnetic

Lattice Structure of Spinels $\mathrm{AB}_{2} \mathrm{O}_{4}$

B spinels: A-site cations are nonmagnetic

3D network of edgesharing BO_{6} octahedra
BO_{6} octahedra (edge sharing)

Lattice Structure of Spinels $\mathrm{AB}_{2} \mathrm{O}_{4}$

pyrochlore lattice

B spinels: A-site cations are nonmagnetic

3D network of edgesharing BO_{6} octahedra

3D network of cornersharing B_{4} tetrahedra \rightarrow pyrochlore lattice: strong geometrical frustration

B Spinels with $t_{2 g}$ Electrons

$d^{\prime} \mathrm{MgTi}_{2} \mathrm{O}_{4}$	$\mathrm{d}^{2} \mathrm{AV}_{2} \mathrm{O}_{4}(\mathrm{~A}=\mathrm{Zn}, \mathrm{Mg})$	$d^{3} \mathrm{ACr}_{2} \mathrm{O}_{4}(\mathrm{~A}=\mathrm{Cd}, \mathrm{Hg}, \mathrm{Zn})$
- metal-insulator transition - spin-singlet ground state - helical dimerization - orbital-Peierls scenario	- two successive transitions - complicated AF ordering - dimensionality reduction - competition between spin and orbital degrees of freedom	- single transition - half-magnetization plateau - spin-lattice coupling (spin Jahn-Teller mechanism) - self-organized 'hexamer' in high-T para phase
$\mathrm{d}^{0.5} \mathrm{LiTi}_{2} \mathrm{O}_{4}$	$\mathrm{d}^{1.5} \mathrm{LiV}_{2} \mathrm{O}_{4}$	$\mathrm{d}^{2.5} \mathrm{AlV}_{2} \mathrm{O}_{4}$
- superconductivity below I2.4 K (BCS mechanism)	- metallic down to 300 mK - absence of any transition - heavy-fermion behavior - metal-insulator transition by applying pressure	- structural transition with spin-singlet formation - self-organized 7-site cluster 'heptamer' ?

B Spinels with $t_{2 g}$ Electrons

$d^{\prime} \mathrm{MgTi}_{2} \mathrm{O}_{4}$	$\mathrm{d}^{2} \mathrm{AV}_{2} \mathrm{O}_{4}(\mathrm{~A}=\mathrm{Zn}, \mathrm{Mg})$	$\mathrm{d}^{3} \mathrm{ACr}_{2} \mathrm{O}_{4}(\mathrm{~A}=\mathrm{Cd}, \mathrm{Hg}, \mathrm{Zn})$
- metal-insulator transition - spin-singlet ground state - helical dimerization - orbital-Peierls scenario	- two successive transitions - complicated AF ordering - dimensionality reduction - competition between spin and orbital degrees of freedom	- single transition - half-magnetization plateau - spin-lattice coupling (spin Jahn-Teller mechanism) - self-organized 'hexamer' in high-T para phase
$\mathrm{d}^{0.5} \mathrm{LiTi}_{2} \mathrm{O}_{4}$	$\mathrm{d}^{1.5} \mathrm{LiV}_{2} \mathrm{O}_{4}$	$\mathrm{d}^{2.5} \mathrm{AlV}_{2} \mathrm{O}_{4}$
- superconductivity below 12.4 K (BCS mechanism)	- metallic down to 300 mK - absence of any transition - heavy-fermion behavior - metal-insulator transition by applying pressure	- structural transition with spin-singlet formation - self-organized 7 -site cluster 'heptamer'?

Actions

Join this Space
Recent Changes
Manage Space

Search

Navigation

Wiki Home

Seminar Schedule
Experimenter of the week
Participants' Interests
Social activities
Links to KITP sites:
KITP program page
Conference page
Participant Directory
Participant's photos
Recorded Talks
Transport info edit navigation
Orbital topics Edit This Page page ∇ discussion history notify me \quad Ed

Three main questions related to the physics of orbital degrees of freedom came to the fore in the discussion of Wednesday (biased view --JvdB).

We know that orbitals can order and that they couple to the lattice, but the questions are:

1. is there any material in which the quantum character of orbital degrees of freedom become relevant?
2. are there any cases where orbital fluctuations, either quantum or classical are relevent?
3. does orbital ordering have interesting textures, symmetries and/or excitations?

Also 15 more or less detailed discussion topics came up:

1. What is the role of vibronic coupling in cooperative Jahn-Teller systems
2. The importance of relativistic spin orbit coupling in eg and t2g systems
3. Orbital and frustration: frustration due to orbital degrees of freedom --- orbitals in frustrated lattices
4. Relative importance of electron-lattice effects (Jahn Teller) versus electronic effects (superexchange).
5. Role of geometry: differences for the situation of 180 degree O-TM-O bonds, 90 degree O-TM-O bonds and edge sharing octahedra
6. Reduced dimensionality due to orbitals
7. Importance of direct d-d electronic hopping versus d-oxygen-d hopping, especially in t2g spinels
8. Orbitals in charge transfer insulators
9. Role of orbital degrees of freedom at metal-insulator transitions
10. Orbital liquids -- quantum effects
11. Orbital waves -- orbitons
12. Importance of long-range interactions in short-range orbital (cooperative Jahn Teller) models
13. Multiplets en Mottiplets
14. Orbital textures, orbital domains and their effect on electronic degrees of freedom
15. What happens to orbital order when going to metallic states --orbital melting

Actions

Search

Navigation

Wiki Home
Seminar Schedule
Experimenter of the week
Participants' Interests
Social activities
Links to KITP sites:
KITP program page
Conference page
Participant Directory
Participant's photos
Recorded Talks
Transport info edit navigation

Three main questions related to the physics of orbital degrees of freedom came to the fore in the discussion of Wednesday (biased view --JvdB).

We know that orbitals can order and that they couple to the lattice, but the questions are:

1. is there any material in which the quantum character of orbital degrees of freedom become relevant?
2. are there any cases where orbital fluctuations, either quantum or classical are relevent?
3. does orbital ordering have interesting textures, symmetries and/or excitations?

Also 15 more or less detailed discussion topics came up:

1. What is the role of vibronic coupling in cooperative Jahn-Teller systems
2. The importance of relativistic spin orbit coupling in eg and t2g systems
3. Orbital and frustration: frustration due to orbital degrees of freedom --- orbitals in frustrated lattices
4. Relative importance of electron-lattice effects (Jahn Teller) versus electronic effects (superexchange).
5. Role of geometry: differences for the situation of 180 degree O-TM-O bonds, 90 degree O-TM-O bonds and edge sharing octahedra
6. Reduced dimensionality due to orbitals
7. Importance of direct d-d electronic hopping versus d-oxygen-d hopping, especially in t2g spinels
8. Orbitals in charge transfer insulators
9. Role of orbital degrees of freedom at metal-insulator transitions
10. Orbital liquids -- quantum effects
11. Orbital waves -- orbitons
12. Importance of long-range interactions in short-range orbital (cooperative Jahn Teller) models
13. Multiplets en Mottiplets
14. Orbital textures, orbital domains and their effect on electronic degrees of freedom
15. What happens to orbital order when going to metallic states --orbital melting

Two Transitions and

Controversy on Orbital Ordering

 in $\mathrm{ZnV}_{2} \mathrm{O}_{4}$in collaboration with Hirokazu Tsunetsugu

Two Transitions in $\mathrm{ZnV}_{2} \mathrm{O}_{4}$

- cubic to tetragonal transition at $\mathrm{T}_{\mathrm{c} /} \sim 50 \mathrm{~K}$ (I st order)
- antiferromagnetic transition at $\mathrm{T}_{\mathrm{c} 2} \sim 40 \mathrm{~K}$ (2nd order)

Lattice symmetry and Magnetic Order

- lattice symmetry: $14_{1} /$ amd (powder sample)
orbital order: undetermined
O spin order: antiferromagnetic $\uparrow-\downarrow-\uparrow-\downarrow-\ldots$ in the $x y$ chains
$\uparrow-\uparrow-\downarrow-\downarrow-\ldots$ in the $y z / z x$ chains
moment at T=0 $\sim 0.6 \mu_{\text {B }}$

Niziol, I 973

Questions

3. What is the microscopic mechanism of two transitions? Who is the main player? Kugel-Khomskii superexchanges, Jahn-Teller or relativistic spin-orbit coupling?

8 How is the complex AF ordering stabilized? Why is the moment at $\mathrm{T}=0$ reduced so largely?

3 What is the role of orbital degree of freedom? Is there orbital ordering ? If yes, what type of ordering sets in?

Model

Tsunetsugu and Motome $(2003,2004,2005)$

- Kugel-Khomskii type model derived from 3-fold multi-orbital Hubbard model + tetragonal Jahn-Teller coupling
- assumptions: O-type transfer integrals only, classical phonon, neglecting spin-orbit coupling and trigonal distortion

$$
\begin{aligned}
& t_{\mathrm{\sigma}}^{\mathrm{nn}}=\sim-0.32 \mathrm{eV} \\
& t_{\mathrm{\sigma}}^{3 \mathrm{rd}}=\sim-0.045 \mathrm{eV} \\
& \left(\text { Matsuno et al., I } 1999: \text { for } \mathrm{LiV}_{2} \mathrm{O}_{4}\right. \text {) }
\end{aligned}
$$

Model

Tsunetsugu and Motome $(2003,2004,2005)$

$$
\begin{aligned}
& H_{\mathrm{SO}}^{\mathrm{nn}}=-J \sum_{\langle i j\rangle}\left[h_{\mathrm{o}-\mathrm{AF}}^{(i j)}+h_{\mathrm{o}-\mathrm{F}}^{(i j)}\right]: \text { nearest neighbor term } \quad \begin{array}{rl}
J=\left(t_{\sigma}^{\mathrm{nn}}\right)^{2} / U & A=(1-\eta) /(1-3 \eta) \\
J_{3}=\left(t_{\sigma}^{3 \mathrm{rdd}}\right)^{2} / U & B=\eta /(1-3 \eta)
\end{array} \\
& H_{\mathrm{SO}}^{3 \mathrm{rd}}=-J_{3} \sum_{\langle\langle i j\rangle\rangle}\left[h_{\mathrm{o}-\mathrm{AF}}^{(i j)}+h_{\mathrm{o}-\mathrm{F}}^{(i j)}\right]: 3 r d \text { neighbor term } \begin{aligned}
& \bar{n}_{i \alpha}=1-n_{i \alpha} C=(1+\eta) /(1+2 \eta) \\
& \eta=J_{\mathrm{H}} / U
\end{aligned} \\
& h_{\mathrm{O}-\mathrm{AF}}^{(i j)}=\left(A+B \vec{S}_{i} \cdot \vec{S}_{j}\right)\left(n_{i \alpha(i j)} \bar{n}_{j \alpha(i j)}+\bar{n}_{i \alpha(i j)} n_{j \alpha(i j)}\right) \\
& h_{\mathrm{O}-\mathrm{F}}^{(i j)}=C\left(1-\vec{S}_{i} \cdot \vec{S}_{j}\right) n_{i \alpha(i j)} n_{j \alpha(i j)}
\end{aligned}
$$

Model

Tsunetsugu and Motome $(2003,2004,2005)$

$$
\begin{aligned}
& \begin{array}{l}
H_{\mathrm{SO}}^{\mathrm{nn}}=-J \sum_{\langle i j\rangle}\left[h_{\mathrm{O}-\mathrm{AF}}^{(i j)}+h_{\mathrm{O}-\mathrm{F}}^{(i j)}\right] \quad: \text { nearest neighbor term } \quad \begin{array}{ll}
J=\left(t_{\sigma}^{\mathrm{nn}}\right)^{2} / U & A=(1-\eta) /(1-3 \eta) \\
J_{3}=\left(t_{\sigma}^{3 \mathrm{rd}}\right)^{2} / U & B=\eta /(1-3 \eta)
\end{array} \\
H_{\mathrm{SO}}^{3 \mathrm{rd}}=-J_{3} \sum_{\langle\langle i j\rangle\rangle}\left[h_{\mathrm{O}-\mathrm{AF}}^{(i j)}+h_{\mathrm{O}-\mathrm{F}}^{(i j)}\right] \quad: 3 r d \text { neighbor term }
\end{array} \begin{aligned}
\bar{n}_{i \alpha}=1-n_{i \alpha} & C=(1+\eta) /(1+2 \eta) \\
\eta & =J_{\mathrm{H}} / U
\end{aligned} \\
& h_{\mathrm{o}-\mathrm{AF}}^{(i j)}=\left(A+B \vec{S}_{i} \cdot \vec{S}_{j}\right)\left(n_{i \alpha(i j)} \bar{n}_{j \alpha(i j)}+\bar{n}_{i \alpha(i j)} n_{j \alpha(i j)}\right) \quad \text { spin } \mathrm{F} / \text { orbital AF } \\
& h_{\mathrm{o}-\mathrm{F}}^{(i j)}=C\left(1-\vec{S}_{i} \cdot \vec{S}_{j}\right) n_{i \alpha(i j)} n_{j \alpha(i j)}
\end{aligned}
$$

Model

Tsunetsugu and Motome $(2003,2004,2005)$

$$
\begin{aligned}
& h_{\mathrm{o}-\mathrm{AF}}^{(i j)}=\left(A+B \vec{S}_{i} \cdot \vec{S}_{j}\right)\left(n_{i \alpha(i j)} \bar{n}_{j \alpha(i j)}+\bar{n}_{i \alpha(i j)} n_{j \alpha(i j)}\right) \quad \text { spin } \mathrm{F} / \text { orbital AF } \\
& h_{\mathrm{o}-\mathrm{F}}^{(i j)}=C\left(1-\vec{S}_{i} \cdot \vec{S}_{j}\right) n_{i \alpha(i j)} n_{j \alpha(i j)}
\end{aligned}
$$

Model

Tsunetsugu and Motome $(2003,2004,2005)$

$$
\begin{aligned}
& H_{\mathrm{SO}}^{\mathrm{nn}}=-J \sum_{\langle i j\rangle}\left[h_{\mathrm{O}-\mathrm{AF}}^{(i j)}+h_{\mathrm{o}-\mathrm{F}}^{(i j)}\right]: \text { nearest neighbor term } \\
& H_{\mathrm{SO}}^{3 \mathrm{rd}}=-J_{3} \sum_{\langle\langle i j\rangle\rangle}\left[h_{\mathrm{o}-\mathrm{AF}}^{(i j)}+h_{\mathrm{o}-\mathrm{F}}^{(i j)}\right] \quad: 3 \mathrm{rd} \text { neighbor term } \\
& h_{\mathrm{o}-\mathrm{AF}}^{(i j)}=\left(A+B \vec{S}_{i} \cdot \vec{S}_{j}\right)\left(n_{i \alpha(i j)} \bar{n}_{j \alpha(i j)}+\bar{n}_{i \alpha(i j)} n_{j \alpha(i j)}\right) \quad \text { spin } \mathrm{F} / \text { orbital AF } \\
& h_{\mathrm{o}-\mathrm{F}}^{(i j)}=C\left(1-\vec{S}_{i} \cdot \vec{S}_{j}\right) n_{i \alpha(i j)} n_{j \alpha(i j)} \\
& \text { spin AF / orbital F }
\end{aligned}
$$

spin part: Heisenberg / orbital part: 3-state Potts

Model

Tsunetsugu and Motome $(2003,2004,2005)$

$$
\begin{array}{ll}
H_{\mathrm{SO}}^{\mathrm{nn}}=-J \sum_{\langle i j\rangle}\left[h_{\mathrm{o}-\mathrm{AF}}^{(i j)}+h_{\mathrm{o}-\mathrm{F}}^{(i j)}\right]: \text { nearest neighbor term } & \begin{array}{cc}
J=\left(t_{\sigma}^{\mathrm{nn}}\right)^{2} / U & A=(1-\eta) /(\\
J_{3}=\left(t_{\sigma}^{3 / \mathrm{d}}\right)^{2} / U & B=\eta /(1-3 \\
\bar{n}_{i \alpha}=1-n_{i \alpha} & C=(1+\eta) /(\\
\eta=J_{\mathrm{H}} / U
\end{array} \\
H_{\mathrm{SO}}^{3 \mathrm{rd}}=-J_{3} \sum_{\langle\langle i j\rangle\rangle}\left[h_{\mathrm{o}-\mathrm{AF}}^{(i j)}+h_{\mathrm{o}-\mathrm{F}}^{(i j)}\right] \quad: 3 \mathrm{rd} \text { neighbor term } \\
h_{\mathrm{o}-\mathrm{AF}}^{(i j)}=\left(A+B \vec{S}_{i} \cdot \vec{S}_{j}\right)\left(n_{i \alpha(i j)} \bar{n}_{j \alpha(i j)}+\bar{n}_{i \alpha(i j)} n_{j \alpha(i j)}\right) & \text { spin F/orbital AF } \\
h_{\mathrm{o}-\mathrm{F}}^{(i j)}=C\left(1-\vec{S}_{i} \cdot \vec{S}_{j}\right) n_{i \alpha(i j)} n_{j \alpha(i j)} & \text { spin AF / orbital F }
\end{array}
$$

spin part: Heisenberg / orbital part: 3-state Potts

+ tetragonal Jahn-Teller coupling

$$
H_{\mathrm{JT}}=g \sum_{i} Q_{i}\left(n_{i, y z}+n_{i, z x}-2 n_{i, x y}\right)+\sum_{i} Q_{i}^{2} / 2-\lambda \sum_{\langle i j\rangle} Q_{i} Q_{j}
$$

Monte Carlo Results

- I st order at T=To, 2nd order at $\mathrm{T}=\mathrm{T}_{\mathrm{N}}$
- consistent estimates of entropy changes

- sudden drop at T=To
- tiny change at $\mathrm{T}=\mathrm{T}_{\mathrm{N}}$

Orbital and Spin Structure

orbital: alternative stacking of $\left(\mathrm{d}_{\mathrm{xy}}, \mathrm{d}_{\mathrm{zx}}\right)$ and $\left(\mathrm{d}_{\mathrm{xy}}, \mathrm{d}_{\mathrm{y}}\right)$ states
spin: $\uparrow-\downarrow-\uparrow-\downarrow$ - in the $x y$ chains and $\uparrow-\uparrow-\downarrow-\downarrow$ - in the $y z / z x$ chains

Why the orbital ordering takes place first?

Why the orbital ordering takes place first?

instability in the high-T (para) phase

Why the orbital ordering takes place first?

instability in the high-T (para) phase assuming orbital para: $n_{i \alpha} \rightarrow\left\langle n_{i \alpha}\right\rangle=2 / 3$
Why the orbital ordering takes place first?

\bigcirc instability in the high-T (para) phase assuming orbital para: $n_{i \alpha} \rightarrow\left\langle n_{i \alpha}\right\rangle=2 / 3$

$$
H_{\mathrm{SO}} \rightarrow H_{\mathrm{spin}}^{\mathrm{eff}}=\tilde{J}_{\mathrm{S}} \sum_{\langle i j\rangle} \vec{S}_{i} \cdot \vec{S}_{j}+\tilde{J}_{\mathrm{S}}^{(3)} \sum_{\langle i j\rangle\rangle} \vec{S}_{i} \cdot \vec{S}_{j}
$$

isotropic Heisenberg model with AF
nearest- and third-neighbor exchanges
no long-range order at $\mathrm{T}=0$ (Reimers et al., 199।)

Why the orbital ordering takes place first?

Oinstability in the high-T (para) phase assuming orbital para: $n_{i \alpha} \rightarrow\left\langle n_{i \alpha}\right\rangle=2 / 3$

$$
H_{\mathrm{SO}} \rightarrow H_{\mathrm{spin}}^{\mathrm{eff}}=\tilde{J}_{\mathrm{S}} \sum_{\langle i j\rangle} \vec{S}_{i} \cdot \vec{S}_{j}+\tilde{J}_{\mathrm{S}}^{(3)} \sum_{\langle i j\rangle\rangle} \vec{S}_{i} \cdot \vec{S}_{j}
$$

isotropic Heisenberg model with AF nearest- and third-neighbor exchanges no long-range order at $\mathrm{T}=0$ (Reimers et al., 1991)
spin correlations hardly develop by themselves alone

Why the orbital ordering takes place first?

instability in the high-T (para) phase assuming spin para:

Why the orbital ordering takes place first?

instability in the high-T (para) phase assuming spin para: $\quad \vec{S}_{i} \cdot \vec{S}_{j} \rightarrow\left\langle\vec{S}_{i} \cdot \vec{S}_{j}\right\rangle=0$
Why the orbital ordering takes place first?

Oinstability in the high-T (para) phase
assuming spin para: $\quad \vec{S}_{i} \cdot \vec{S}_{j} \rightarrow\left\langle\vec{S}_{i} \cdot \vec{S}_{j}\right\rangle=0$

$$
H_{\mathrm{SO}} \rightarrow H_{\mathrm{orbital}}^{\mathrm{eff}}=\tilde{J}_{\mathrm{O}} \sum_{\langle i j\rangle} n_{i \alpha(i j)} n_{j \alpha(i j)}+\tilde{J}_{\mathrm{O}}^{(3)} \sum_{《 i j\rangle\rangle} n_{i \alpha(i j)} n_{j \alpha(i j)}
$$

3-state Potts model with AF interactions which depend on both the bond direction and the orbital states

Why the orbital ordering takes place first?

instability in the high-T (para) phaseassuming spin para: $\quad \vec{S}_{i} \cdot \vec{S}_{j} \rightarrow\left\langle\vec{S}_{i} \cdot \vec{S}_{j}\right\rangle=0$

$$
H_{\mathrm{SO}} \rightarrow H_{\mathrm{orbital}}^{\mathrm{eff}}=\tilde{J}_{\mathrm{O}} \sum_{\langle i j\rangle} n_{i \alpha(i j)} n_{j \alpha(i j)}+\tilde{J}_{\mathrm{O}}^{(3)} \sum_{《 i j\rangle\rangle} n_{i \alpha(i j)} n_{j \alpha(i j)}
$$

3 -state Potts model with AF interactions which depend on both the bond direction and the orbital states
\rightarrow (partial) lifting of degeneracy

Why the orbital ordering takes place first?

instability in the high-T (para) phaseassuming spin para: $\quad \vec{S}_{i} \cdot \vec{S}_{j} \rightarrow\left\langle\vec{S}_{i} \cdot \vec{S}_{j}\right\rangle=0$

$$
H_{\mathrm{SO}} \rightarrow H_{\mathrm{orbital}}^{\mathrm{eff}}=\tilde{J}_{\mathrm{O}} \sum_{\langle i j\rangle} n_{i \alpha(i j)} n_{j \alpha(i j)}+\tilde{J}_{\mathrm{O}}^{(3)} \sum_{《 i j\rangle\rangle} n_{i \alpha(i j)} n_{j \alpha(i j)}
$$

3 -state Potts model with AF interactions which depend on both the bond direction and the orbital states
\rightarrow (partial) lifting of degeneracy
tetragonal Jahn-Teller distortion assists to stabilize this orbital configuration

Effective Spin Exchanges under the Orbital Order

Effective Spin Exchanges under the Orbital Order

- d_{xy} is singly occupied at all the sites \rightarrow strong AF exchange in the xy chains J

Effective Spin Exchanges under the Orbital Order

- $d_{x y}$ is singly occupied at all the sites \rightarrow strong AF exchange in the xy chains J
- n.n. exchange couplings in the yz/zx chains J' are ferromagnetic and about 10 times weaker than the AF exchange in the xy chains J

Effective Spin Exchanges under the Orbital Order

- $d_{x y}$ is singly occupied at all the sites \rightarrow strong AF exchange in the xy chains J
- n.n. exchange couplings in the yz/zx chains J' are ferromagnetic and about IO times weaker than the AF exchange in the xy chains J
- 3rd-neighbor exchange J_{3} is $\sim 0.02 \mathrm{~J} \rightarrow \mathrm{AF}$ order at T_{N}

Effective Spin Exchanges under the Orbital Order

- $d_{x y}$ is singly occupied at all the sites \rightarrow strong AF exchange in the xy chains J
- n.n. exchange couplings in the $y z / z x$ chains J' are ferromagnetic and about IO times weaker than the AF exchange in the xy chains J
- 3rd-neighbor exchange J_{3} is $\sim 0.02] \rightarrow$ AF order at TN

Quasi-ID Quantum Fluctuation: Large Reduction of AF Moment

- linear spin-wave analysis for the spin and orbital ordered ground state
- moment reduction ΔS diverges logarithmically at $\mathrm{J}_{3}=0$ due to the zero modes
- ΔS is large in the small J_{3} region:
$M_{S} \sim \mid \mu_{\mathrm{B}}$ at $J_{3} \sim 0.02$ J
consistent with the experimental
 result $\sim 0.6 \mu_{\mathrm{B}}$ (Lee et al., 2004)

Short Summary...

Short Summary...

- Kugel-Khomskii spin-orbital exchange + tetragonal Jahn-Teller
- classical Monte Carlo simulation and mean-field type analysis
- linear spin-wave analysis of effective spin model

Short Summary...

- Kugel-Khomskii spin-orbital exchange + tetragonal Jahn-Teller
- classical Monte Carlo simulation and mean-field type analysis
- linear spin-wave analysis of effective spin model
\square two transitions with reasonable estimates of trasition temperatures as well as entropy changes
$[$ T-dep of magnetic susceptibility consistent with experiment
E magnetic order consistent with the neutron scattering result
[- reduced magnetic moment at $\mathrm{T}=0$
E A-type antiferro orbital order with tetragonal distortion

Three Different Models

In all models, $x y$ orbital is singly occupied at all the sites (not shown in the figures)

Three Different Models

In all models, $x y$ orbital is singly occupied at all the sites (not shown in the figures)

Tsunetsugu-Motome, 2003

- A-type orbital order
- $14_{1} / a$
- spin-orbital superexchanges

Tchernyshyov, 2004

- uniform orbital order
- I4 $1 / a m d$
- relativistic spin-orbit coupling

Khomskii-Mizokawa, 2005

- orbitally-driven Peierls order
- $P 4_{1} 2_{1} 2$
- approach from itinerant picture (band Jahn-Teller)

Three Different Models

In all models, $x y$ orbital is singly occupied at all the sites (not shown in the figures)

Tsunetsugu-Motome, 2003

- A-type orbital order
- $14_{1} / a$
- spin-orbital superexchanges

Tchernyshyov, 2004

- uniform orbital order
- $14_{1} / a m d$
- relativistic spin-orbit coupling
mean-field (Di Matteo et al.) LSDA+U+SO (T. Maitra and R.Valenti)

Khomskii-Mizokawa, 2005

- orbitally-driven Peierls order
- P4, $2{ }_{1} 2$
- approach from itinerant picture (band Jahn-Teller)

Issue...

Issue...

role of relativistic spin-orbit interaction

- orbital ordering at $\mathrm{T}=0$: mean-field analysis and firstprinciple calculation suggest the relevant role
- thermodynamics: single or two transitions? In general, systems with dominant spin-orbit coupling shows a single transition with concomitant ordering of spin and orbital.
- reduced AF moment: due to dimensionality reduction and/or L-S coupling?

Issue...

role of relativistic spin-orbit interaction

- orbital ordering at $\mathrm{T}=0$: mean-field analysis and firstprinciple calculation suggest the relevant role
- thermodynamics: single or two transitions? In general, systems with dominant spin-orbit coupling shows a single transition with concomitant ordering of spin and orbital.
- reduced AF moment: due to dimensionality reduction and/or L-S coupling?
- Remark: X-ray diffraction has been done only for powder samples...

Lesson from Related Spinel $\mathrm{MnV}_{2} \mathrm{O}_{4}$

$\mathrm{Mn}^{2+}=(3 \mathrm{~d})^{5}, \mathrm{~V}^{3+}=(3 \mathrm{~d})^{2}$
Plumier and Sougi, I987

low-T phase: $14_{1} / a$ (large single crystal)

- diamond-glide symmetry is broken, but face-center symmetry is hold
> peak intensity is $\sim 10^{-4}$ times smaller compared to the fundamental peaks,

Suzuki et al., 2007 difficult to observe in powder samples

Other Issues...

3 role of trigonal distortion

- quantitative difference in Cd compound

3 d-d direct vs d-p-d (d-p-p-d) indirect transfers
3 orbital and spin ordering in $\mathrm{MnV}_{2} \mathrm{O}_{4}$
8 single crystal of $\mathrm{ZnV}_{2} \mathrm{O}_{4}$!

Self-organized 7-site Cluster (heptamer) in $\mathrm{AlV}_{2} \mathrm{O}_{4}$

in collaboration with Keisuke Matsuda and Nobuo Furukawa

(Atomic) Electronic Structure in $\mathrm{AlV}_{2} \mathrm{O}_{4}$

mixed valence: $\mathrm{V}^{2.5+}=(3 \mathrm{~d})^{2.5}$
charge, spin and orbital degrees of freedom are all active

Phase Transition at T~700K

0
structural change: doubling of the unit cell along the [III] directionshoulder in the resistivitysudden drop in the magnetic susceptibility followed by Curie behavior at lower temperaturesvalence-skipping-type charge ordering ?

K. Matsuno et al., 200 I

Heptamer Scenario

Y. Horibe et al., 2006

Heptamer Scenario

new experimental finding: trimer formation in Kagome layers below T_{c}

Y. Horibe et al., 2006

Heptamer Scenario

new experimental finding: trimer formation in Kagome layers below T_{c}

0
spin-singlet formation in trimers? \rightarrow sharp drop of the magnetic susceptibility?

Y. Horibe et al., 2006

Heptamer Scenario

new experimental finding: trimer formation in Kagome layers below T_{c}spin-singlet formation in trimers? \rightarrow sharp drop of the magnetic susceptibility?

O
We propose a singlet state emerging from the 7 -site clusters (heptamers)

Y. Horibe et al., 2006

Questions

8 What is the mechanism of the heptamer formation? How is the degeneracy in the frustrated pyrochlore system lifted?
8) Is the heptamer in a spin-singlet state? How does the singlet state emerge in each heptamer?

Multi-orbital Heptamer Model

Multi-orbital Heptamer Model

- assumption: $\mathrm{S}=\mathrm{I}$ localized moments at isolated V sites
(leading Curie behavior at low T)
\rightarrow I8 electrons per heptamer

Multi-orbital Heptamer Model

- assumption: $\mathrm{S}=\mathrm{I}$ localized moments at isolated V sites
(leading Curie behavior at low T)
\rightarrow I8 electrons per heptamer
- $\mathrm{t}_{2 \mathrm{~g}}$ multi-orbital Hubbard model for each heptamer
- σ and π transfer integrals
- trigonal lattice distortion at the central site
- Coulomb interactions

Multi-orbital Heptamer Model

- assumption: $\mathrm{S}=\mathrm{I}$ localized moments at isolated V sites
(leading Curie behavior at low T)
\rightarrow I8 electrons per heptamer
- $\mathrm{t}_{2 \mathrm{~g}}$ multi-orbital Hubbard model for each heptamer
- σ and π transfer integrals
- trigonal lattice distortion at the central site
- Coulomb interactions
assumption: o-type bonding states for shortest V - V bonds
$\rightarrow 6$ electrons remaining

Multi-orbital Heptamer Model

- assumption: $\mathrm{S}=\mathrm{I}$ localized moments at isolated V sites
(leading Curie behavior at low T)
\rightarrow I8 electrons per heptamer
- $\mathrm{t}_{2 \mathrm{~g}}$ multi-orbital Hubbard model for each heptamer
- σ and π transfer integrals
- trigonal lattice distortion at the central site
- Coulomb interactions
assumption: σ-type bonding states for shortest $\mathrm{V}-\mathrm{V}$ bonds
$\rightarrow 6$ electrons remaining

Multi-orbital Heptamer Model

- assumption: $\mathrm{S}=\mathrm{I}$ localized moments at isolated V sites
(leading Curie behavior at low T)
\rightarrow I8 electrons per heptamer
- $\mathrm{t}_{2 \mathrm{~g}}$ multi-orbital Hubbard model for each heptamer
- σ and π transfer integrals
- trigonal lattice distortion at the central site
- Coulomb interactions
assumption: σ-type bonding states for shortest V-V bonds
$\rightarrow 6$ electrons remaining

Ground-state Degeneracy

- exact diagonalization of the effective heptamer model
two different singlet regimes: σ-type and π-type

Ground-state Degeneracy

- exact diagonalization of the effective heptamer model
two different singlet regimes: σ-type and π-type

Ground-state Degeneracy

- exact diagonalization of the effective heptamer model
two different singlet regimes: σ-type and π-type

Ground-state Degeneracy

- exact diagonalization of the effective heptamer model
two different singlet regimes: σ-type and π-type

Ground-state Degeneracy

- exact diagonalization of the effective heptamer model
two different singlet regimes: σ-type and π-type

Ground-state Degeneracy

- exact diagonalization of the effective heptamer model
two different singlet regimes: σ-type and π-type

Singlet State in Heptamer

- singlet ground state for realistic parameters = o-type
'molecule' of the bonding states with three $t_{2 g}$ orbitals
estimate of the spin gap is larger than the experimental one: heptamer-heptamer coupling?
comprehensive understanding of the T-dependence of magnetic susceptibility

Open Issues...

Once the heptamers are assumed to be stable, experimental results at low-T phase are explained comprehensively.

8 What is the mechanism of the heptamer formation? How is the degeneracy in the frustrated pyrochlore system lifted?

9
Is similar phenomenon seen in
 other mixed-valence compounds?

Another Mixed-Valence Compound $\mathrm{LiV}_{2} \mathrm{O}_{4}$: Heavy-Fermion Behavior

Urano et al., 2000
mixed valence: $\mathrm{V}^{3.5+}=(3 \mathrm{~d})^{1.5}$
O heavy mass (Kondo et al., 1997)
cubic, metallic, no magnetic ordering (Rogers et al., I967; Chmaissem et al., 1997; Mahajan et al., I997; Merrin et al., 1998)
only $\mathrm{t}_{2 \mathrm{~g}}$ electrons: new mechanism for heavy fermion behavior?

- Kondo scenario
- geometrical frustration + correlation

Implication of $\mathrm{AlV}_{2} \mathrm{O}_{4}$?

metal-to-insulator transition by applying pressure: opposite to usual pressure effect
short and long V - V bonds in the insulating state (EXAFS by Niitaka et al., unpublished)
possibility: some cluster formation similar to $\mathrm{AlV}_{2} \mathrm{O}_{4}$

Summary

© introduction to spinels and $\mathrm{t}_{2 \mathrm{~g}}$ orbital physics
§s controversy on orbital ordering in $\mathrm{ZnV}_{2} \mathrm{O}_{4}$

- different models for spin/orbital order in $\mathrm{ZnV}_{2} \mathrm{O}_{4}$: relative importance of Kugel-Khomskii superexchange, Jahn-Teller and relativistic spin-orbit couplings
- symmetry analysis: lesson from experiments in $\mathrm{MnV}_{2} \mathrm{O}_{4}$
© self-organized 7 -site cluster (heptamer) in $\mathrm{AlV}_{2} \mathrm{O}_{4}$
- heptamer scenario: 'molecule' of bonding states with anisotropic $\mathrm{t}_{2 \mathrm{~g}}$ orbitals
- implication to heavy-fermion compound $\mathrm{LiV}_{2} \mathrm{O}_{4}$

