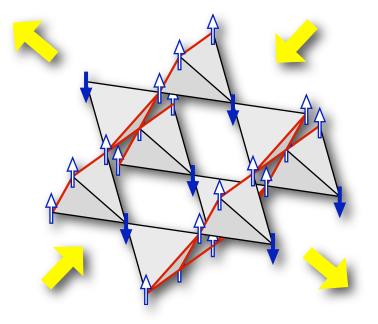
# Half-magnetization plateaux in Cr Spinels

Karlo Penc <u>Research Institute for</u> <u>Solid State Physics and Optics</u>, Budapest, Hungary



Moments and Multiplets in Mott Materials

October 11, 2007 KITP, Santa Barbara

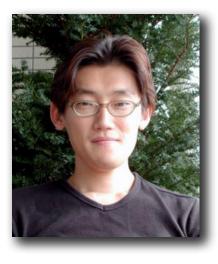
## In collaboration with :



Nic Shannon (Bristol)



Hiroyuki Shiba (IPAP, Tokyo)



Yuki Motome (Riken, Tokyo)

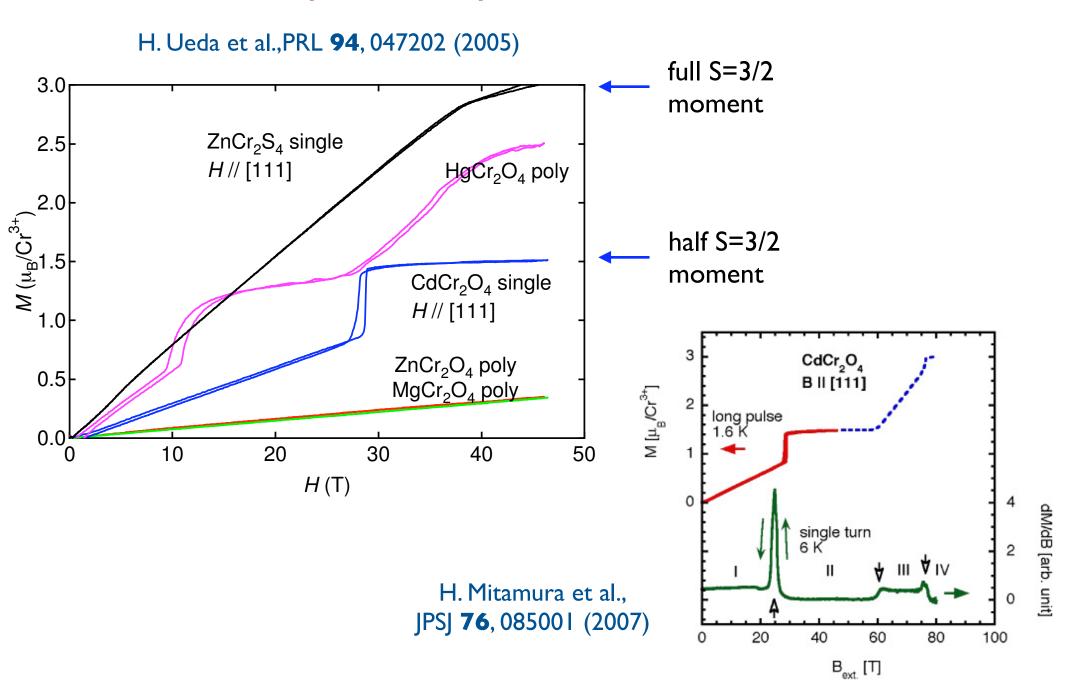
research supported by :

- JSPS-HAS joint project/OTKA T038162
- The University of Tokyo/CREST
- Riken/CREST

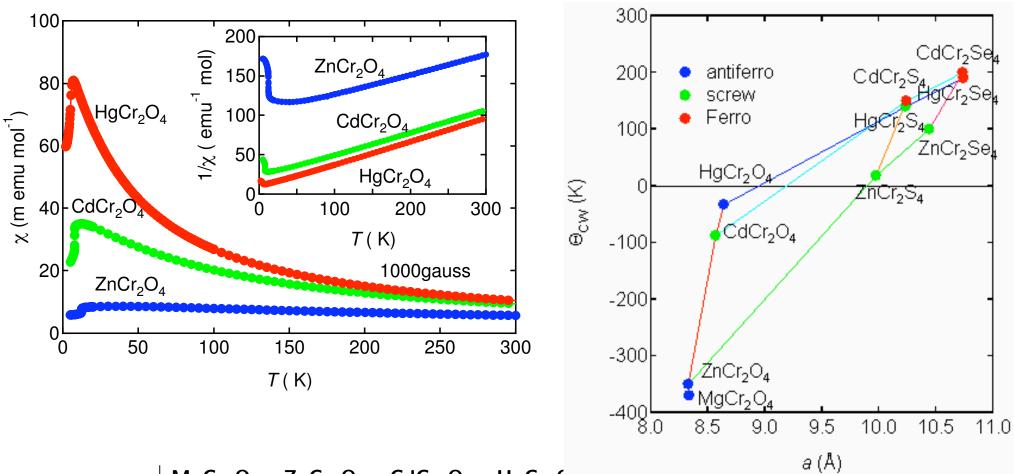
#### Guide map of "simple" spinel oxides (after Takagi)

| charge<br>frustration               | d <sup>0.5</sup><br>LiTi <sub>2</sub> O <sub>4</sub><br>BCS SC                   | d <sup>1.5</sup><br>LiV <sub>2</sub> O <sub>4</sub><br>heavy<br>fermion                                                                             | d <sup>2.5</sup><br>AIV <sub>2</sub> O <sub>4</sub><br>charge<br>ordered<br>insulator                                                                                          | d <sup>3.5</sup><br>LiMn <sub>2</sub> O <sub>4</sub> |
|-------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| spin<br>frustration<br>(insulators) | d <sup>1</sup><br>MgTi <sub>2</sub> O <sub>4</sub><br>valence<br>bond<br>crystal | d <sup>2</sup><br>ZnV <sub>2</sub> O <sub>4</sub><br>MgV <sub>2</sub> O <sub>4</sub><br>CdV <sub>2</sub> O <sub>4</sub><br>spin+orbital<br>ordering | d <sup>3</sup><br>ZnCr <sub>2</sub> O <sub>4</sub><br>MgCr <sub>2</sub> O <sub>4</sub><br>CdCr <sub>2</sub> O <sub>4</sub><br>spin driven<br>structural<br>phase<br>transition | d <sup>4</sup><br>ZnMg <sub>2</sub> O <sub>4</sub>   |

#### Where does the large magnetization plateau in Cr spinel compounds comes from?

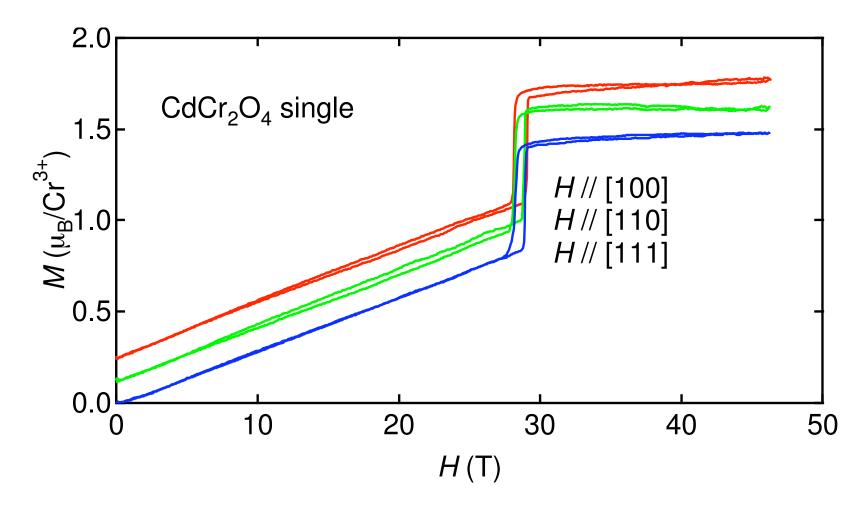


#### Experimental evidence for frustrated AF interactions



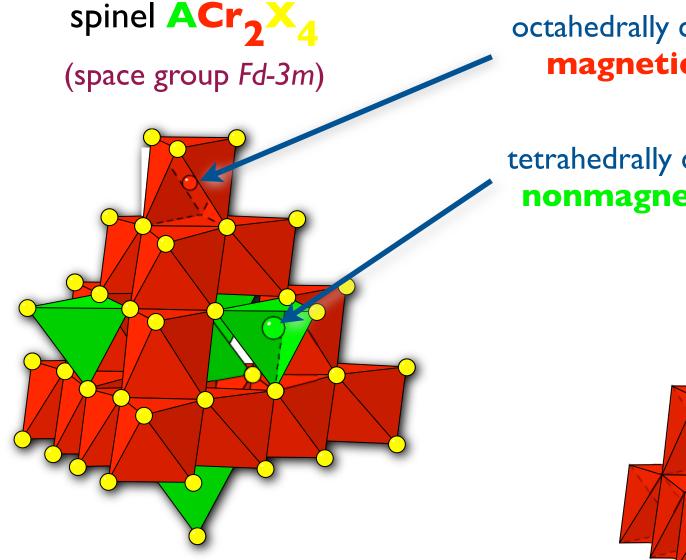
|                | $MgCr_2O_4$ | $ZnCr_2O_4$ | $CdCr_2O_4$ | $HgCr_2O_4$ |
|----------------|-------------|-------------|-------------|-------------|
| $T_N({\sf K})$ | 12.5        | 12          | 8           | 6           |
| $\Theta(K)$    | -370        | -390        | -70         | -32         |
| $T_N/ \Theta $ | 0.03        | 0.03        | 0.11        | 0.19        |

# Plateau is independent of the direction of magnetic field - anisotropy negligible



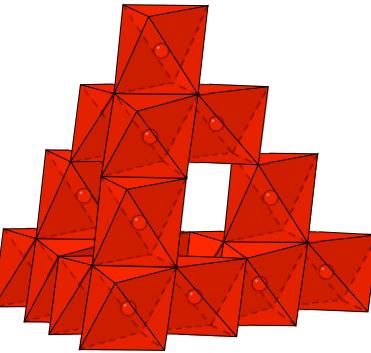
(though anisotropy may be relevant to explain some fine details observed in neutron and ESR [M Yoshida JPSJ 2006] experiments )

#### A brief introduction to Cr spinels

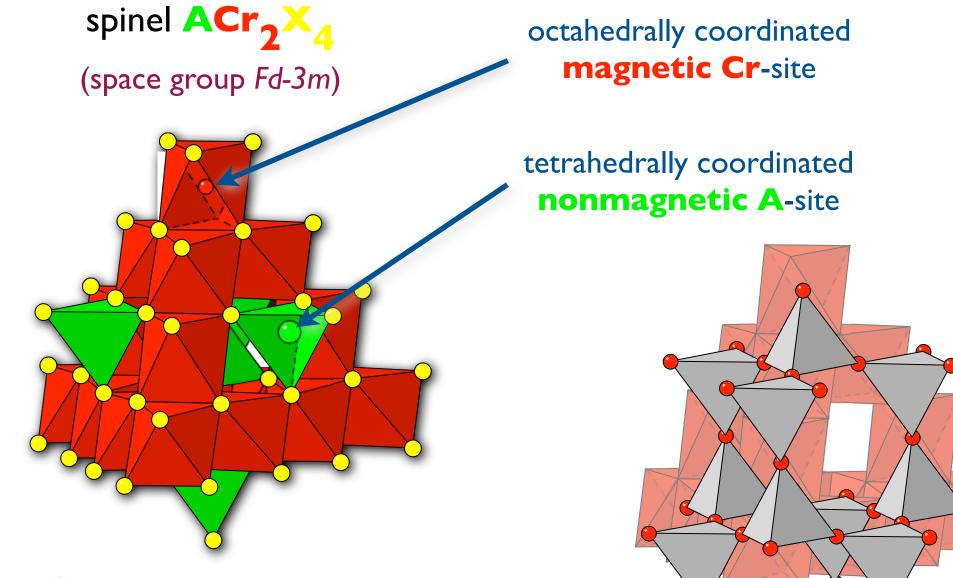


octahedrally coordinated magnetic Cr-site

#### tetrahedrally coordinated nonmagnetic A-site

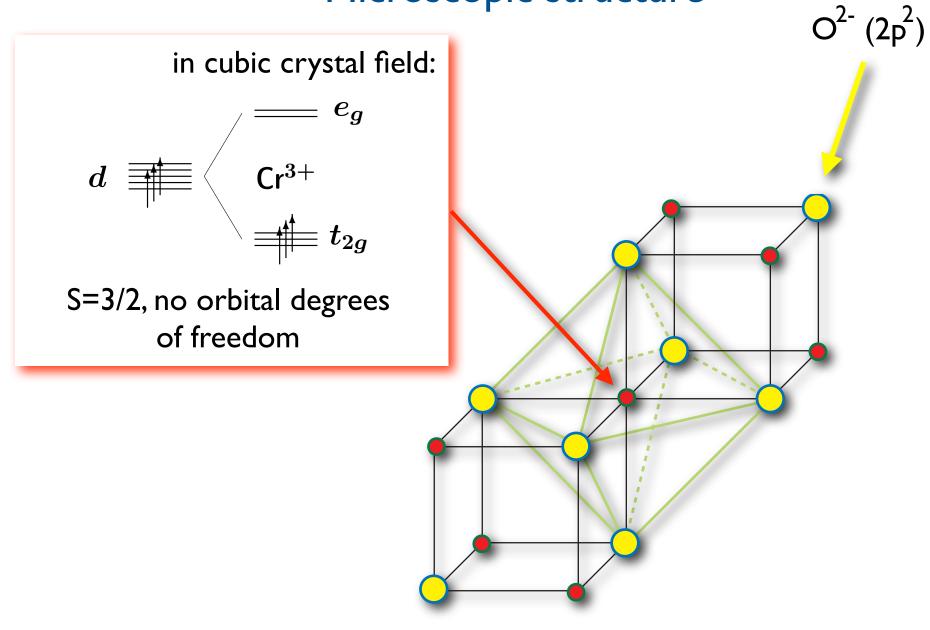


#### A brief introduction to Cr spinels

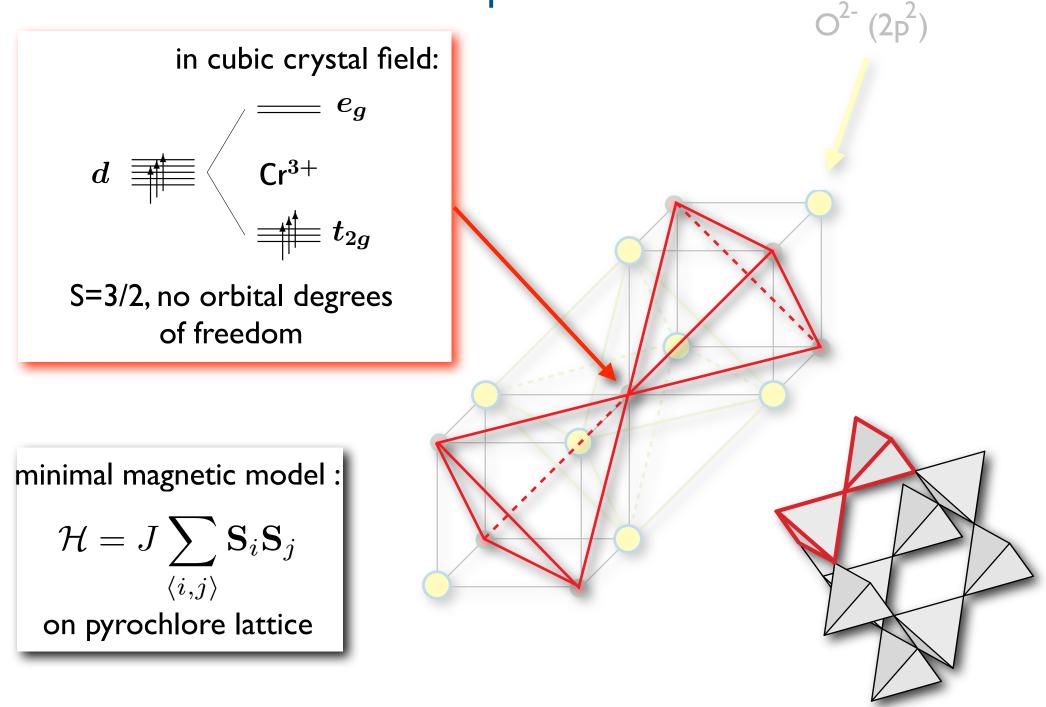


Cr-sublattice: pyrochlore lattice

#### Microscopic structure

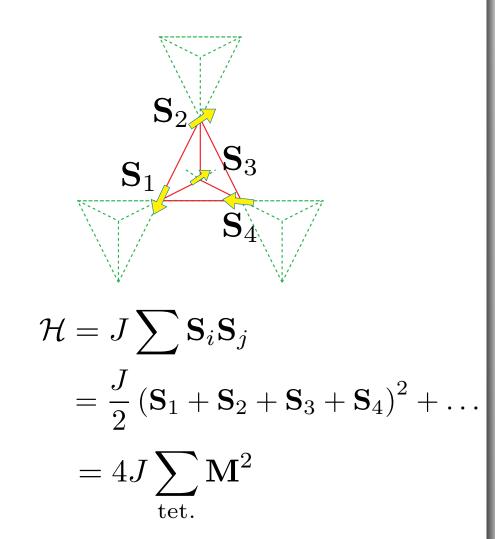


#### Microscopic structure

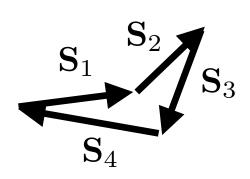


#### Classical AF on pyrochlore lattice

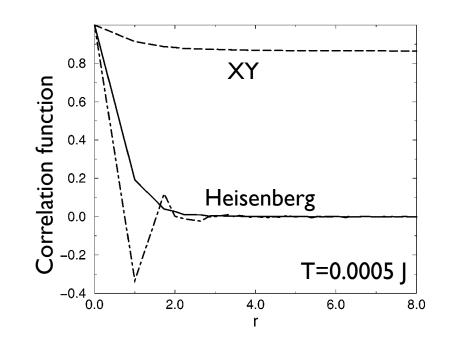
#### Energy is a sum of squares :



Ground state manifold on a single tetraheron defined by M=0



Due to the residual degeneracy the system remains disordered [Moessner & Chalker, (1998)].



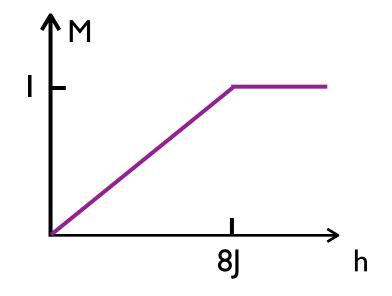
Classical ground state manifold in applied field (T=0)

$$\mathcal{H} = 8J \sum_{\text{tetr.}} \mathbf{M}^2 - 2 \sum_{\text{tetr.}} \mathbf{h} \mathbf{M} = 8J \sum_{\text{tetr.}} \left( \mathbf{M} - \frac{\mathbf{h}}{8J} \right)^2 - \sum_{\text{tetr.}} \frac{h^2}{8J}$$

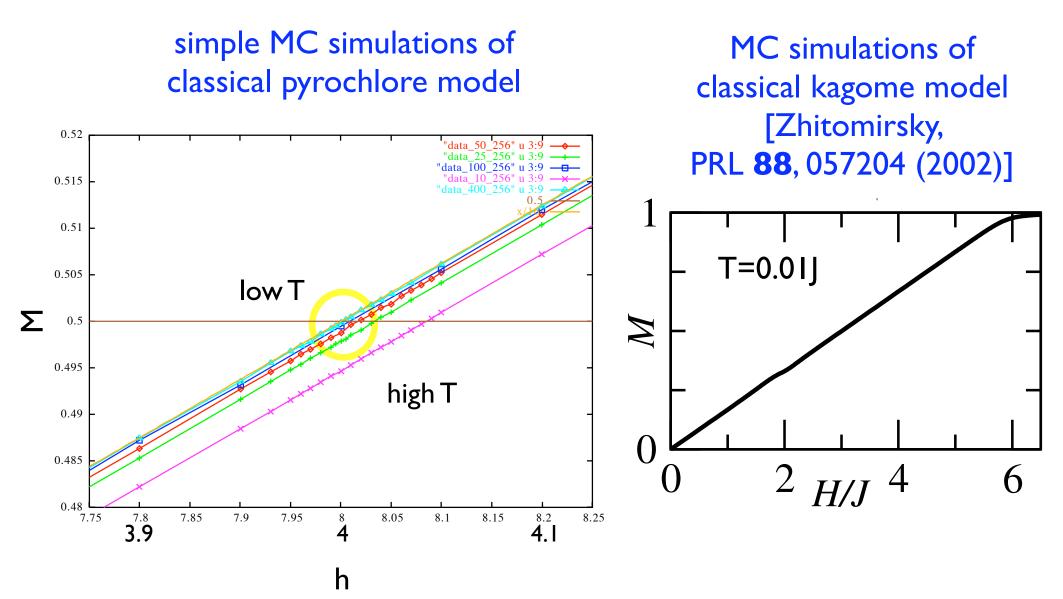
$$\mathbf{GS if = 0}$$

For each tetrahedron, require :  $\mathbf{M} = \frac{\mathbf{h}}{8J}$ 

Ground state degeneracy survives and magnetization is linear up to saturation.



#### finite T: order by disorder scenario does not work

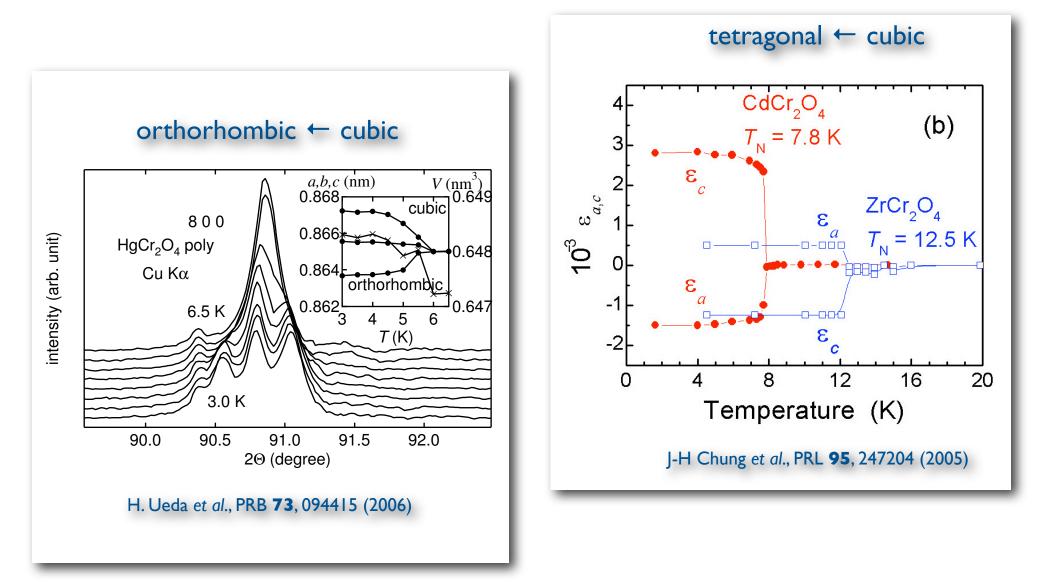


Thermal fluctuations do not stabilize a collinear state (plateau)

What is missing ?

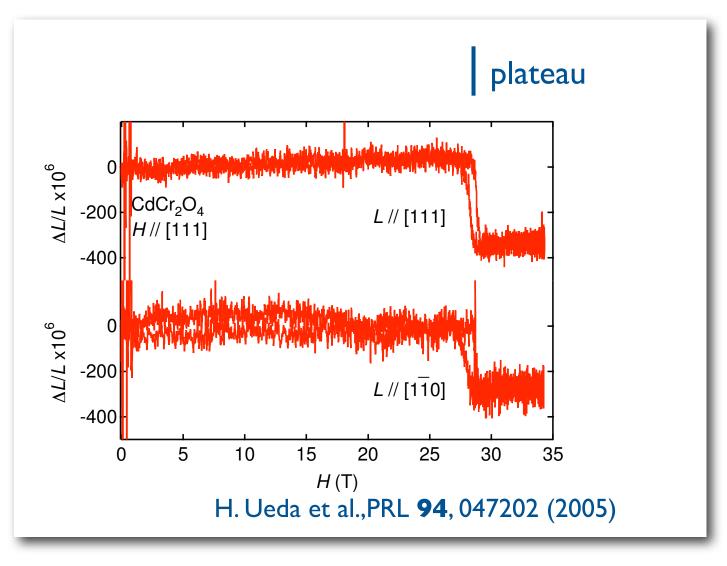
#### magnetoelastic coupling: h=0

magnetic ordering accompanied with a structural transition:



#### magnetoelastic coupling: h>0

# strong magnetostriction entering the plateau phase:



#### Coupling to lattice distortions for h=0

YMn<sub>2</sub>: Terao JPSJ 65, 1413 (1996), Canals & Lacroix PRB 61, 1149 (2000)

Y<sub>2</sub>M<sub>2</sub>O<sub>7:</sub> Keren & Gardner PRL **87**, 177201 (2001)

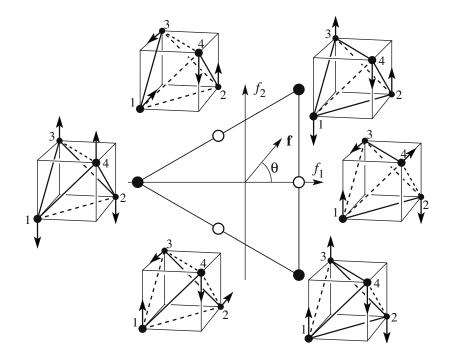
Yamashita & Ueda, PRL **85**, 4960 (2000):

In a single tetrahedron of S=1/2 spins ground state 2x degenerate, E irrep. Coupled tetrahedra:VBS-like theory of  $ZnV_2O_4$ 

Tchernyshyov, Moessner, & Sondhi, PRL **88**, 067203 (2002):

"Order by Distortion"

Landau-like theory of the spin-Peierls mechanism in the E irrep.



#### How does lattice distortion affect magnetic order ?

spin exchange depends on distance: 
$$J(r) = J(r_0) + \left. \frac{\partial J}{\partial r} \right|_{r_0} \delta r = J(1 + \alpha \rho)$$

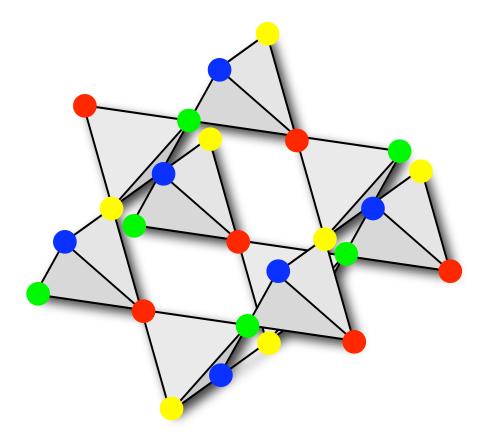
Consider generalized "spin-Peierls" Hamiltonian :

$$\begin{aligned} \mathcal{H} = \sum_{\langle i,j \rangle} \left[ J(1 - \alpha \rho_{i,j}) \mathbf{S}_i \mathbf{S}_j + \frac{K}{2} \rho_{i,j}^2 \right] - \mathbf{h} \sum_i \mathbf{S}_i \\ & \text{spin-lattice} \\ & \text{coupling} \\ \end{aligned}$$

the elastic energy is quadratic - we can integrate it out:

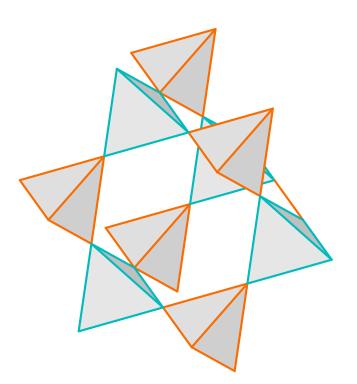
- it leads to long range spin-spin effective interaction
- for realistic description we shall take realistic phonon modes
- we want to understand the basic mechanism, so we look at the simplest case (affine deformations)

#### Minimal symmetry breaking solution



full point group is  $O_h = T_d \times \{1, l\}$ site-factorized wave function is invariant under inversion l $\Rightarrow$  only  $T_d$  remains The four-sublattice ordering does not break the translational symmetry (uniform q=0 distortions). The point group symmetry is broken.

The four-sublattice ordering can be stabilized e.g. by AF J2 or FM J3.

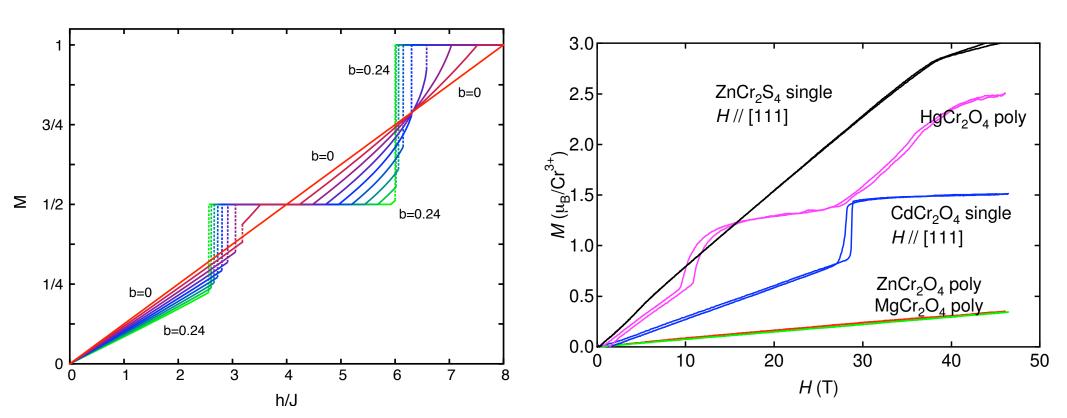


#### Minimazing the energy of a tetrahedron (4LRO state)

The ground state problem is reduced to pure spin energy (assuming 4 sublattice LRO):

$$\mathcal{H} = \sum_{\langle i,j \rangle} J \left[ \mathbf{S}_i \mathbf{S}_j - b(\mathbf{S}_i \mathbf{S}_j)^2 \right] - \mathbf{h} \sum_i \mathbf{S}_i$$

favours collinear spin configurations !



#### T=0 classical

#### Irreps of tetrahedral symmetry group Td :

$$\begin{pmatrix} \rho_{\mathsf{A}_{1}} \\ \rho_{\mathsf{E},1} \\ \rho_{\mathsf{E},2} \\ \rho_{\mathsf{T}_{2},1} \\ \rho_{\mathsf{T}_{2},2} \\ \rho_{\mathsf{T}_{2},3} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{-1}{2\sqrt{3}} & \frac{-1}{2\sqrt{3}} & \frac{-1}{2\sqrt{3}} & \frac{-1}{2\sqrt{3}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0 \\ 0 & \frac{-1}{\sqrt{2}} & 0 & 0 & \frac{1}{\sqrt{2}} & 0 \\ 0 & \frac{-1}{\sqrt{2}} & 0 & 0 & \frac{1}{\sqrt{2}} & 0 \\ \frac{-1}{\sqrt{2}} & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \rho_{1,2} \\ \rho_{1,3} \\ \rho_{2,3} \\ \rho_{2,4} \\ \rho_{3,4} \end{pmatrix}$$

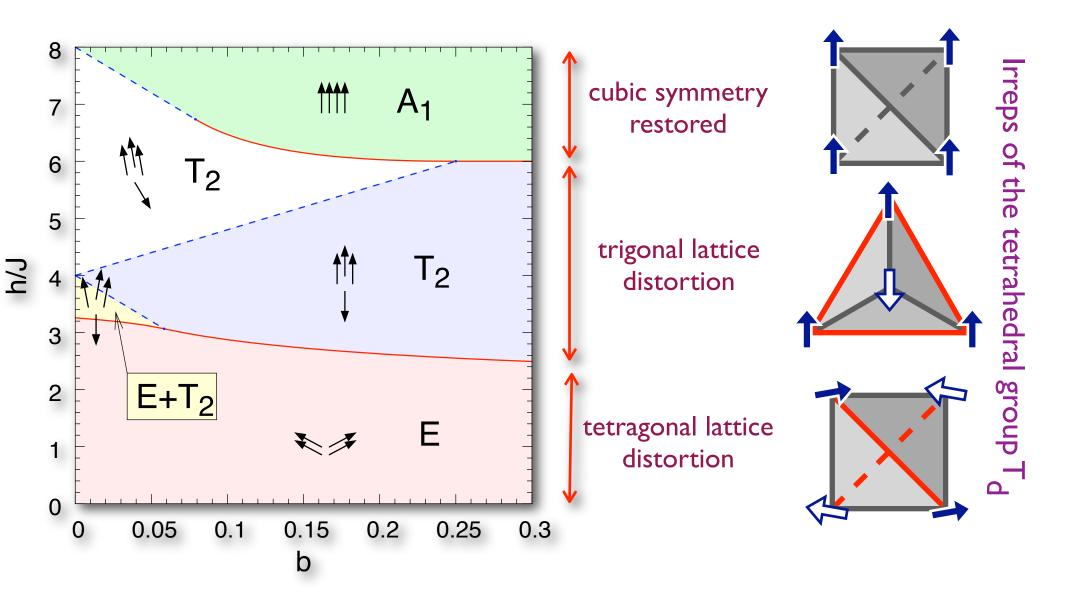
I dim. 2 dim. 3 dim.

E

A

T<sub>2</sub>

#### The phase diagram



PRL 93, 197203 (2004)

#### Why are these particular phases stable ?

Irreps of tetrahedral symmetry group Td :

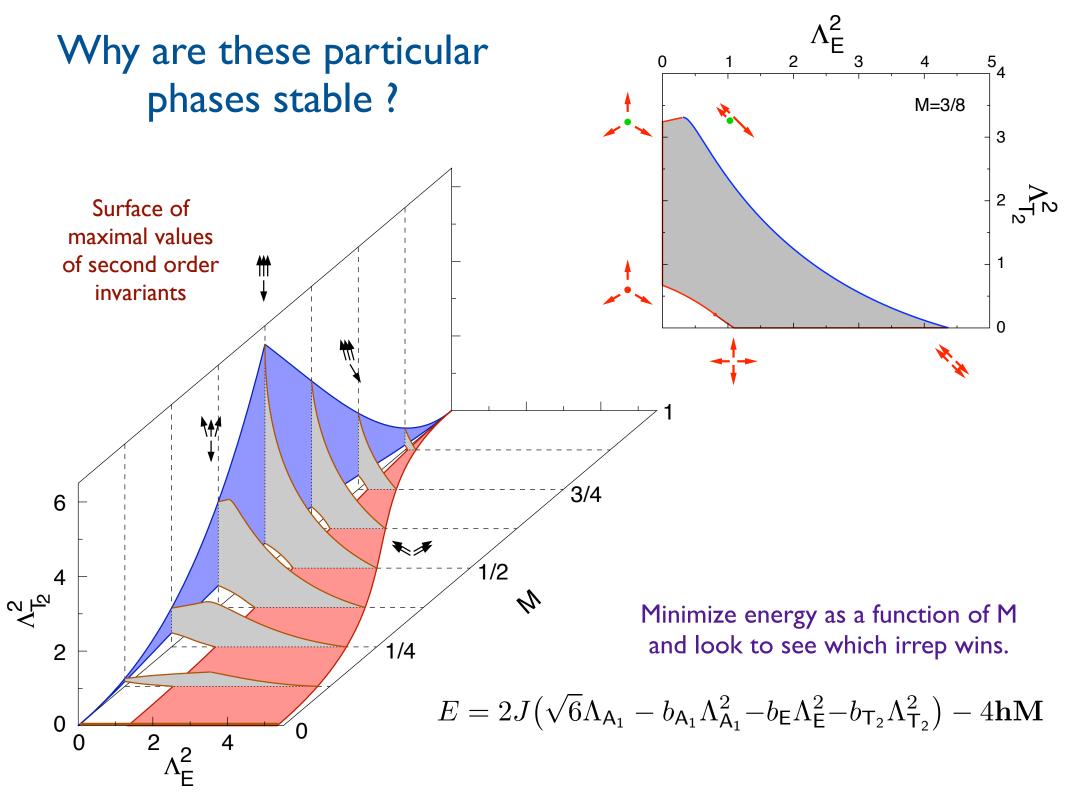
$$\begin{pmatrix} \Lambda_{A} \\ \Lambda_{E,1} \\ \Lambda_{E,2} \\ \Lambda_{T_{2},1} \\ \Lambda_{T_{2},2} \\ \Lambda_{T_{2},3} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{-1}{2\sqrt{3}} & \frac{-1}{2\sqrt{3}} & \frac{-1}{2\sqrt{3}} & \frac{-1}{2\sqrt{3}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{1}{2} & \frac{-1}{2} & \frac{-1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0 \\ 0 & \frac{-1}{\sqrt{2}} & 0 & 0 & \frac{1}{\sqrt{2}} & 0 \\ \frac{-1}{\sqrt{2}} & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \vec{S}_{1} \cdot \vec{S}_{2} \\ \vec{S}_{1} \cdot \vec{S}_{3} \\ \vec{S}_{2} \cdot \vec{S}_{3} \\ \vec{S}_{2} \cdot \vec{S}_{3} \\ \vec{S}_{3} \cdot \vec{S}_{4} \end{pmatrix}$$

In terms of these, the Hamiltonian reads :

$$\mathcal{H} = 2\sqrt{6}J\Lambda_{\mathsf{A}} - 2\alpha J\left(\Lambda_{\mathsf{A}}\rho_{\mathsf{A}} + \Lambda_{\mathsf{E}}\rho_{\mathsf{E}} + \Lambda_{\mathsf{T}_{2}}\rho_{\mathsf{T}_{2}}\right) + K\left(\rho_{\mathsf{A}}^{2} + \rho_{\mathsf{E}}^{2} + \rho_{\mathsf{T}_{2}}^{2}\right) - 4\mathbf{h}\mathbf{M}$$

Eliminating the distances:

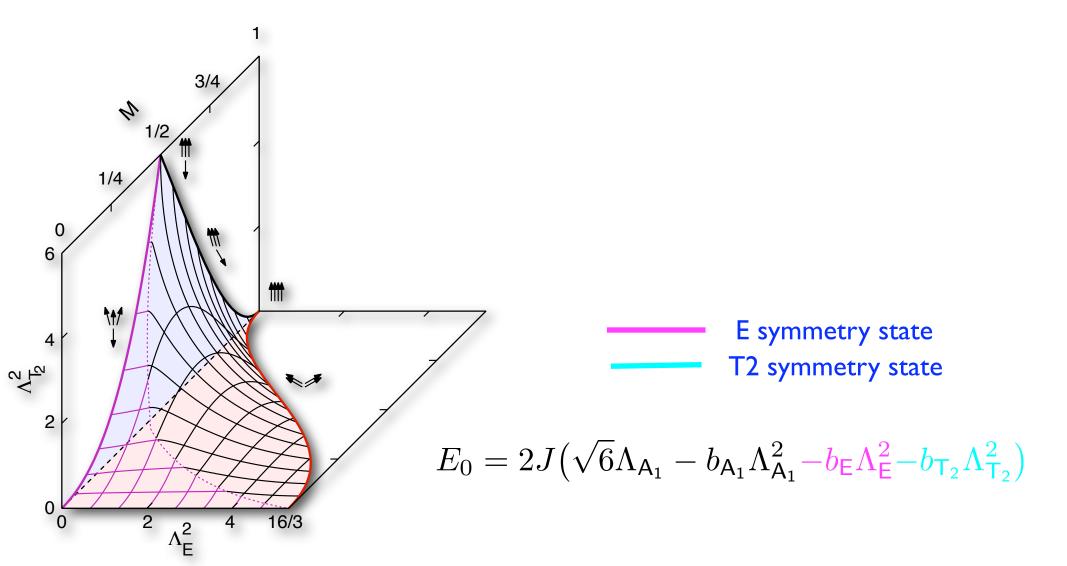
$$E = 2J\left(\sqrt{6}\Lambda_{\mathsf{A}_1} - b_{\mathsf{A}_1}\Lambda_{\mathsf{A}_1}^2 - b_{\mathsf{E}}\Lambda_{\mathsf{E}}^2 - b_{\mathsf{T}_2}\Lambda_{\mathsf{T}_2}^2\right) - 4\mathbf{h}\mathbf{M}$$



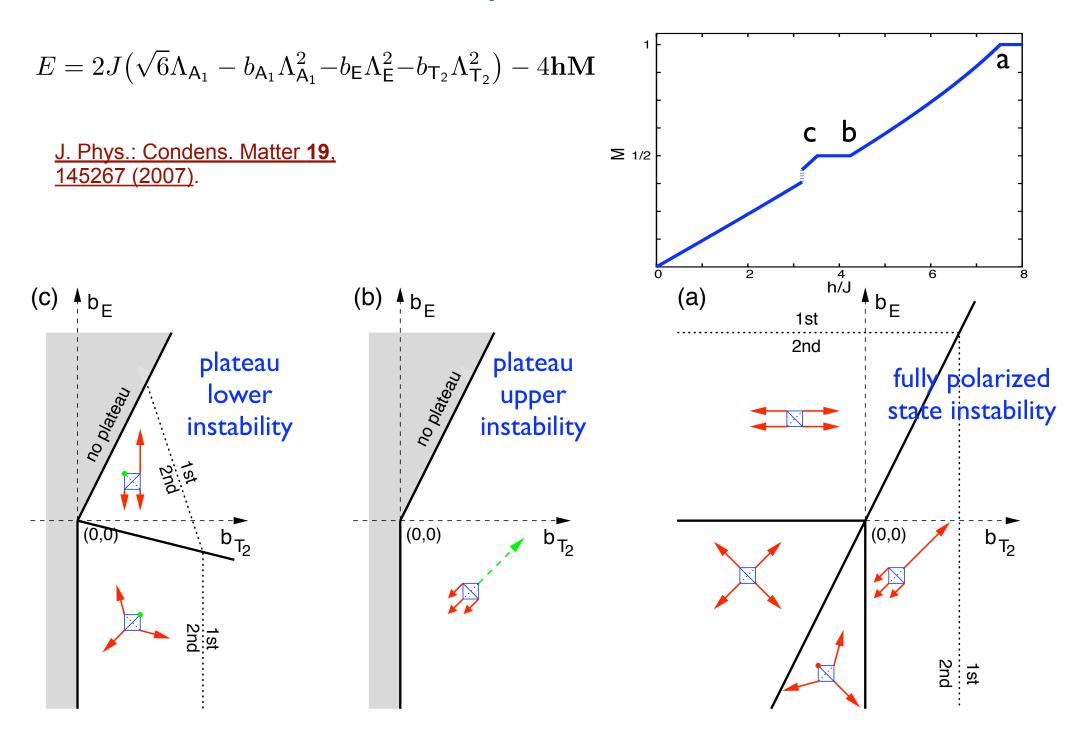
#### cusp $\Rightarrow$ stable plateau with T<sub>2</sub> symmetry

Energy as a function of magnetization :

$$E = E_0 - 4\mathbf{h}\mathbf{M} \qquad \qquad E = E_0$$

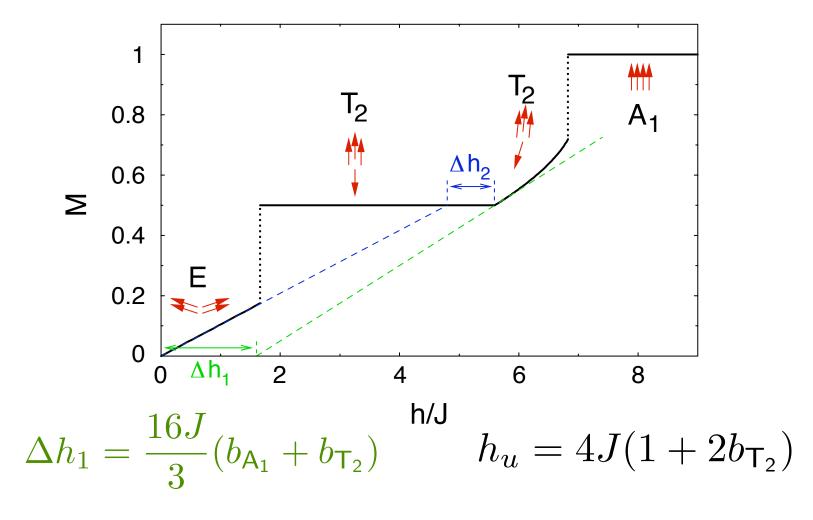


#### Local instability of collinear states



#### Magnetization curve and b's

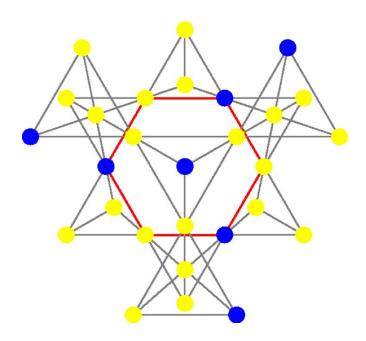
$$\Delta h_2 = \frac{8J}{3} (3b_{\mathsf{T}_2} - b_{\mathsf{A}_1} - 2b_{\mathsf{E}})$$



#### Back to spinels

In the real material (HgCr<sub>2</sub>O<sub>4</sub>, Matsuda *et al.*, Nature Physics **3**, 397 (2007)), the plateau state is not a 4 sublattice, but a more complicated, 16 sublattice state.

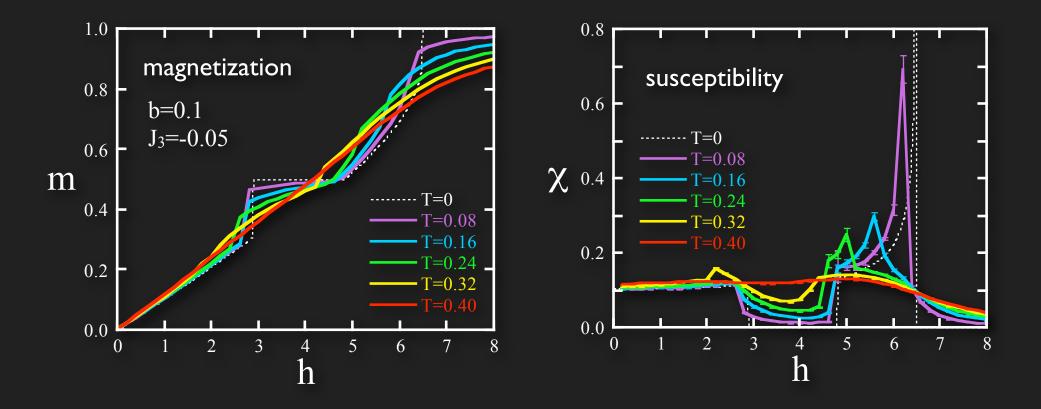
**Phonons**: Bergman *et al.* Phys. Rev. B **74**, 134409 (2006) : Einstein model incorporating local site distortions can lead to 16 sublattice plateau state.



**Exchanges**: Longer range exchanges can also select the 16 sublattice state.

Magnetoelastic coupling does not lead necessarily to plateau: in  $ZnCr_2Se_4$  magnetostriction, but M linear up to saturation (Hemberger et al., PRL **98**, 147203 (2007)).

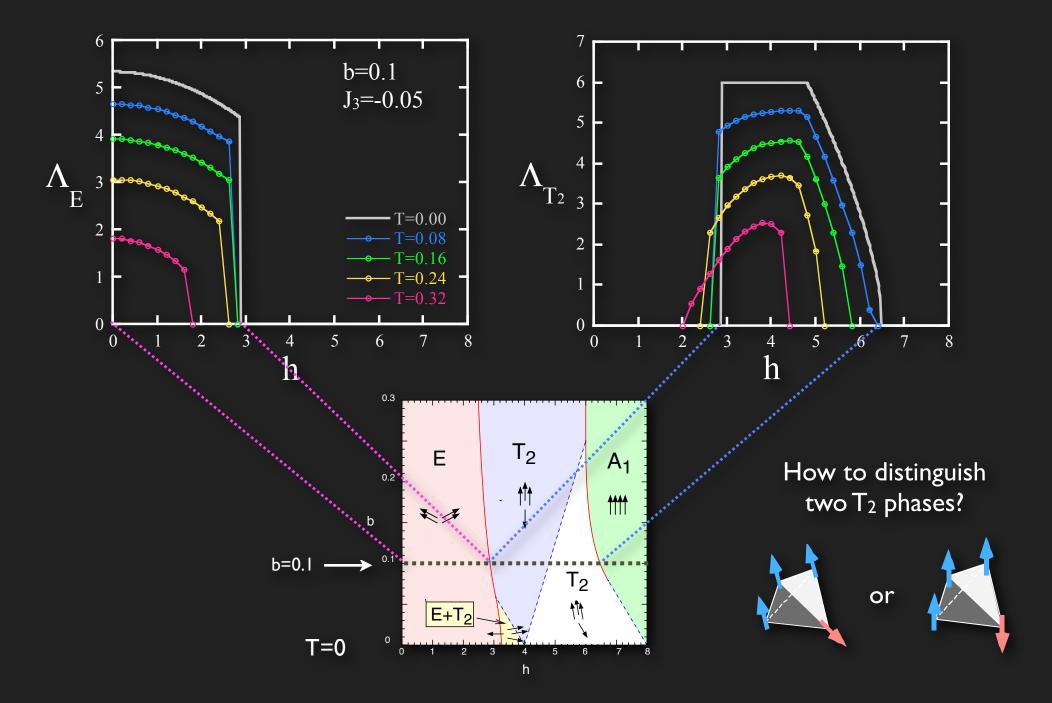
#### Monte Carlo Results at finite T (biquadratic effective model)



half-magnetization plateau survives at finite temperatures

J. Magn. Magn. Mater. **300**, 57 (2006)

#### Order Parameters - I



#### Order Parameters - II

nematic order parameter, measures coplanarity:

$$Q^{x^2 - y^2} = \langle S^x S^x - S^y S^y \rangle$$
$$Q^{xy} = \langle 2S^x S^x \rangle$$

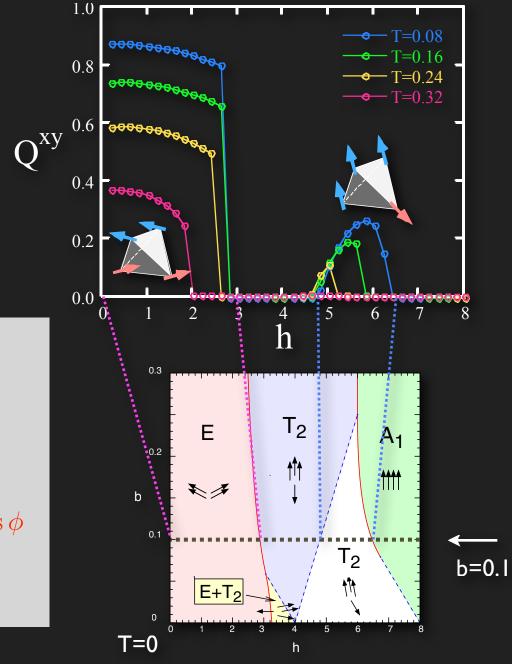
$$\phi \quad \phi + \pi$$

$$\exp 2i\phi = \cos 2\phi + i \sin 2\phi$$

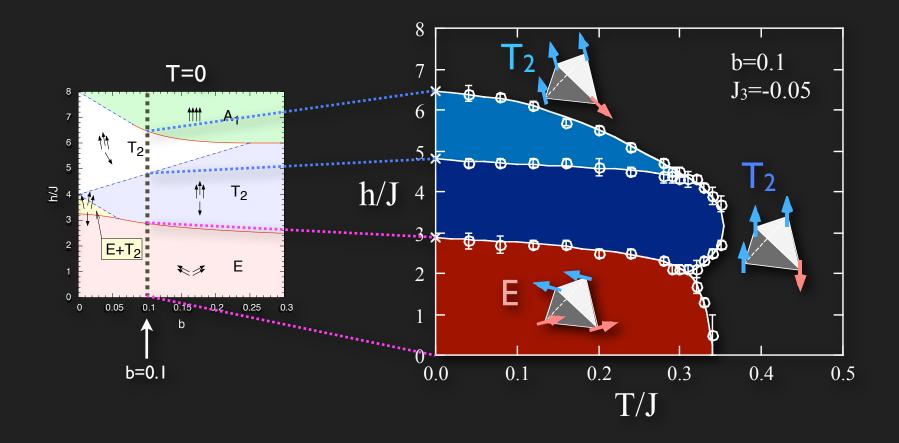
$$= \cos^2 \phi - \sin^2 \phi + i 2 \sin \phi \cos \phi$$

$$= S_x^2 - S_y^2 + i 2S_x S_y$$

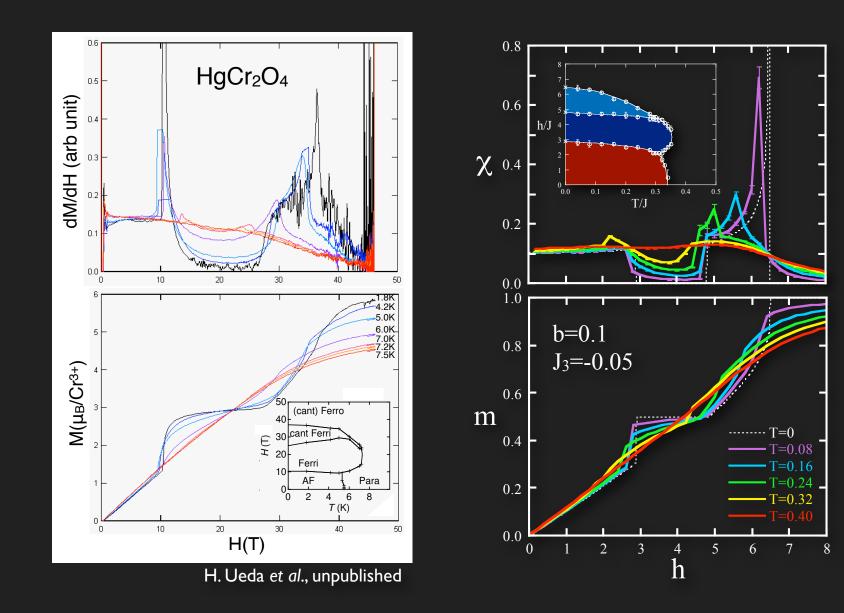
$$= Q_{x^2 - y^2} + i Q_{xy}$$

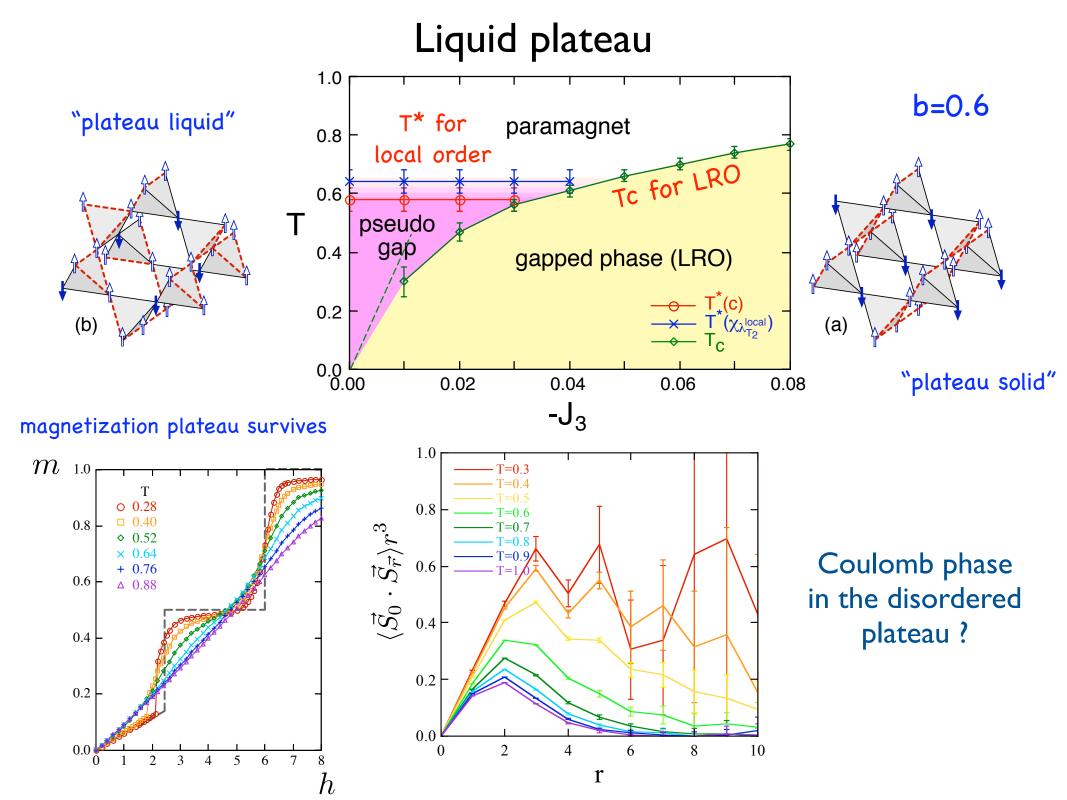


#### Phase Diagram at Finite T

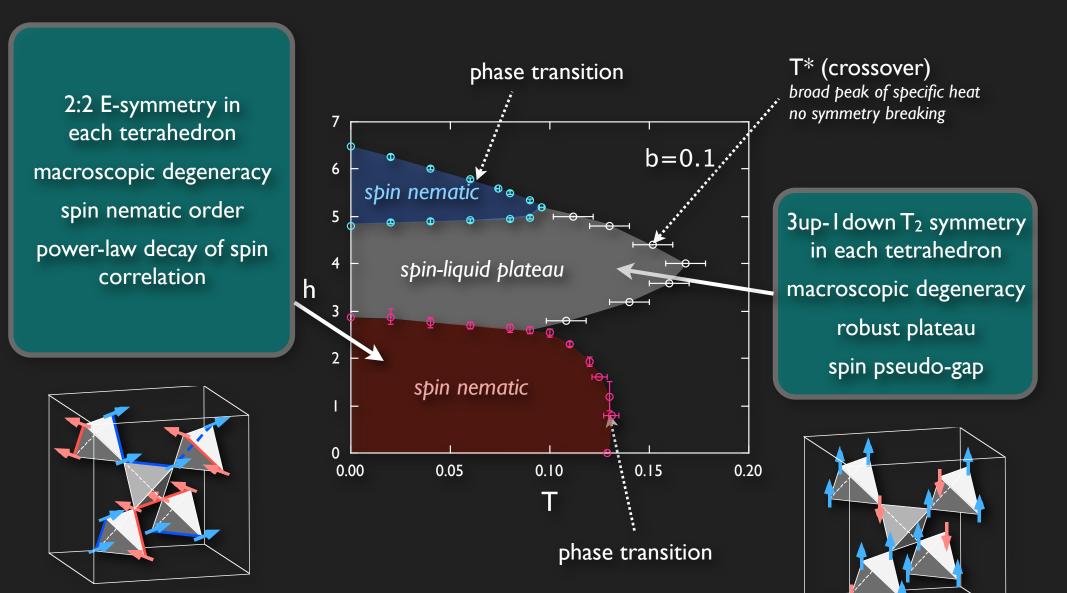


#### Comparison with Experiments

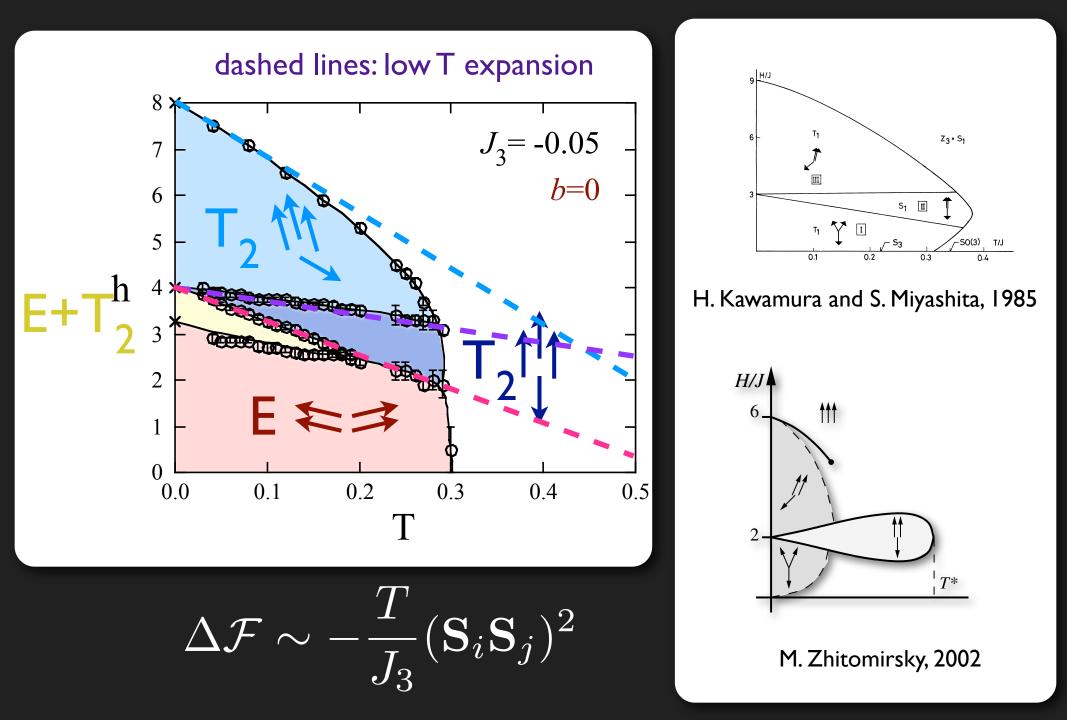




## Phase Diagram for $J_3=0$



#### Phase diagram for b = 0 : order by disorder revisited



### Conclusions

- Coupling to lattice distortions provides a very efficient mechanism for magnetization plateaux in frustrated and degenerate AF's.
  - The phase diagram and order parameters determined.
- Plateau can survive without long range order



At finite T : order-by-disorder possible with some help