Orbital and Magnetic Physics in Vanadium Spinels

Yukitoshi Motome (Univ. of Tokyo)

Moments and Multiplets in Mott Materials
Sep. 25, 2007

Outline

- introduction to spinels and t_{2g} orbital physics
- controversy on orbital ordering in ZnV2O4
 - different models for spin/orbital order in ZnV₂O₄: relative importance of Kugel-Khomskii superexchange, Jahn-Teller and relativistic spin-orbit couplings
 - symmetry analysis: lesson from experiments in MnV₂O₄
- self-organized 7-site cluster (heptamer) in AIV₂O₄
 - heptamer scenario: 'molecule' of bonding states with anisotropic t_{2g} orbitals
 - implication to heavy-fermion compound LiV₂O₄

B spinels: A-site cations are nonmagnetic

- B spinels: A-site cations are nonmagnetic
- 3D network of edgesharing BO₆ octahedra

- B spinels: A-site cations are nonmagnetic
- 3D network of edgesharing BO₆ octahedra
- 3D network of cornersharing B₄ tetrahedra → pyrochlore lattice: strong geometrical frustration

B Spinels with t2g Electrons

d ¹ MgTi ₂ O ₄	d ² AV ₂ O ₄ (A=Zn,Mg)	d ³ ACr ₂ O ₄ (A=Cd,Hg,Zn)
 metal-insulator transition spin-singlet ground state helical dimerization orbital-Peierls scenario 	 two successive transitions complicated AF ordering dimensionality reduction competition between spin and orbital degrees of freedom 	 single transition half-magnetization plateau spin-lattice coupling (spin Jahn-Teller mechanism) self-organized 'hexamer' in high-T para phase
d ^{0.5} LiTi ₂ O ₄	d ^{1.5} LiV ₂ O ₄	$d^{2.5}$ AIV $_2$ O $_4$
• superconductivity below 12.4 K (BCS mechanism)	 metallic down to 300 mK absence of any transition heavy-fermion behavior metal-insulator transition by applying pressure 	 structural transition with spin-singlet formation self-organized 7-site cluster 'heptamer'?

B Spinels with t2g Electrons

d ¹ MgTi ₂ O ₄	d ² AV ₂ O ₄ (A=Zn,Mg)	d ³ ACr ₂ O ₄ (A=Cd,Hg,Zn)
 metal-insulator transition spin-singlet ground state helical dimerization orbital-Peierls scenario 	 two successive transitions complicated AF ordering dimensionality reduction competition between spin and orbital degrees of freedom 	 single transition half-magnetization plateau spin-lattice coupling (spin Jahn-Teller mechanism) self-organized 'hexamer' in high-T para phase
d ^{0.5} LiTi ₂ O ₄	d ^{1.5} LiV ₂ O ₄	$d^{2.5}$ AIV $_2$ O $_4$
• superconductivity below 12.4 K (BCS mechanism)	 metallic down to 300 mK absence of any transition heavy-fermion behavior metal-insulator transition by applying pressure 	 structural transition with spin-singlet formation self-organized 7-site cluster 'heptamer'?

Actions

Join this Space

Recent Changes

Manage Space

Search

Navigation

Wiki Home

Seminar Schedule
Experimenter of the week
Participants' Interests
Social activities

Links to KITP sites:

KITP program page
Conference page
Participant Directory
Participant's photos
Recorded Talks
Transport info
edit navigation

guest · Join · Help · Sign In ·

page 🌞

discussion

history

notify me

Three main questions related to the physics of orbital degrees of freedom came to the fore in the discussion of Wednesday (biased view --JvdB).

We know that orbitals can order and that they couple to the lattice, but the questions are:

- 1. is there any material in which the *quantum* character of orbital degrees of freedom become relevant?
- 2. are there any cases where orbital fluctuations, either quantum or classical are relevent?
- 3. does orbital ordering have interesting textures, symmetries and/or excitations?

Also 15 more or less detailed discussion topics came up:

- 1. What is the role of vibronic coupling in cooperative Jahn-Teller systems
- 2. The importance of relativistic spin orbit coupling in eg and t2g systems
- 3. Orbital and frustration: frustration due to orbital degrees of freedom --- orbitals in frustrated lattices
- 4. Relative importance of electron-lattice effects (Jahn Teller) versus electronic effects (superexchange).
- 5. Role of geometry: differences for the situation of 180 degree O-TM-O bonds, 90 degree O-TM-O bonds and edge sharing octahedra
- 6. Reduced dimensionality due to orbitals
- 7. Importance of direct d-d electronic hopping versus d-oxygen-d hopping, especially in t2g spinels
- 8. Orbitals in charge transfer insulators
- 9. Role of orbital degrees of freedom at metal-insulator transitions
- 10. Orbital liquids -- quantum effects
- 11. Orbital waves -- orbitons
- 12. Importance of long-range interactions in short-range orbital (cooperative Jahn Teller) models
- 13. Multiplets en Mottiplets
- 14. Orbital textures, orbital domains and their effect on electronic degrees of freedom
- 15. What happens to orbital order when going to metallic states -- orbital melting

Actions

Join this Space

Recent Changes

Manage Space

Search

Navigation

Wiki Home

Seminar Schedule Experimenter of the week Participants' Interests Social activities

Links to KITP sites:

KITP program page Conference page **Participant Directory** Participant's photos Recorded Talks Transport info edit navigation guest · Join · Help · Sign In ·

page 🗼

discussion

history

notify me

Three main questions related to the physics of orbital degrees of freedom came to the fore in the discussion of Wednesday (biased view --JvdB).

We know that orbitals can order and that they couple to the lattice, but the questions are:

- 1. is there any material in which the *quantum* character of orbital degrees of freedom become relevant?
- 2. are there any cases where orbital *fluctuations*, either quantum or classical are relevent?
- 3. does orbital ordering have interesting textures, symmetries and/or excitations?

Also 15 more or less detailed discussion topics came up:

- 1. What is the role of vibronic coupling in cooperative Jahn-Teller systems
- 2. The importance of relativistic spin orbit coupling in eg and t2g systems
- 3. Orbital and frustration: frustration due to orbital degrees of freedom --- orbitals in frustrated lattices
- 4. Relative importance of electron-lattice effects (Jahn Teller) versus electronic effects (superexchange).
- 5. Role of geometry: differences for the situation of 180 degree O-TM-O bonds, 90 degree O-TM-O bonds and edge sharing octahedra
- 6. Reduced dimensionality due to orbitals
- 7. Importance of direct d-d electronic hopping versus d-oxygen-d hopping, especially in t2g spinels
- 8. Orbitals in charge transfer insulators
- 9. Role of orbital degrees of freedom at metal-insulator transitions
- 10. Orbital liquids -- quantum effects
- 11. Orbital waves -- orbitons
- 12. Importance of long-range interactions in short-range orbital (cooperative Jahn Teller) models
- 13. Multiplets en Mottiplets
- 14. Orbital textures, orbital domains and their effect on electronic degrees of freedom
- 15. What happens to orbital order when going to metallic states -- orbital melting

Two Transitions and Controversy on Orbital Ordering in ZnV₂O₄

in collaboration with Hirokazu Tsunetsugu

Two Transitions in ZnV₂O₄

- cubic to tetragonal transition at T_{cl} ~50K (1st order)
- antiferromagnetic transition at T_{c2} ~40K (2nd order)

Kondo et al., 2000

Ueda et al., 1997 Lee et al., 2004

Lattice symmetry and Magnetic Order

- lattice symmetry: I4₁/amd (powder sample)
- orbital order: undetermined
- spin order: antiferromagnetic
 †-↓-†-↓-... in the xy chains
 †-†-↓-↓-... in the yz/zx chains
- \bullet moment at T=0 \sim 0.6 μ B

Questions

- What is the microscopic mechanism of two transitions? Who is the main player? Kugel-Khomskii superexchanges, Jahn-Teller or relativistic spin-orbit coupling?
- How is the complex AF ordering stabilized? Why is the moment at T=0 reduced so largely?
- What is the role of orbital degree of freedom? Is there orbital ordering? If yes, what type of ordering sets in?

Tsunetsugu and Motome (2003, 2004, 2005)

- Kugel-Khomskii type model derived from 3-fold multi-orbital
 Hubbard model + tetragonal Jahn-Teller coupling
 - assumptions: σ-type transfer integrals only, classical phonon, neglecting spin-orbit coupling and trigonal distortion

$$t_{\sigma}^{\text{nn}} = \sim -0.32 \text{eV}$$
 $t_{\sigma}^{\text{3rd}} = \sim -0.045 \text{eV}$
(Matsuno et al., 1999: for LiV₂O₄)

Tsunetsugu and Motome (2003, 2004, 2005)

$$H_{\mathrm{SO}}^{\mathrm{nn}} = -J \sum_{\langle ij \rangle} \left[h_{\mathrm{o-AF}}^{(ij)} + h_{\mathrm{o-F}}^{(ij)} \right] \text{ : nearest neighbor term } J = (t_{\sigma}^{\mathrm{nn}})^2/U \quad A = (1-\eta)/(1-3\eta) \\ J_3 = (t_{\sigma}^{\mathrm{3rd}})^2/U \quad B = \eta/(1-3\eta) \\ J_3 = (t_{\sigma}^{\mathrm{3rd}})^2/U \quad B = \eta/(1-3\eta) \\ \bar{n}_{i\alpha} = 1 - n_{i\alpha} \quad C = (1+\eta)/(1+2\eta) \\ \bar{\eta} = J_{\mathrm{H}}/U \\ h_{\mathrm{o-AF}}^{(ij)} = (A+B\vec{S}_i \cdot \vec{S}_j) (n_{i\alpha(ij)}\bar{n}_{j\alpha(ij)} + \bar{n}_{i\alpha(ij)}n_{j\alpha(ij)}) \\ h_{\mathrm{o-AF}}^{(ij)} = (A+B\vec{S}_i \cdot \vec{S}_j) (n_{i\alpha(ij)}\bar{n}_{j\alpha(ij)} + \bar{n}_{i\alpha(ij)}n_{j\alpha(ij)})$$

 $h_{\alpha}^{(ij)} = C(1 - \vec{S}_i \cdot \vec{S}_j) n_{i\alpha(ij)} n_{j\alpha(ij)}$

Tsunetsugu and Motome (2003, 2004, 2005)

$$H_{
m SO}^{
m nn} = -J\sum_{\langle ij
angle} \left[h_{
m o-AF}^{(ij)} + h_{
m o-F}^{(ij)}
ight] \; :$$
 nearest neighbor term $J = (t_{\sigma}^{
m nn})^2/U \quad A = (1-\eta)/(1-3\eta) \quad J_3 = (t_{\sigma}^{
m nn})^2/U \quad B = \eta/(1-3\eta) \quad J_3 = (t_{\sigma}^{
m nrd})^2/U \quad B = \eta/(1-3\eta) \quad J_3 = (t_{\sigma}^{
m nrd})^2/U \quad B = \eta/(1-3\eta) \quad J_3 = (t_{\sigma}^{
m nrd})^2/U \quad B = \eta/(1-3\eta) \quad J_3 = (t_{\sigma}^{
m nrd})^2/U \quad B = \eta/(1-3\eta) \quad J_3 = (t_{\sigma}^{
m nrd})^2/U \quad B = \eta/(1-3\eta) \quad J_3 = (t_{\sigma}^{
m nrd})^2/U \quad B = \eta/(1-3\eta) \quad J_3 = (t_{\sigma}^{
m nrd})^2/U \quad J_3 = (t_{\sigma}^{$

$$h_{\mathrm{o-AF}}^{(ij)} = (A + B\vec{S}_i \cdot \vec{S}_j)(n_{i\alpha(ij)}\bar{n}_{j\alpha(ij)} + \bar{n}_{i\alpha(ij)}n_{j\alpha(ij)}) \quad \text{spin F / orbital AF}$$

$$h_{\text{o-F}}^{(ij)} = C(1 - \vec{S}_i \cdot \vec{S}_j) n_{i\alpha(ij)} n_{j\alpha(ij)}$$

Tsunetsugu and Motome (2003, 2004, 2005)

$$H_{
m SO}^{
m nn} = -J\sum_{\langle ij
angle} \left[h_{
m o-AF}^{(ij)} + h_{
m o-F}^{(ij)}
ight] \; :$$
 nearest neighbor term $J = (t_{\sigma}^{
m nn})^2/U \quad A = (1-\eta)/(1-3\eta) \quad J_3 = (t_{\sigma}^{
m 3rd})^2/U \quad B = \eta/(1-3\eta) \quad J_3 = (t_{\sigma}^{
m 3rd})^2/U \quad B = \eta/(1-3\eta) \quad J_3 = (t_{\sigma}^{
m 3rd})^2/U \quad B = \eta/(1-3\eta) \quad J_3 = (t_{\sigma}^{
m 3rd})^2/U \quad B = \eta/(1-3\eta) \quad J_3 = (t_{\sigma}^{
m 3rd})^2/U \quad B = \eta/(1-3\eta) \quad J_3 = (t_{\sigma}^{
m 3rd})^2/U \quad B = \eta/(1-3\eta) \quad J_3 = (t_{\sigma}^{
m 3rd})^2/U \quad B = \eta/(1-3\eta) \quad J_3 = (t_{\sigma}^{
m 3rd})^2/U \quad J_3 = (t_{\sigma}^$

$$h_{\mathrm{o-AF}}^{(ij)} = (A + B\vec{S}_i \cdot \vec{S}_j)(n_{i\alpha(ij)}\bar{n}_{j\alpha(ij)} + \bar{n}_{i\alpha(ij)}n_{j\alpha(ij)}) \quad \text{spin F / orbital AF}$$

$$h_{\text{o-F}}^{(ij)} = C(1 - \vec{S}_i \cdot \vec{S}_j) n_{i\alpha(ij)} n_{j\alpha(ij)}$$

spin AF / orbital F

Tsunetsugu and Motome (2003, 2004, 2005)

$$H_{\rm SO}^{\rm nn} = -J \sum_{\langle ij \rangle} \left[h_{\rm o-AF}^{(ij)} + h_{\rm o-F}^{(ij)} \right] \; : \text{nearest neighbor term} \qquad \begin{array}{c} J = (t_{\sigma}^{\rm nn})^2/U \quad A = (1-\eta)/(1-3\eta) \\ J_3 = (t_{\sigma}^{\rm 3rd})^2/U \quad B = \eta/(1-3\eta) \\ J_3 = (t_{\sigma}^{\rm 3rd})^2/U \quad B = \eta/(1-3\eta) \\ \hline n_{i\alpha} = 1 - n_{i\alpha} \quad C = (1+\eta)/(1+2\eta) \\ \hline \eta = J_{\rm H}/U \end{array}$$

$$h_{\mathrm{o-AF}}^{(ij)} = (A + B\vec{S}_i \cdot \vec{S}_j)(n_{i\alpha(ij)}\bar{n}_{j\alpha(ij)} + \bar{n}_{i\alpha(ij)}n_{j\alpha(ij)}) \quad \text{spin F / orbital AF}$$

$$h_{\text{o-F}}^{(ij)} = C(1 - \vec{S}_i \cdot \vec{S}_j) n_{i\alpha(ij)} n_{j\alpha(ij)}$$

spin AF / orbital F

spin part: Heisenberg / orbital part: 3-state Potts

Tsunetsugu and Motome (2003, 2004, 2005)

$$H_{\rm SO}^{\rm nn} = -J\sum_{\langle ij\rangle} \left[h_{\rm o-AF}^{(ij)} + h_{\rm o-F}^{(ij)}\right] \text{ : nearest neighbor term} \qquad J = (t_{\sigma}^{\rm nn})^2/U \quad A = (1-\eta)/(1-3\eta) \\ J_3 = (t_{\sigma}^{\rm 3rd})^2/U \quad B = \eta/(1-3\eta) \\ H_{\rm SO}^{\rm 3rd} = -J_3\sum_{\langle\langle ij\rangle\rangle} \left[h_{\rm o-AF}^{(ij)} + h_{\rm o-F}^{(ij)}\right] \quad \text{: 3rd neighbor term} \qquad \begin{matrix} J = (t_{\sigma}^{\rm nn})^2/U \quad A = (1-\eta)/(1-3\eta) \\ J_3 = (t_{\sigma}^{\rm 3rd})^2/U \quad B = \eta/(1-3\eta) \\ \bar{n}_{i\alpha} = 1 - n_{i\alpha} \quad C = (1+\eta)/(1+2\eta) \\ \eta = J_{\rm H}/U \end{matrix}$$

$$h_{\mathrm{o-AF}}^{(ij)} = (A + B\vec{S}_i \cdot \vec{S}_j)(n_{i\alpha(ij)}\bar{n}_{j\alpha(ij)} + \bar{n}_{i\alpha(ij)}n_{j\alpha(ij)}) \quad \text{spin F / orbital AF}$$

$$h_{\text{o-F}}^{(ij)} = C(1 - \vec{S}_i \cdot \vec{S}_j) n_{i\alpha(ij)} n_{j\alpha(ij)}$$

spin AF / orbital F

spin part: Heisenberg / orbital part: 3-state Potts

+ tetragonal Jahn-Teller coupling

+ tetragonal Jahn- Ieller coupling
$$H_{\text{JT}} = g \sum_{i} Q_{i}(n_{i,yz} + n_{i,zx} - 2n_{i,xy}) + \sum_{i} Q_{i}^{2}/2 - \lambda \sum_{\langle ij \rangle} Q_{i}Q_{j} \qquad xy \longrightarrow \bullet$$

$$\begin{array}{c} yz,zx = \\ xy = \\ \end{array}$$

Monte Carlo Results

- Ist order at T=T_O,
 2nd order at T=T_N
- consistent estimates
 of entropy changes

- sudden drop at T=To
- tiny change at T=T_N

Orbital and Spin Structure

- orbital: alternative stacking of (d_{xy}, d_{zx}) and (d_{xy}, d_{yz}) states
- spin: $\uparrow \downarrow \uparrow \downarrow -$ in the xy chains and $\uparrow \uparrow \downarrow \downarrow -$ in the yz/zx chains

instability in the high-T (para) phase

instability in the high-T (para) phase

assuming orbital para: $n_{i\alpha} \rightarrow \langle n_{i\alpha} \rangle = 2/3$

instability in the high-T (para) phase

assuming orbital para: $n_{i\alpha} \rightarrow \langle n_{i\alpha} \rangle = 2/3$

$$H_{\mathrm{SO}} \to H_{\mathrm{spin}}^{\mathrm{eff}} = \tilde{J}_{\mathrm{S}} \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j + \tilde{J}_{\mathrm{S}}^{(3)} \sum_{\langle \langle ij \rangle \rangle} \vec{S}_i \cdot \vec{S}_j$$

isotropic Heisenberg model with AF nearest- and third-neighbor exchanges

no long-range order at T=0 (Reimers et al., 1991)

instability in the high-T (para) phase

assuming orbital para: $n_{i\alpha} \rightarrow \langle n_{i\alpha} \rangle = 2/3$

$$H_{\mathrm{SO}} \to H_{\mathrm{spin}}^{\mathrm{eff}} = \tilde{J}_{\mathrm{S}} \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j + \tilde{J}_{\mathrm{S}}^{(3)} \sum_{\langle \langle ij \rangle \rangle} \vec{S}_i \cdot \vec{S}_j$$

isotropic Heisenberg model with AF nearest- and third-neighbor exchanges

no long-range order at T=0 (Reimers et al., 1991)

spin correlations hardly develop by themselves alone

instability in the high-T (para) phase assuming spin para:

instability in the high-T (para) phase

assuming spin para: $ec{S}_i \cdot ec{S}_j
ightarrow \langle ec{S}_i \cdot ec{S}_j
angle = 0$

instability in the high-T (para) phase

assuming spin para: $\vec{S}_i \cdot \vec{S}_j o \langle \vec{S}_i \cdot \vec{S}_j \rangle = 0$

$$H_{\rm SO} \to H_{\rm orbital}^{\rm eff} = \tilde{J}_{\rm O} \sum_{\langle ij \rangle} n_{i\alpha(ij)} n_{j\alpha(ij)} + \tilde{J}_{\rm O}^{(3)} \sum_{\langle\langle ij \rangle\rangle} n_{i\alpha(ij)} n_{j\alpha(ij)}$$

3-state Potts model with AF interactions which depend on both the bond direction and the orbital states

instability in the high-T (para) phase

assuming spin para: $ec{S}_i \cdot ec{S}_j
ightarrow \langle ec{S}_i \cdot ec{S}_j
angle = 0$

$$H_{\rm SO} \to H_{\rm orbital}^{\rm eff} = \tilde{J}_{\rm O} \sum_{\langle ij \rangle} n_{i\alpha(ij)} n_{j\alpha(ij)} + \tilde{J}_{\rm O}^{(3)} \sum_{\langle\langle ij \rangle\rangle} n_{i\alpha(ij)} n_{j\alpha(ij)}$$

3-state Potts model with AF interactions which depend on both the bond direction and the orbital states

→ (partial) lifting of degeneracy

instability in the high-T (para) phase

assuming spin para: $ec{S}_i \cdot ec{S}_j
ightarrow \langle ec{S}_i \cdot ec{S}_j
angle = 0$

$$H_{\rm SO} \to H_{\rm orbital}^{\rm eff} = \tilde{J}_{\rm O} \sum_{\langle ij \rangle} n_{i\alpha(ij)} n_{j\alpha(ij)} + \tilde{J}_{\rm O}^{(3)} \sum_{\langle\langle ij \rangle\rangle} n_{i\alpha(ij)} n_{j\alpha(ij)}$$

3-state Potts model with AF interactions which depend on both the bond direction and the orbital states

→ (partial) lifting of degeneracy

tetragonal Jahn-Teller distortion assists to stabilize this orbital configuration

Effective Spin Exchanges under the Orbital Order

Effective Spin Exchanges under the Orbital Order

 d_{xy} is singly occupied at all the sites → strong AF exchange in the xy chains J

Effective Spin Exchanges under the Orbital Order

- d_{xy} is singly occupied at all the sites → strong AF exchange in the xy chains J
- n.n. exchange couplings in the yz/zx chains J' are ferromagnetic and about IO times weaker than the AF exchange in the xy chains J

Effective Spin Exchanges under the Orbital Order

- d_{xy} is singly occupied at all the sites → strong AF exchange in the xy chains J
- n.n. exchange couplings in the yz/zx chains J' are ferromagnetic and about 10 times weaker than the AF exchange in the xy chains J
- 3rd-neighbor exchange $\frac{1}{3}$ is $\sim 0.02 \longrightarrow AF$ order at T_N

Effective Spin Exchanges under the Orbital Order

- d_{xy} is singly occupied at all the sites → strong AF exchange in the xy chains J
- n.n. exchange couplings in the yz/zx chains J' are ferromagnetic and about 10 times weaker than the AF exchange in the xy chains J
- 3rd-neighbor exchange \int_3 is $\sim 0.02 \rightarrow AF$ order at T_N

weakly-coupled ID spin chains (dimensionality reduction)

Quasi-ID Quantum Fluctuation: Large Reduction of AF Moment

- linear spin-wave analysis for the spin and orbital ordered ground state
- moment reduction ΔS diverges logarithmically at $J_3=0$ due to the zero modes
- ΔS is large in the small J_3 region: $M_{s} \sim 1 \mu_{B}$ at $J_{s} \sim 0.02J$ consistent with the experimental

Short Summary...

Short Summary...

- Kugel-Khomskii spin-orbital exchange + tetragonal Jahn-Teller
- classical Monte Carlo simulation and mean-field type analysis
- linear spin-wave analysis of effective spin model

Short Summary...

- Kugel-Khomskii spin-orbital exchange + tetragonal Jahn-Teller
- classical Monte Carlo simulation and mean-field type analysis
- linear spin-wave analysis of effective spin model
- two transitions with reasonable estimates of trasition temperatures as well as entropy changes
- T-dep of magnetic susceptibility consistent with experiment
- magnetic order consistent with the neutron scattering result
- reduced magnetic moment at T=0
- A-type antiferro orbital order with tetragonal distortion

Three Different Models

In all models, xy orbital is singly occupied at all the sites (not shown in the figures)

Three Different Models

In all models, xy orbital is singly occupied at all the sites (not shown in the figures)

Tsunetsugu-Motome, 2003

- A-type orbital order
- *I*4₁/*a*
- spin-orbital superexchanges

Tchernyshyov, 2004

- uniform orbital order
- *I*4₁/*amd*
- relativistic spin-orbit coupling

Khomskii-Mizokawa, 2005

- orbitally-drivenPeierls order
- *P*4₁2₁2
- approach from itinerant picture (band Jahn-Teller)

Three Different Models

In all models, xy orbital is singly occupied at all the sites (not shown in the figures)

Tsunetsugu-Motome, 2003

- A-type orbital order
- *I*4₁/*a*
- spin-orbital superexchanges

Tchernyshyov, 2004

- uniform orbital order
- *I*4₁/*amd*
- relativistic spin-orbit coupling

mean-field (Di Matteo et al.)
LSDA+U+SO (T. Maitra and R. Valenti)

Khomskii-Mizokawa, 2005

- orbitally-drivenPeierls order
- *P*4₁2₁2
- approach from itinerant picture (band Jahn-Teller)

Issue...

- role of relativistic spin-orbit interaction
- orbital ordering at T=0: mean-field analysis and firstprinciple calculation suggest the relevant role
- thermodynamics: single or two transitions? In general, systems with dominant spin-orbit coupling shows a single transition with concomitant ordering of spin and orbital.
- reduced AF moment: due to dimensionality reduction and/or L-S coupling?

Issue...

- ole of relativistic spin-orbit interaction
 - orbital ordering at T=0: mean-field analysis and firstprinciple calculation suggest the relevant role
 - thermodynamics: single or two transitions? In general, systems with dominant spin-orbit coupling shows a single transition with concomitant ordering of spin and orbital.
 - reduced AF moment: due to dimensionality reduction and/or L-S coupling?
- Remark: X-ray diffraction has been done only for powder samples...

Lesson from Related Spinel MnV₂O₄

- $Mn^{2+} = (3d)^5, V^{3+} = (3d)^2$
- single transition at 57K
 - cubic → tetragonal
 - non-collinear ferri

Plumier and Sougi, 1987

- low-T phase: $I4_1/a$ (large single crystal)
 - diamond-glide symmetry is broken, but face-center symmetry is hold
 - peak intensity is ~10⁻⁴ times smaller compared to the fundamental peaks, difficult to observe in powder samples

Suzuki et al., 2007

Other Issues...

- role of trigonal distortion
 - quantitative difference in Cd compound
- d-d direct vs d-p-d (d-p-p-d) indirect transfers
- orbital and spin ordering in MnV₂O₄
- single crystal of ZnV₂O₄!

Self-organized 7-site Cluster (heptamer) in AIV₂O₄

in collaboration with Keisuke Matsuda and Nobuo Furukawa

(Atomic) Electronic Structure in AIV₂O₄

- mixed valence: $V^{2.5+} = (3d)^{2.5}$
- charge, spin and orbital degrees of freedom are all active

Phase Transition at T~700K

- structural change: doubling of the unit cell along the [111] direction
- shoulder in the resistivity
- sudden drop in the magnetic susceptibility followed by Curie behavior at lower temperatures
- valence-skipping-type charge ordering?

Y. Horibe et al., 2006

new experimental finding: trimer formation in Kagome layers below T_c

Y. Horibe et al., 2006

- new experimental finding: trimer formation in Kagome layers below T_c
- spin-singlet formation in trimers? → sharp drop of the magnetic susceptibility?

Y. Horibe et al., 2006

- new experimental finding: trimer formation in Kagome layers below T_c
- spin-singlet formation in trimers? → sharp drop of the magnetic susceptibility?
- We propose a singlet state emerging from the 7-site clusters (heptamers)

Y. Horibe et al., 2006

Questions

What is the mechanism of the heptamer formation? How is the degeneracy in the frustrated pyrochlore system lifted?

Is the heptamer in a spin-singlet state? How does the singlet state emerge in each heptamer?

- assumption: S=1 localized moments at isolated V sites (leading Curie behavior at low T)
 - → 18 electrons per heptamer

- assumption: S=1 localized moments at isolated V sites (leading Curie behavior at low T)
 - → 18 electrons per heptamer
- t_{2g} multi-orbital Hubbard model for each heptamer
 - σ and π transfer integrals
 - trigonal lattice distortion at the central site
 - Coulomb interactions

- assumption: S=I localized moments at isolated V sites (leading Curie behavior at low T)
 - → 18 electrons per heptamer
- t_{2g} multi-orbital Hubbard model for each heptamer
 - σ and π transfer integrals
 - trigonal lattice distortion at the central site
 - Coulomb interactions
- **assumption**: σ-type bonding states for shortest V-V bonds
 - → 6 electrons remaining

- assumption: S=1 localized moments at isolated V sites (leading Curie behavior at low T)
 - → 18 electrons per heptamer
- t_{2g} multi-orbital Hubbard model for each heptamer
 - σ and π transfer integrals
 - trigonal lattice distortion at the central site
 - Coulomb interactions
- **assumption**: σ-type bonding states for shortest V-V bonds
 - → 6 electrons remaining

- assumption: S=1 localized moments at isolated V sites (leading Curie behavior at low T)
 - → 18 electrons per heptamer
- t_{2g} multi-orbital Hubbard model for each heptamer
 - σ and π transfer integrals
 - trigonal lattice distortion at the central site
 - Coulomb interactions
- assumption: σ-type bonding states for shortest V-V bonds
 - → 6 electrons remaining

- exact diagonalization of the effective heptamer model
- two different singlet regimes: σ -type and π -type

- exact diagonalization of the effective heptamer model
- **e** two different singlet regimes: σ -type and π -type

- exact diagonalization of the effective heptamer model
- **e** two different singlet regimes: σ -type and π -type

- exact diagonalization of the effective heptamer model
- **e** two different singlet regimes: σ -type and π -type

- exact diagonalization of the effective heptamer model
- **e** two different singlet regimes: σ -type and π -type

- exact diagonalization of the effective heptamer model
- two different singlet regimes: σ -type and π -type

Singlet State in Heptamer

- singlet ground state for realistic parameters = σ -type
 - 'molecule' of the bonding states with three t_{2g} orbitals
- estimate of the spin gap is larger than the experimental one: heptamer-heptamer coupling?
- comprehensive understanding of the T-dependence of magnetic susceptibility

Open Issues...

- Once the heptamers are assumed to be stable, experimental results at low-T phase are explained comprehensively.
- What is the mechanism of the heptamer formation? How is the degeneracy in the frustrated pyrochlore system lifted?
- Is similar phenomenon seen in other mixed-valence compounds?

Another Mixed-Valence Compound LiV₂O₄: Heavy-Fermion Behavior

Urano et al., 2000

- mixed valence: $V^{3.5+} = (3d)^{1.5}$
- heavy mass (Kondo et al., 1997)
- cubic, metallic, no magnetic ordering (Rogers et al., 1967; Chmaissem et al., 1997; Mahajan et al., 1997; Merrin et al., 1998)
- only t_{2g} electrons: new mechanism for heavy fermion behavior?
 - Kondo scenario
 - geometrical frustration + correlation

Implication of AIV₂O₄?

Urano, PhD Thesis

- metal-to-insulator transition by applying pressure: opposite to usual pressure effect
- short and long V-V bonds in the insulating state (EXAFS by Niitaka et al., unpublished)
- possibility: some cluster formation similar to AIV₂O₄

Summary

- introduction to spinels and t_{2g} orbital physics
- $^{\$}$ controversy on orbital ordering in ZnV_2O_4
 - different models for spin/orbital order in ZnV₂O₄: relative importance of Kugel-Khomskii superexchange, Jahn-Teller and relativistic spin-orbit couplings
 - symmetry analysis: lesson from experiments in MnV₂O₄
- self-organized 7-site cluster (heptamer) in AIV₂O₄
 - heptamer scenario: 'molecule' of bonding states with anisotropic t_{2g} orbitals
 - implication to heavy-fermion compound LiV2O4