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Half Magnetization Plateau
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linear up to full moment
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1/2-magnetization plateau

• ZnCr2O4, MgCr2O4
at higher field?

Discovery of New Magnetization Plateax

AF interaction =⇒ 1/2 Magnetization Plateau
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full S=3/2
moment

half S=3/2
moment

Where does the large magnetization plateau in 
Cr spinel compounds comes from?

H. Ueda et al.,PRL 94, 047202 (2005)

The sharp peak of dM=dB appearing at 25 T corresponds
to the discontinuous jump of M (first-order phase transition)
into the plateau state observed by NLPM.1) At still higher
fields, we observed steps in dM=dB at 61 and 77T, which are
likely to be the phase transitions theoretically predicted in
ref. 3. We tentatively name the regions separated by
the three transitions as phases I, II, III, and IV as indicated
in Fig. 2. The phase I is an antiferromagnetic state with
the helical spin structure whereas phase II is the """#
state. Note that dM=dB of the phase I is larger than that
of phase II which has dM=dB ! 0.1) Apparently, dM=dB
of the phase III takes a finite amplitude, indicating that M
substantially increases with B in this phase. The phase
transition between the phases II and III is considered to be of
second-order since dM=dB does not diverge, in accordance
with the model.3) The transition at 77 T is weakly of first
order since a well-defined peak is observed in dM=dB. In
phase IV, we observed that dM=dB substantially decreases.
Unfortunately, it is not clear in the present study whether
dM=dB of the phase IV diminishes to 0 or not. If we assume

that the magnetization in the phase IV is saturated, the
magnetization curve becomes like a dashed line in Fig. 2.
This behavior is well consistent with the one predicted by
the bilinear-biquadratic model.3) Finally, the newly obtained
B–T phase diagram is shown in Fig. 3, which is in good
agreement with that obtained by the recent Monte Carlo
simulation incorporating the biquadratic term.6)
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Fig. 2. (Color online) dM=dB vs B of CdCr2O4 along the [111] direction
(lower plot). The magnetization curve obtained with a nondestructive
long-pulse magnet in ref. 1 is shown in the upper plot by a solid line for
comparison. The dashed line is the schematic magnetization behavior
expected from the present result.
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Fig. 3. (Color online) B vs T phase diagram of CdCr2O4 for B k ½111#
direction. The symbols denote the data points determined by MðTÞ in
quasi static magnetic field measurements ( ) in ref. 1, MðBÞ in
nondestructive pulsed fields ( ) in ref. 1 and the present study ( ).
Solid lines are guide to the eyes.
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Experimental evidence for frustrated AF interactions

Structural Transition with Magnetic Ordering
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from Antiferromagnet to Ferromagnet

MCr2X4
( M = Mg, Zn, Cd, Hg ,

X = O, S, Se )






antiferromagnetic order
screw type order
ferromagnetic order

oxides AF interaction
sulfides F interaction
selenides F interaction
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Heisenberg spin system

1/2 plateau state

wide plateau region
=⇒ collinear structure

half of full moment
=⇒ 3-up 1-down

possible spin configurations
(1) rhombohedral (2) cubic

(R3̄m) (P4332)
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– Typeset by FoilTEX – 9

Plateau is independent of the direction of 
magnetic field - anisotropy negligible

(though anisotropy may be relevant to explain some fine details observed 
in neutron and ESR [M Yoshida JPSJ 2006] experiments )



A brief introduction to Cr spinels

octahedrally coordinated 
magnetic Cr-site

spinel ACr2X4  

(space group Fd-3m)

tetrahedrally coordinated 
nonmagnetic A-site



A brief introduction to Cr spinels

octahedrally coordinated 
magnetic Cr-site

spinel ACr2X4  

(space group Fd-3m)

tetrahedrally coordinated 
nonmagnetic A-site

Cr-sublattice: pyrochlore lattice
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S=3/2, no orbital degrees 
of freedom

Microscopic structure

in cubic crystal field:
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S=3/2, no orbital degrees 
of freedom

Microscopic structure

minimal magnetic model : 

on pyrochlore lattice

H = J
∑
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SiSj

in cubic crystal field:



Classical AF on pyrochlore lattice

Ground state manifold on a single 
tetraheron defined by M=0

Energy is a sum of squares :

H = J
∑

SiSj

=
J

2
(S1 + S2 + S3 + S4)

2 + . . .

= 4J
∑

tet.

M
2
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S3
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S1

S2

S3

S4

Due to the residual degeneracy the 
system remains disordered 
[Moessner & Chalker,  (1998)].

(DM!0) and a high entropic gain from soft fluctuations be-

cause in the ordered state the constraints L!!0 are not in-
dependent. These conclusions are depicted in Fig. 9.

V. GROUND-STATE SELECTION AT LOW

TEMPERATURES: NUMERICAL RESULTS

In the following two subsections, we present the results of

the Monte Carlo simulations of XY and Heisenberg pyro-

chlore antiferromagnets. One aim is to test our prediction of

collinear ordering for XY spins. We also consider the

Heisenberg model in detail, to show that order by disorder is

indeed absent in this case. Our studies of the Heisenberg

antiferromagnet are a continuation of Reimers’ pioneering

simulations33 and Zinkin’s subsequent work.58 Our conclu-

sions are in agreement with these authors, in particular with

the earlier, albeit tentative, ideas of Zinkin, but our results

are more extensive. Reimers work concentrated on the tem-

perature range T"0.05J: many of the observations described
in the following are very hard to discern or absent in this

regime.

Our simulations were carried out on systems of sizes

ranging from one unit cell (N!2 tetrahedra, Ns!4 spins# to
173 unit cells (N!9826,Ns!19652). As pointed out in Sec.
IV, small systems display large fluctuations, and therefore

require very long simulation runs. For Ns!4, the longest
simulation was 2"108 Monte Carlo steps per spin at T!5
"10#5J . For the largest system, however, only 1.5"106

Monte Carlo steps per spin were necessary even at the lowest

temperature.

A. Correlation functions

In this subsection, we consider two-spin correlations and

also a correlation function which quantifies directly the col-

linearity of the spin system. In the next subsection, we dis-

cuss the heat capacity, which is an indirect probe of the state

of the system, but in some ways more conclusive, since it is

sensitive to the presence of soft fluctuations irrespective of

the type of ordering with which they are associated.

First, we demonstrate that the Heisenberg model does not

have Néel order, even at low temperature. The correlation

function Q(r)$%S(0)•S(r)& is shown in Fig. 10: correla-
tions are very small beyond the second-neighbor distance.

Second, to measure the collinearity of spins, we evaluate the

correlation function 'for n-component spins#

P'r #$
n

n#1! %(S'0 #•S'r #)2&#
1

n
" , '5.1#

which is constructed to have the values P!0 at infinite tem-
perature and P!1 in a collinear state. P(r) is shown in Fig.
10, with r in units of nearest-neighbor distances. The corre-

lations for Heisenberg spins again have a range of only two

nearest-neighbor distances: there is no fluctuation-induced

order. Equally, the predicted collinear order for XY spins is

confirmed: there is long-range order in P(r) at this tempera-

ture. Note that, despite the very low temperature, the order

parameter P(r→*)#0.86 is appreciably less than its maxi-
mum possible value of 1. We expect on general grounds that

such nematic order should be established via a first-order

phase transition, but have not attempted to check this in de-

tail in our simulations.

The temperature dependence of collinearity for neighbor-

ing spins is shown in Fig. 11. Neighboring Heisenberg spins

have a limiting low-temperature value P(1)#0.2 which is
nonzero because the correlation length, though small, is itself

finite. By contrast, XY spins become perfectly collinear in

the low-temperature limit. The low-temperature variation of

(1#P(1)) , the deviation of collinearity from its maximal

value is characteristic of fluctuation-induced order.24 Specifi-

cally, we expect 1#P+!T/J at low temperatures, because

quartic modes give rise to the dominant fluctuations at low

temperatures. These modes, with coordinates , , character-
ized schematically in Fig. 7, have ,+T1/4 by equipartition.
Since (S1•S2)2-(1#,2/2)2-1#,2, we obtain 1#P(1)

+T1/2. We show in Fig. 12 that P(1) does indeed behave in
the expected way.

We have checked the dependence of our results on length

of simulation run and system size. To test whether the sys-

tem is properly equilibrated during our Monte Carlo runs, we

investigate the dependence of data on initial conditions, com-

paring results from random and collinear initial states. For

Heisenberg spins, our simulations are long enough that nei-

FIG. 9. The occurrence of order by disorder for n-component

spins arranged in corner-sharing units, each consisting of q spins.

Ordered 'marginal# models are denoted by circles 'crosses#.

FIG. 10. Correlation functions for the Heisenberg and XY anti-

ferromagnets at a temperature of T!5"10#4J . The two-spin cor-

relation function Q(r) 'dot-dashed line# and the collinearity corre-
lation function P(r) 'solid line# for a system of 2048 Heisenberg

spins and P(r) for a system of 864 XY spins 'dashed line#.

12 056 PRB 58R. MOESSNER AND J. T. CHALKER

T=0.0005 J

XY

Heisenberg
C

or
re

la
tio

n 
fu

nc
tio

n



Ground state 
degeneracy survives 
and magnetization is 

linear up to saturation. 

Classical ground state manifold in applied field (T=0)
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finite T: order by disorder scenario does not work

What is missing ?

high T 

low T 

h

simple MC simulations of 
classical pyrochlore model
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FIG. 2. MC results for the classical Kagomé antiferromag-
net. Top panel: Susceptibility vs magnetic field for several
temperatures. The inset shows the magnetization curve at T !
0.01J . Bottom panel: Specific heat vs magnetic field for T !
0.002J (full circles) and T ! 0.01J (open squares). The inset
shows the finite-size extrapolation for the squared triatic order
parameter (6).

develops a dip near H ! 1
3Hsat corresponding to a weak

plateau at 1
3 Msat. Two peaks, which surround the dip, indi-

cate first-order transitions to the plateau phase. The peaks
become rounded and then completely disappear at higher
temperatures. We estimated T ! ! 0.025J as the highest
temperature, where the collinear spin liquid still exists
(Fig. 1). Above this temperature the dip corresponds to
a smooth crossover. The field dependence of the specific
heat also follows the above predictions. At T ! 0.002J,
the specific heat starts near 11

12kB, corresponding to the
coplanar triatic state, at low fields. As the field approaches
1
3 Hsat, C"H# goes down to 5

6 kB, corresponding to the
collinear spin liquid, and then recovers back to 8

9kB, cor-
responding to the uniaxial triatic state. The specific heat
drops again near the saturation with CjHsat ! 5

6kB, while
the minimum value is reached at somewhat lower fields.
Such a behavior signals stabilization of the uuu phase be-
yond its classical boundary: bare negative modes below
Hsat are renormalized into soft modes, which further de-

crease C"H#. The specific heat also exhibits a peak at
H $ 4.8J "T ! 0.002J# and H $ 3J "T ! 0.01J# with
a significant finite-size dependence. We attribute this peak
to a phase transition from the collinear uuu state into a
noncollinear uniaxial triatic state (6). To check this we
have calculated field dependence of the squared triatic or-
der parameter (2) at T ! 0.002J for three cluster sizes
and extrapolated it to the thermodynamic limit. Results
are shown in the inset in Fig. 2. The uniaxial triatic phase
disappears at about the same field as the position of the
peak in the specific heat. The present data do not resolve
clearly the order of the phase transition, which must be
determined in a detailed numerical study.

We have shown that the geometrical approach based on
soft mode counting is a powerful tool for the investigation
of the field behavior of a classical Kagomé lattice antifer-
romagnet. Our preliminary analysis shows that a Heisen-
berg antiferromagnet on the related garnet lattice has the
same type of phase diagram (Fig. 1). In particular, the field
range of an asymptotically ordered quasicollinear state co-
incides roughly with a region for a field-induced ordering
observed in Gd3Ga5O12 [3].

I am grateful to J. T. Chalker, E. I. Kats, V. I. Marchenko,
O. A. Petrenko, and J. D. M. Champion for useful discus-
sions and to A. A. Snigireva for helpful remarks.
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FIG. 1: Temperature dependence of the magnetic susceptibil-
ity of HgCr2O4 with those of ZnCr2O4 and CdCr2O4. The
inset exhibits field dependence at low temperatures.

rochlore lattice. Temperature dependence of magnetic
susceptibility χ of HgCr2O4 is shown in figure 1, to-
gether with those of ZnCr2O4 and CdCr2O4. Suscep-
tibility data at high temperatures are well fitted by a
Curie-Weiss law, which gives an effective moment peff of
3.72 µB, and a Curie-Weiss temperature ΘCW of −32K.
The value of peff is reasonable compared with 3.87 µB

that is expected for S = 3/2 and g = 2. The magnitude of
|ΘCW| for HgCr2O4 is substantially small compared with
those for MgCr2O4, ZnCr2O4 and CdCr2O4, whose ΘCW

are −370K, −390K and −70K, respectively. Based on
molecular field approximation, assuming that only near-
est neighbor interactions are considered, the exchange
constant J = −3kBΘCW/zS(S + 1) is proportional to
|ΘCW| , where z = 6 is the number of nearest neighbor
interactions. Going from MgCr2O4 to HgCr2O4, J is
reduced by the increase of ionic radius of A-site cation.
In addition to the variation of Cr-Cr distances, Cr-O-Cr
angles also are varied reflecting the difference of oxygen
parameters u. The reduction of J is attributed mainly
to the variation of Cr-O-Cr angles, since superexchange
interactions are extremely sensitive to the bond angle.

Below 5.8K, the susceptibility drops steeply, indicat-
ing an antiferromagnetic ordering. There is no difference
between field cooled and zero-field cooled measurement
at H = 0.1T. At low field, the value of χ extrapolated to
0 K is about two third of χ just above transition, which
is typical for three-dimensional antiferromagnets. In the
inset of figure 1, susceptibilities within a low temper-
ature region are plotted under various magnetic fields.
Below the transition temperature, χ is field dependent
as in ZnCr2O4 [9], which shows antiferromagnetic order-
ings. This field dependence of χ is well explained as due
to movement of antiferromagnetic domains, which sug-
gests almost the same situation is realized in HgCr2O4.
Indeed, below this transition temperature, an antifer-
romagnetic ordering is confirmed by neutron scattering
measurements [8].
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FIG. 2: X-ray diffraction spectrum of HgCr2O4 obtained at
low temperatures. Lines on this graph are drawn every 0.5K
from 3.0K to 6.5K, and are shifted to avoid overlapping. The
inset represents temperature dependence of lattice parameters
(filled circles) and cell volume (crosses) calculated from 800
diffraction.

Néel temperature TN of HgCr2O4 is smaller than those
of MgCr2O4, ZnCr2O4 and CdCr2O4, which are 12.5K,
12K and 7.8K, respectively. Considering the values of
ΘCW, the index of frustration TN/|ΘCW| for HgCr2O4 is
notably larger than those of other chromium spinels, sug-
gesting that frustration is less strong in HgCr2O4. The
increase of TN/|ΘCW| is due to enhancement of TN com-
pared with J . There should be a certain interaction to
stabilize an ordered state. One likely origin is further-
neighbor interactions. Further-neighboring interactions
play an important role in stabilizing magnetic ordering
in an antiferromagnetic pyrochlore lattice. Although we
cannot estimate the sign or the value of further-neighbor
coupling constants at present, order-favoring interac-
tions seemingly effectively work in HgCr2O4. Another
interpretation is the effect of strong spin-lattice cou-
plings. Antiferromagnetic orderings in chromium spinels
are marginally achieved with a help of lattice distortions.
If spin-lattice couplings are stronger enough, Néel order-
ing with lattice distortion is stabilized even at relatively
higher temperatures.

For other chromium spinels with non-magnetic A-site
cations, the transition to Néel ordered state is of first
order and structural transition also takes place simul-
taneously at TN. Similarly, we have expected structural
transition for HgCr2O4, though cooling and heating mea-
surements of χ give no histeresis as a function of temper-
ature, which gives no indication of first order transition.
We measured powder x-ray diffraction at low tempera-
tures. Figure 2 represents temperature dependence of
diffraction pattern of 800 signal. Above 6 K, only one
peak is observed, reflecting the cubic symmetry of the
system. The signal around 90.4◦ is due to an impurity.
Below 6K, the signal becomes broad and finally splits
into three peaks, suggesting a structural transition. This
transition temperature is the same as the magnetic or-

orthorhombic ← cubic

magnetic ordering accompanied 
with a structural transition:

magnetoelastic coupling: h=0



magnetoelastic coupling: h>0

Structural Change with Transition
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CdCr2O4

H // [111]
L // [111]

        
 
_

L // [110]

{
[111] parallel to magnetic field
[11̄0] perpendicular to magnetic field

magnitude of magnetostriction are are
almost the same value (∼ 0.4 × 10−3)

macroscopically isotropic

• cubic distortion ?

• rhombohedral distortion with four
domains ?

diffraction under pulsed field will be
held at SPring-8.
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H. Ueda et al.,PRL 94, 047202 (2005)

strong magnetostriction entering the 
plateau phase:

plateau
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such modes has been observed by S.-H. Lee et al. [12]
in ZnCr2O4. The strings should also be observable in
ZnV2O4 where a structural distortion and a collinear Néel
order at low temperatures have been firmly established
[8,10]. A weaker feature might exist in the itinerant
magnet YMn2. We turn now to the details of our results.

Single tetrahedron.—Yamashita and Ueda [5] have dis-
cussed the Jahn-Teller distortion on a single tetrahedron for
the case of spins S ! 1!2. Their analysis can be applied to
general spin virtually unchanged. On an undistorted tetra-
hedron, all exchange constants are equal and any state with
total spin Stot ! 0 minimizes the classical Heisenberg en-
ergy J

P
i.j Si ? Sj. To see which of these is selected in

the presence of a small spontaneous distortion, we mini-
mize the sum of spin and elastic energies. The energy of
a bond JijSi ? Sj depends on ionic displacements through
variation of Heisenberg exchange Jij with the length of
interatomic bonds and bond angles. Expanding magnetic
and elastic energies to lowest order in the displacements
xa "a ! 1, . . . , 12# we obtain

E !
X
i,j,a

"≠Jij!≠xa# "Si ? Sj#xa 1
X
a,b

kabxaxb!2 . (1)

As the reduction of magnetic energy is linear in xa, it
will beat the quadratic cost in elastic energy. Hence a
Jahn-Teller distortion will result from the spin degeneracy.

For tetrahedral "Td# symmetry, displacements xa that
contribute to the magnetoelastic energy (1) must belong to
the same irreducible representation as the six bond vari-
ables Si ? Sj . These bond variables can be thought of as
classical quantities or, for quantum systems, as expecta-
tion values of the corresponding operators; our symmetry
analysis applies to both cases.

In the experimentally relevant regime well below the
Weiss temperature, Stot $ 0, and we are left with only
three independent quantities. One of them, the ground-
state energy

P
i.j Si ? Sj , invariant under all symmetry

operations, induces a uniform rescaling of the tetrahedron
(which is not a distortion). The other two, "f1, f2# % f,
measure the disparity of the bond variables:

f1 ! &"S1 1 S2# ? "S3 1 S4# 2 2S1 ? S2 2 2S3 ? S4'!
p

12 ,

f2 ! "S1 ? S3 1 S2 ? S4 2 S2 ? S3 2 S1 ? S4#!2 . (2)

They transform as the E representation of the group Td
and couple to phonons of the same symmetry. For a given
configuration of spins, the minimum magnetoelastic en-
ergy (1) can be written in two ways (Ci ! const#:

E ! 2"≠J!≠xE#2f2!"2kE# ! C0 2 C4

X
i.j

"Si ? Sj#2;

(3)

here ≠J!≠xE and kE are the appropriate magnetic and elas-
tic constants. Minimization of total energy is achieved
when the vector f has maximum length. From a classical
analysis, we find that f is restricted to lie in an equilateral
triangle, at the corners of which its length is maximized
(filled circles in Fig. 2). This corresponds to two weak-
ened and four strengthened bonds, a result which is easily
rationalized in terms of classical ground states of the tetra-
hedron: only one of them (modulo symmetries) fully sat-
isfies four bonds and completely frustrates the remaining
two, which are then, respectively, strengthened and weak-
ened by the distortion. This state is the collinear state,
which is of course favored by the effective “biquadratic
exchange” (3).

Infinite pyrochlore lattice.—The Jahn-Teller distortion
of individual tetrahedra will analogously drive a spin-
Peierls phase transition on the infinite pyrochlore lattice.
There now exist an infinite number of phonons that
could become soft. We here discuss the simplest but
already very rich case of a phonon condensate with lattice
momentum q ! 0, for which all tetrahedra of a given type
distort in the same way. The two inequivalent tetrahedra

(types A and B) which make up the pyrochlore lattice
reside on a bipartite (diamond) lattice (Fig. 1).

The symmetry group of the pyrochlore lattice, Oh, is
enlarged from Td by the operation of inversion through a
site, which exchanges A and B tetrahedra: Td ≠ Ci ! Oh.
Irreducible representations of the cubic group Oh are those
of Td with an additional quantum number, parity under
the inversion. Thus, there are two doubly degenerate dis-
placement modes that couple to bonds in a nontrivial way.
The even phonon doublet Eg creates a uniform distortion

θ
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3
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2
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4
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2

FIG. 2. Possible values of the two components of the bond
vector f ! "f1, f2# ! "f cosu, f sinu# are bounded by an equi-
lateral triangle in the "f1, f2# plane. Also shown are six extremal
spin configurations (filled and open circles). Strong (weak)
bonds are denoted by solid (dashed) lines.

067203-2 067203-2

Coupling to lattice distortions for h=0

Yamashita & Ueda, PRL 85, 4960 (2000):

Tchernyshyov, Moessner, & Sondhi, 
PRL 88, 067203 (2002):

“Order by Distortion”

Landau-like theory of the spin-Peierls 
mechanism in the E irrep.

In a single tetrahedron of S=1/2 spins ground state 2x degenerate, E irrep. 
Coupled tetrahedra: VBS-like theory of ZnV2O4 

YMn2:  Terao JPSJ 65, 1413 (1996), Canals & Lacroix PRB 61, 1149 (2000)

Y2M2O7: Keren & Gardner  PRL 87, 177201 (2001)



How does lattice distortion affect magnetic order ?

spin-lattice
coupling

elastic
energy

J(r) = J(r0) +
∂J

∂r

∣

∣

∣

∣

r0

δr = J(1 + αρ)

H =
∑

〈i,j〉

[

J(1 − αρi,j)SiSj +
K

2
ρ2

i,j

]

− h
∑

i

Si

spin exchange 
depends on distance:

Consider generalized “spin-Peierls” Hamiltonian :

the elastic energy is quadratic - we can integrate it out:
- it leads to long range spin-spin effective interaction
- for realistic description we shall take realistic phonon modes
- we want to understand the basic mechanism, so we look at the 
simplest case (affine deformations)



Minimal symmetry breaking solution

The four-sublattice ordering does not 
break the translational symmetry 

(uniform q=0 distortions). 
The point group symmetry is broken.

full point group is Oh = Td × {1,I}

site-factorized wave function is 
invariant under inversion I 
⇒ only Td remains

The four-sublattice ordering can be 
stabilized e.g. by AF J2 or FM J3.



Minimazing the energy of a tetrahedron (4LRO state)

Half Magnetization Plateau
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ZnCr2S4 single

H // [111]

CdCr2O4 single

H // [111]

ZnCr2O4 poly
MgCr2O4 poly

HgCr2O4 poly

Magnetization process

• ZnCr2S4, ZnCr2Se4
linear up to full moment

• CdCr2O4, HgCr2O4
1/2-magnetization plateau

• ZnCr2O4, MgCr2O4
at higher field?

Discovery of New Magnetization Plateax

AF interaction =⇒ 1/2 Magnetization Plateau
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favours collinear 
spin configurations !

The ground state problem is 
reduced to pure spin energy 
(assuming 4 sublattice LRO):

H =
∑

〈i,j〉

J
[

SiSj − b(SiSj)
2
]

− h
∑

i

Si



Irreps of tetrahedral symmetry group Td :
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The phase diagram 

cubic symmetry
restored 

trigonal lattice
distortion

tetragonal lattice
distortion

Irreps of the tetrahedral group T
d  

 0.25  0.3

h/
J

E

2

b
 0  0.15  0.2

T2

E+T2

 6
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 5

 4 T

 3

 2

A

 1

 0
 0.05  0.1

1

PRL 93, 197203 (2004)

http://link.aps.org/abstract/PRL/v93/e197203
http://link.aps.org/abstract/PRL/v93/e197203


Why are these particular phases stable ?
Irreps of tetrahedral symmetry group Td :

H = 2
√

6JΛA − 2αJ
(

ΛAρA + ΛEρE + ΛT2
ρT2

)

+K
(

ρ2

A + ρ2

E + ρ2

T2

)

− 4hM

In terms of these, the Hamiltonian reads :

Eliminating the distances:

E = 2J
(
√

6ΛA1
− bA1

Λ
2

A1
−bEΛ

2

E−bT2
Λ

2

T2

)

− 4hM
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Why are these particular 
phases stable ?

Surface of 
maximal values
of second order 

invariants
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cusp  ⇒ stable plateau with T2 symmetry

E symmetry state
T2 symmetry state 

Energy as a function of magnetization :
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Local instability of collinear states
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J. Phys.: Condens. Matter 19, 
145267 (2007).

http://stacks.iop.org/JPhysCM/19/145267
http://stacks.iop.org/JPhysCM/19/145267
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Back to spinels

Phonons: Bergman et al. Phys. 
Rev. B 74, 134409 (2006) : 
Einstein model incorporating 
local site distortions can lead to 
16 sublattice plateau state.

quired on all such cells, the ground state is completely speci-
fied. This is precisely the R state obtained in Ref. 14 in a
very different quantum dimer model analysis. The R state has
space group P4332 and may be thought of in terms of filling
the pyrochlore lattice with a fraction 1

4 of hexagonal
plaquettes with alternating up/down spins and a fraction 3

4 of
plaquettes with one down spin and five up spins.

Because the argument above proves that the R state is the
best possible collinear state, any alternative ground state
must be noncollinear. Since noncollinear states cannot ex-
hibit a plateau, proving that the R state is the global mini-

mum energy state is equivalent to proving the existence of a
plateau. However, it is important to emphasize that the above
argument assumes the 3:1 configurations !actually it can be
made equally rigorous assuming only collinearity". For b!
!b, this assumption is valid, and the above argument be-
comes controlled. For the generic situation with b!#b, the
effective Hamiltonian is actually “frustrated” in the follow-
ing sense. Because the Einstein phonon displacement resides
on a pyrochlore site and is related via Eq. !11" to spins on the
two-neighboring tetrahedra, the natural unit for the effective
Hamiltonian is no longer a bond but such a pair of adjacent
tetrahedra. One may rewrite the Hamiltonian as a sum over
such pairs, parametrized by the pyrochlore site j they share:
H=$ jH j, with

FIG. 2. !Color online" The
three generic configurations of mi-
nority !down pointing red arrows"
and majority sites !up pointing
blue arrows" on two adjacent te-
trahedra.

FIG. 3. !Color online" Further neighbor interactions in the py-
rochlore lattice. The nearest-neighbor interaction J1 is between sites
a and b, the next-nearest-neighbor interaction J2 is between sites a
and c, and finally the next-next-nearest-neighbor interaction J3 is
between sites a and d.

FIG. 4. !Color online" Spin configuration of the R state. Major-
ity sites are colored light gray !yellow", minority sites are colored
black !blue". The flippable plaquette in this unit cell of the R-state
configuration is highlighted by thicker links !in red".

MODELS OF DEGENERACY BREAKING IN PYROCHLORE… PHYSICAL REVIEW B 74, 134409 !2006"

134409-5

Exchanges: Longer range 
exchanges can also select the 
16 sublattice state.

In the real material (HgCr2O4, 
Matsuda et al., Nature Physics 
3, 397 (2007)), the plateau state 
is not a 4 sublattice, but a more 
complicated, 16 sublattice state. 

Magnetoelastic coupling does not lead necessarily to plateau: in ZnCr2Se4 

magnetostriction, but M linear up to saturation (Hemberger et al., PRL 98, 
147203 (2007)).
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Order Parameters - I
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recent high field magnetization measurements on the
closely related Cr spinels CdCr2O4 and HgCr2O4 [11].

We take as a starting point the Hamiltonian

H !
X

hi;ji

!

J"1# !1"i;j$SiSj %
K
2
"2
i;j

"

# h
X

i
Si; (1)

where the summation hi; ji runs over the nearest neighbor
bonds of a pyrochlore lattice and "i;j is the change in
distance between neighboring spins Si and Sj, relative to
the equilibrium lattice constant. We assume the existence
of a linear regime in which exchange interactions and
elastic energies depend only on the distance between
lattice sites. It is convenient to introduce a single dimen-
sionless parameter b ! J!2=K to measure the strength of
the spin-lattice coupling. As written, the antiferromag-
netic exchange interaction J, elastic constant K, and a
spin-lattice coupling ! are all taken to be positive.

The pyrochlore is a bipartite network of corner-sharing
tetrahedra. This means that, if we neglect coupling to the
lattice, we can write the energy per spin as

H ! 4J
X

tetr

#

M# h
8J

$

2
# h2

16J
% const; (2)

where the sum runs over all the tetrahedra and M !
"S1 % S2 % S3 % S4$=4 is the magnetization per site.
Clearly, the energy can be minimized by ensuring M !
h=8 in each tetrahedron. However this local constraint
does not select any one ground state, but rather a vast
manifold of states. If we consider classical spins, one
angular variable remains undetermined per tetrahedron,
and the magnetization is linear in h right up the satura-
tion field of h ! 8J.

Coupling to the lattice provides a very efficient mecha-
nism for lifting this degeneracy. Since bond energies vary
linearly with "i;j, while elastic energies increase as "2

i;j, at
any given value of magnetic field the system can always
gain energy by ordering the spins and distorting the
lattice. In this sense the Hamiltonian (1) can be thought
of as a three dimensional generalization of the spin-
Peierls problem. The system gains the most energy from
distorting bonds for which SiSj takes on its extremal
values. For this reason, coupling to the lattice tends to
favor collinear spin configurations and, for quantum
spins, bond singlets (see, e.g., [12]). Our goal is to under-
stand which states emerge from this competition between
applied field and frustrated AF interactions and for what
range of fields they are stable.

For the sake of simplicity, and in the spirit of earlier
work [13,14], we shall restrict our analysis to uniform
spin and lattice order with crystal momentum q ! 0. It is
instructive to further simplify the problem by treating the
spins as classical vectors, in which case we can safely
neglect all states which are odd under the inversion IT
which exchanges the two tetrahedron sublattices. Both of
these approximations can be relaxed at will.

Under these assumptions, the system must have four
sublattice order, and we can find the ground state of Eq. (1)
by a straightforward minimization of energy with respect
to bond length. This is equivalent to solving a Heisenberg
model with biquadratic-bilinear terms[15]:

H !
X

hi;ji
J&SiSj # b"SiSj$2' # h

X

i
Si: (3)

Our results are summarized in the phase diagram Fig. 2,
with the corresponding magnetization curves shown in
Fig. 3. For small h, the lattice has overall tetragonal
symmetry, with tetrahedra distorted so as to have two
long ferromagnetic (FM) and four short canted AF
bonds. This is broadly compatible with the experimentally
observed ground state of ZnCr2O4 [3]. In this regime the
magnetization of the system remains linear but with
reduced slope M ( h=&8J"1% 2b$'.

For h ( 3J and b * 0:05 the system makes a first order
transition into state with exactly three up and one down
spins per tetrahedron, i.e., M ) S=2, regardless of h. In
this half-magnetization plateau phase, each tetrahedron
has three long FM and three short AF bonds, giving rise
to an overall trigonal lattice distortion. For any finite
value of b the plateau is extremely broad. Its width
shrinks linearly as b ! 0; for h=J * 4# 16b we find a
transition into a coplanar 2:1:1 canted state with mixed E
and T2 symmetry, and for h=J ! 4% 8b, a transition into
a coplanar 3:1 canted phase with trigonal symmetry for
h=J ! 4% 8b. Both transitions are of second order.

Finally, for 8J > h > 6J, there is a transition into a
fully saturated FM in which the lattice regains overall
cubic symmetry. In the absence of longer range exchange
interactions, the two lowest lying spin wave branches of
the FM phase are local in character and dispersionless.
For b < 3=38, the transition from the 3:1 canted phase
into the FM is of second order and occurs on the line
h=J ! 8# 16b. For b > 3=38 the transition becomes first
order, and for b > 1=4 it is energetically favorable to
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FIG. 2 (color online). Phase diagram as a function of mag-
netic field h and dimensionless coupling constant b. Solid lines
denote first and dashed lines, second order transitions. Spin
configurations and irrep of the order parameter in each phase is
also shown.
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where the summation hi; ji runs over the nearest neighbor
bonds of a pyrochlore lattice and "i;j is the change in
distance between neighboring spins Si and Sj, relative to
the equilibrium lattice constant. We assume the existence
of a linear regime in which exchange interactions and
elastic energies depend only on the distance between
lattice sites. It is convenient to introduce a single dimen-
sionless parameter b ! J!2=K to measure the strength of
the spin-lattice coupling. As written, the antiferromag-
netic exchange interaction J, elastic constant K, and a
spin-lattice coupling ! are all taken to be positive.

The pyrochlore is a bipartite network of corner-sharing
tetrahedra. This means that, if we neglect coupling to the
lattice, we can write the energy per spin as
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where the sum runs over all the tetrahedra and M !
"S1 % S2 % S3 % S4$=4 is the magnetization per site.
Clearly, the energy can be minimized by ensuring M !
h=8 in each tetrahedron. However this local constraint
does not select any one ground state, but rather a vast
manifold of states. If we consider classical spins, one
angular variable remains undetermined per tetrahedron,
and the magnetization is linear in h right up the satura-
tion field of h ! 8J.

Coupling to the lattice provides a very efficient mecha-
nism for lifting this degeneracy. Since bond energies vary
linearly with "i;j, while elastic energies increase as "2

i;j, at
any given value of magnetic field the system can always
gain energy by ordering the spins and distorting the
lattice. In this sense the Hamiltonian (1) can be thought
of as a three dimensional generalization of the spin-
Peierls problem. The system gains the most energy from
distorting bonds for which SiSj takes on its extremal
values. For this reason, coupling to the lattice tends to
favor collinear spin configurations and, for quantum
spins, bond singlets (see, e.g., [12]). Our goal is to under-
stand which states emerge from this competition between
applied field and frustrated AF interactions and for what
range of fields they are stable.

For the sake of simplicity, and in the spirit of earlier
work [13,14], we shall restrict our analysis to uniform
spin and lattice order with crystal momentum q ! 0. It is
instructive to further simplify the problem by treating the
spins as classical vectors, in which case we can safely
neglect all states which are odd under the inversion IT
which exchanges the two tetrahedron sublattices. Both of
these approximations can be relaxed at will.

Under these assumptions, the system must have four
sublattice order, and we can find the ground state of Eq. (1)
by a straightforward minimization of energy with respect
to bond length. This is equivalent to solving a Heisenberg
model with biquadratic-bilinear terms[15]:
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Our results are summarized in the phase diagram Fig. 2,
with the corresponding magnetization curves shown in
Fig. 3. For small h, the lattice has overall tetragonal
symmetry, with tetrahedra distorted so as to have two
long ferromagnetic (FM) and four short canted AF
bonds. This is broadly compatible with the experimentally
observed ground state of ZnCr2O4 [3]. In this regime the
magnetization of the system remains linear but with
reduced slope M ( h=&8J"1% 2b$'.

For h ( 3J and b * 0:05 the system makes a first order
transition into state with exactly three up and one down
spins per tetrahedron, i.e., M ) S=2, regardless of h. In
this half-magnetization plateau phase, each tetrahedron
has three long FM and three short AF bonds, giving rise
to an overall trigonal lattice distortion. For any finite
value of b the plateau is extremely broad. Its width
shrinks linearly as b ! 0; for h=J * 4# 16b we find a
transition into a coplanar 2:1:1 canted state with mixed E
and T2 symmetry, and for h=J ! 4% 8b, a transition into
a coplanar 3:1 canted phase with trigonal symmetry for
h=J ! 4% 8b. Both transitions are of second order.

Finally, for 8J > h > 6J, there is a transition into a
fully saturated FM in which the lattice regains overall
cubic symmetry. In the absence of longer range exchange
interactions, the two lowest lying spin wave branches of
the FM phase are local in character and dispersionless.
For b < 3=38, the transition from the 3:1 canted phase
into the FM is of second order and occurs on the line
h=J ! 8# 16b. For b > 3=38 the transition becomes first
order, and for b > 1=4 it is energetically favorable to
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FIG. 2 (color online). Phase diagram as a function of mag-
netic field h and dimensionless coupling constant b. Solid lines
denote first and dashed lines, second order transitions. Spin
configurations and irrep of the order parameter in each phase is
also shown.
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the equilibrium lattice constant. We assume the existence
of a linear regime in which exchange interactions and
elastic energies depend only on the distance between
lattice sites. It is convenient to introduce a single dimen-
sionless parameter b ! J!2=K to measure the strength of
the spin-lattice coupling. As written, the antiferromag-
netic exchange interaction J, elastic constant K, and a
spin-lattice coupling ! are all taken to be positive.
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does not select any one ground state, but rather a vast
manifold of states. If we consider classical spins, one
angular variable remains undetermined per tetrahedron,
and the magnetization is linear in h right up the satura-
tion field of h ! 8J.

Coupling to the lattice provides a very efficient mecha-
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linearly with "i;j, while elastic energies increase as "2
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lattice. In this sense the Hamiltonian (1) can be thought
of as a three dimensional generalization of the spin-
Peierls problem. The system gains the most energy from
distorting bonds for which SiSj takes on its extremal
values. For this reason, coupling to the lattice tends to
favor collinear spin configurations and, for quantum
spins, bond singlets (see, e.g., [12]). Our goal is to under-
stand which states emerge from this competition between
applied field and frustrated AF interactions and for what
range of fields they are stable.

For the sake of simplicity, and in the spirit of earlier
work [13,14], we shall restrict our analysis to uniform
spin and lattice order with crystal momentum q ! 0. It is
instructive to further simplify the problem by treating the
spins as classical vectors, in which case we can safely
neglect all states which are odd under the inversion IT
which exchanges the two tetrahedron sublattices. Both of
these approximations can be relaxed at will.

Under these assumptions, the system must have four
sublattice order, and we can find the ground state of Eq. (1)
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with the corresponding magnetization curves shown in
Fig. 3. For small h, the lattice has overall tetragonal
symmetry, with tetrahedra distorted so as to have two
long ferromagnetic (FM) and four short canted AF
bonds. This is broadly compatible with the experimentally
observed ground state of ZnCr2O4 [3]. In this regime the
magnetization of the system remains linear but with
reduced slope M ( h=&8J"1% 2b$'.

For h ( 3J and b * 0:05 the system makes a first order
transition into state with exactly three up and one down
spins per tetrahedron, i.e., M ) S=2, regardless of h. In
this half-magnetization plateau phase, each tetrahedron
has three long FM and three short AF bonds, giving rise
to an overall trigonal lattice distortion. For any finite
value of b the plateau is extremely broad. Its width
shrinks linearly as b ! 0; for h=J * 4# 16b we find a
transition into a coplanar 2:1:1 canted state with mixed E
and T2 symmetry, and for h=J ! 4% 8b, a transition into
a coplanar 3:1 canted phase with trigonal symmetry for
h=J ! 4% 8b. Both transitions are of second order.

Finally, for 8J > h > 6J, there is a transition into a
fully saturated FM in which the lattice regains overall
cubic symmetry. In the absence of longer range exchange
interactions, the two lowest lying spin wave branches of
the FM phase are local in character and dispersionless.
For b < 3=38, the transition from the 3:1 canted phase
into the FM is of second order and occurs on the line
h=J ! 8# 16b. For b > 3=38 the transition becomes first
order, and for b > 1=4 it is energetically favorable to
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FIG. 2 (color online). Phase diagram as a function of mag-
netic field h and dimensionless coupling constant b. Solid lines
denote first and dashed lines, second order transitions. Spin
configurations and irrep of the order parameter in each phase is
also shown.
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where the summation hi; ji runs over the nearest neighbor
bonds of a pyrochlore lattice and "i;j is the change in
distance between neighboring spins Si and Sj, relative to
the equilibrium lattice constant. We assume the existence
of a linear regime in which exchange interactions and
elastic energies depend only on the distance between
lattice sites. It is convenient to introduce a single dimen-
sionless parameter b ! J!2=K to measure the strength of
the spin-lattice coupling. As written, the antiferromag-
netic exchange interaction J, elastic constant K, and a
spin-lattice coupling ! are all taken to be positive.

The pyrochlore is a bipartite network of corner-sharing
tetrahedra. This means that, if we neglect coupling to the
lattice, we can write the energy per spin as

H ! 4J
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tetr
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$

2
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16J
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where the sum runs over all the tetrahedra and M !
"S1 % S2 % S3 % S4$=4 is the magnetization per site.
Clearly, the energy can be minimized by ensuring M !
h=8 in each tetrahedron. However this local constraint
does not select any one ground state, but rather a vast
manifold of states. If we consider classical spins, one
angular variable remains undetermined per tetrahedron,
and the magnetization is linear in h right up the satura-
tion field of h ! 8J.

Coupling to the lattice provides a very efficient mecha-
nism for lifting this degeneracy. Since bond energies vary
linearly with "i;j, while elastic energies increase as "2

i;j, at
any given value of magnetic field the system can always
gain energy by ordering the spins and distorting the
lattice. In this sense the Hamiltonian (1) can be thought
of as a three dimensional generalization of the spin-
Peierls problem. The system gains the most energy from
distorting bonds for which SiSj takes on its extremal
values. For this reason, coupling to the lattice tends to
favor collinear spin configurations and, for quantum
spins, bond singlets (see, e.g., [12]). Our goal is to under-
stand which states emerge from this competition between
applied field and frustrated AF interactions and for what
range of fields they are stable.

For the sake of simplicity, and in the spirit of earlier
work [13,14], we shall restrict our analysis to uniform
spin and lattice order with crystal momentum q ! 0. It is
instructive to further simplify the problem by treating the
spins as classical vectors, in which case we can safely
neglect all states which are odd under the inversion IT
which exchanges the two tetrahedron sublattices. Both of
these approximations can be relaxed at will.

Under these assumptions, the system must have four
sublattice order, and we can find the ground state of Eq. (1)
by a straightforward minimization of energy with respect
to bond length. This is equivalent to solving a Heisenberg
model with biquadratic-bilinear terms[15]:

H !
X

hi;ji
J&SiSj # b"SiSj$2' # h

X

i
Si: (3)

Our results are summarized in the phase diagram Fig. 2,
with the corresponding magnetization curves shown in
Fig. 3. For small h, the lattice has overall tetragonal
symmetry, with tetrahedra distorted so as to have two
long ferromagnetic (FM) and four short canted AF
bonds. This is broadly compatible with the experimentally
observed ground state of ZnCr2O4 [3]. In this regime the
magnetization of the system remains linear but with
reduced slope M ( h=&8J"1% 2b$'.

For h ( 3J and b * 0:05 the system makes a first order
transition into state with exactly three up and one down
spins per tetrahedron, i.e., M ) S=2, regardless of h. In
this half-magnetization plateau phase, each tetrahedron
has three long FM and three short AF bonds, giving rise
to an overall trigonal lattice distortion. For any finite
value of b the plateau is extremely broad. Its width
shrinks linearly as b ! 0; for h=J * 4# 16b we find a
transition into a coplanar 2:1:1 canted state with mixed E
and T2 symmetry, and for h=J ! 4% 8b, a transition into
a coplanar 3:1 canted phase with trigonal symmetry for
h=J ! 4% 8b. Both transitions are of second order.

Finally, for 8J > h > 6J, there is a transition into a
fully saturated FM in which the lattice regains overall
cubic symmetry. In the absence of longer range exchange
interactions, the two lowest lying spin wave branches of
the FM phase are local in character and dispersionless.
For b < 3=38, the transition from the 3:1 canted phase
into the FM is of second order and occurs on the line
h=J ! 8# 16b. For b > 3=38 the transition becomes first
order, and for b > 1=4 it is energetically favorable to
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FIG. 2 (color online). Phase diagram as a function of mag-
netic field h and dimensionless coupling constant b. Solid lines
denote first and dashed lines, second order transitions. Spin
configurations and irrep of the order parameter in each phase is
also shown.
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where the summation hi; ji runs over the nearest neighbor
bonds of a pyrochlore lattice and "i;j is the change in
distance between neighboring spins Si and Sj, relative to
the equilibrium lattice constant. We assume the existence
of a linear regime in which exchange interactions and
elastic energies depend only on the distance between
lattice sites. It is convenient to introduce a single dimen-
sionless parameter b ! J!2=K to measure the strength of
the spin-lattice coupling. As written, the antiferromag-
netic exchange interaction J, elastic constant K, and a
spin-lattice coupling ! are all taken to be positive.

The pyrochlore is a bipartite network of corner-sharing
tetrahedra. This means that, if we neglect coupling to the
lattice, we can write the energy per spin as
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where the sum runs over all the tetrahedra and M !
"S1 % S2 % S3 % S4$=4 is the magnetization per site.
Clearly, the energy can be minimized by ensuring M !
h=8 in each tetrahedron. However this local constraint
does not select any one ground state, but rather a vast
manifold of states. If we consider classical spins, one
angular variable remains undetermined per tetrahedron,
and the magnetization is linear in h right up the satura-
tion field of h ! 8J.

Coupling to the lattice provides a very efficient mecha-
nism for lifting this degeneracy. Since bond energies vary
linearly with "i;j, while elastic energies increase as "2

i;j, at
any given value of magnetic field the system can always
gain energy by ordering the spins and distorting the
lattice. In this sense the Hamiltonian (1) can be thought
of as a three dimensional generalization of the spin-
Peierls problem. The system gains the most energy from
distorting bonds for which SiSj takes on its extremal
values. For this reason, coupling to the lattice tends to
favor collinear spin configurations and, for quantum
spins, bond singlets (see, e.g., [12]). Our goal is to under-
stand which states emerge from this competition between
applied field and frustrated AF interactions and for what
range of fields they are stable.

For the sake of simplicity, and in the spirit of earlier
work [13,14], we shall restrict our analysis to uniform
spin and lattice order with crystal momentum q ! 0. It is
instructive to further simplify the problem by treating the
spins as classical vectors, in which case we can safely
neglect all states which are odd under the inversion IT
which exchanges the two tetrahedron sublattices. Both of
these approximations can be relaxed at will.

Under these assumptions, the system must have four
sublattice order, and we can find the ground state of Eq. (1)
by a straightforward minimization of energy with respect
to bond length. This is equivalent to solving a Heisenberg
model with biquadratic-bilinear terms[15]:
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Our results are summarized in the phase diagram Fig. 2,
with the corresponding magnetization curves shown in
Fig. 3. For small h, the lattice has overall tetragonal
symmetry, with tetrahedra distorted so as to have two
long ferromagnetic (FM) and four short canted AF
bonds. This is broadly compatible with the experimentally
observed ground state of ZnCr2O4 [3]. In this regime the
magnetization of the system remains linear but with
reduced slope M ( h=&8J"1% 2b$'.

For h ( 3J and b * 0:05 the system makes a first order
transition into state with exactly three up and one down
spins per tetrahedron, i.e., M ) S=2, regardless of h. In
this half-magnetization plateau phase, each tetrahedron
has three long FM and three short AF bonds, giving rise
to an overall trigonal lattice distortion. For any finite
value of b the plateau is extremely broad. Its width
shrinks linearly as b ! 0; for h=J * 4# 16b we find a
transition into a coplanar 2:1:1 canted state with mixed E
and T2 symmetry, and for h=J ! 4% 8b, a transition into
a coplanar 3:1 canted phase with trigonal symmetry for
h=J ! 4% 8b. Both transitions are of second order.

Finally, for 8J > h > 6J, there is a transition into a
fully saturated FM in which the lattice regains overall
cubic symmetry. In the absence of longer range exchange
interactions, the two lowest lying spin wave branches of
the FM phase are local in character and dispersionless.
For b < 3=38, the transition from the 3:1 canted phase
into the FM is of second order and occurs on the line
h=J ! 8# 16b. For b > 3=38 the transition becomes first
order, and for b > 1=4 it is energetically favorable to
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FIG. 2 (color online). Phase diagram as a function of mag-
netic field h and dimensionless coupling constant b. Solid lines
denote first and dashed lines, second order transitions. Spin
configurations and irrep of the order parameter in each phase is
also shown.
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where the summation hi; ji runs over the nearest neighbor
bonds of a pyrochlore lattice and "i;j is the change in
distance between neighboring spins Si and Sj, relative to
the equilibrium lattice constant. We assume the existence
of a linear regime in which exchange interactions and
elastic energies depend only on the distance between
lattice sites. It is convenient to introduce a single dimen-
sionless parameter b ! J!2=K to measure the strength of
the spin-lattice coupling. As written, the antiferromag-
netic exchange interaction J, elastic constant K, and a
spin-lattice coupling ! are all taken to be positive.

The pyrochlore is a bipartite network of corner-sharing
tetrahedra. This means that, if we neglect coupling to the
lattice, we can write the energy per spin as
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where the sum runs over all the tetrahedra and M !
"S1 % S2 % S3 % S4$=4 is the magnetization per site.
Clearly, the energy can be minimized by ensuring M !
h=8 in each tetrahedron. However this local constraint
does not select any one ground state, but rather a vast
manifold of states. If we consider classical spins, one
angular variable remains undetermined per tetrahedron,
and the magnetization is linear in h right up the satura-
tion field of h ! 8J.

Coupling to the lattice provides a very efficient mecha-
nism for lifting this degeneracy. Since bond energies vary
linearly with "i;j, while elastic energies increase as "2

i;j, at
any given value of magnetic field the system can always
gain energy by ordering the spins and distorting the
lattice. In this sense the Hamiltonian (1) can be thought
of as a three dimensional generalization of the spin-
Peierls problem. The system gains the most energy from
distorting bonds for which SiSj takes on its extremal
values. For this reason, coupling to the lattice tends to
favor collinear spin configurations and, for quantum
spins, bond singlets (see, e.g., [12]). Our goal is to under-
stand which states emerge from this competition between
applied field and frustrated AF interactions and for what
range of fields they are stable.

For the sake of simplicity, and in the spirit of earlier
work [13,14], we shall restrict our analysis to uniform
spin and lattice order with crystal momentum q ! 0. It is
instructive to further simplify the problem by treating the
spins as classical vectors, in which case we can safely
neglect all states which are odd under the inversion IT
which exchanges the two tetrahedron sublattices. Both of
these approximations can be relaxed at will.

Under these assumptions, the system must have four
sublattice order, and we can find the ground state of Eq. (1)
by a straightforward minimization of energy with respect
to bond length. This is equivalent to solving a Heisenberg
model with biquadratic-bilinear terms[15]:

H !
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Our results are summarized in the phase diagram Fig. 2,
with the corresponding magnetization curves shown in
Fig. 3. For small h, the lattice has overall tetragonal
symmetry, with tetrahedra distorted so as to have two
long ferromagnetic (FM) and four short canted AF
bonds. This is broadly compatible with the experimentally
observed ground state of ZnCr2O4 [3]. In this regime the
magnetization of the system remains linear but with
reduced slope M ( h=&8J"1% 2b$'.

For h ( 3J and b * 0:05 the system makes a first order
transition into state with exactly three up and one down
spins per tetrahedron, i.e., M ) S=2, regardless of h. In
this half-magnetization plateau phase, each tetrahedron
has three long FM and three short AF bonds, giving rise
to an overall trigonal lattice distortion. For any finite
value of b the plateau is extremely broad. Its width
shrinks linearly as b ! 0; for h=J * 4# 16b we find a
transition into a coplanar 2:1:1 canted state with mixed E
and T2 symmetry, and for h=J ! 4% 8b, a transition into
a coplanar 3:1 canted phase with trigonal symmetry for
h=J ! 4% 8b. Both transitions are of second order.

Finally, for 8J > h > 6J, there is a transition into a
fully saturated FM in which the lattice regains overall
cubic symmetry. In the absence of longer range exchange
interactions, the two lowest lying spin wave branches of
the FM phase are local in character and dispersionless.
For b < 3=38, the transition from the 3:1 canted phase
into the FM is of second order and occurs on the line
h=J ! 8# 16b. For b > 3=38 the transition becomes first
order, and for b > 1=4 it is energetically favorable to
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FIG. 2 (color online). Phase diagram as a function of mag-
netic field h and dimensionless coupling constant b. Solid lines
denote first and dashed lines, second order transitions. Spin
configurations and irrep of the order parameter in each phase is
also shown.
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where the summation hi; ji runs over the nearest neighbor
bonds of a pyrochlore lattice and "i;j is the change in
distance between neighboring spins Si and Sj, relative to
the equilibrium lattice constant. We assume the existence
of a linear regime in which exchange interactions and
elastic energies depend only on the distance between
lattice sites. It is convenient to introduce a single dimen-
sionless parameter b ! J!2=K to measure the strength of
the spin-lattice coupling. As written, the antiferromag-
netic exchange interaction J, elastic constant K, and a
spin-lattice coupling ! are all taken to be positive.

The pyrochlore is a bipartite network of corner-sharing
tetrahedra. This means that, if we neglect coupling to the
lattice, we can write the energy per spin as
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where the sum runs over all the tetrahedra and M !
"S1 % S2 % S3 % S4$=4 is the magnetization per site.
Clearly, the energy can be minimized by ensuring M !
h=8 in each tetrahedron. However this local constraint
does not select any one ground state, but rather a vast
manifold of states. If we consider classical spins, one
angular variable remains undetermined per tetrahedron,
and the magnetization is linear in h right up the satura-
tion field of h ! 8J.

Coupling to the lattice provides a very efficient mecha-
nism for lifting this degeneracy. Since bond energies vary
linearly with "i;j, while elastic energies increase as "2

i;j, at
any given value of magnetic field the system can always
gain energy by ordering the spins and distorting the
lattice. In this sense the Hamiltonian (1) can be thought
of as a three dimensional generalization of the spin-
Peierls problem. The system gains the most energy from
distorting bonds for which SiSj takes on its extremal
values. For this reason, coupling to the lattice tends to
favor collinear spin configurations and, for quantum
spins, bond singlets (see, e.g., [12]). Our goal is to under-
stand which states emerge from this competition between
applied field and frustrated AF interactions and for what
range of fields they are stable.

For the sake of simplicity, and in the spirit of earlier
work [13,14], we shall restrict our analysis to uniform
spin and lattice order with crystal momentum q ! 0. It is
instructive to further simplify the problem by treating the
spins as classical vectors, in which case we can safely
neglect all states which are odd under the inversion IT
which exchanges the two tetrahedron sublattices. Both of
these approximations can be relaxed at will.

Under these assumptions, the system must have four
sublattice order, and we can find the ground state of Eq. (1)
by a straightforward minimization of energy with respect
to bond length. This is equivalent to solving a Heisenberg
model with biquadratic-bilinear terms[15]:
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X

hi;ji
J&SiSj # b"SiSj$2' # h
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Our results are summarized in the phase diagram Fig. 2,
with the corresponding magnetization curves shown in
Fig. 3. For small h, the lattice has overall tetragonal
symmetry, with tetrahedra distorted so as to have two
long ferromagnetic (FM) and four short canted AF
bonds. This is broadly compatible with the experimentally
observed ground state of ZnCr2O4 [3]. In this regime the
magnetization of the system remains linear but with
reduced slope M ( h=&8J"1% 2b$'.

For h ( 3J and b * 0:05 the system makes a first order
transition into state with exactly three up and one down
spins per tetrahedron, i.e., M ) S=2, regardless of h. In
this half-magnetization plateau phase, each tetrahedron
has three long FM and three short AF bonds, giving rise
to an overall trigonal lattice distortion. For any finite
value of b the plateau is extremely broad. Its width
shrinks linearly as b ! 0; for h=J * 4# 16b we find a
transition into a coplanar 2:1:1 canted state with mixed E
and T2 symmetry, and for h=J ! 4% 8b, a transition into
a coplanar 3:1 canted phase with trigonal symmetry for
h=J ! 4% 8b. Both transitions are of second order.

Finally, for 8J > h > 6J, there is a transition into a
fully saturated FM in which the lattice regains overall
cubic symmetry. In the absence of longer range exchange
interactions, the two lowest lying spin wave branches of
the FM phase are local in character and dispersionless.
For b < 3=38, the transition from the 3:1 canted phase
into the FM is of second order and occurs on the line
h=J ! 8# 16b. For b > 3=38 the transition becomes first
order, and for b > 1=4 it is energetically favorable to
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FIG. 2 (color online). Phase diagram as a function of mag-
netic field h and dimensionless coupling constant b. Solid lines
denote first and dashed lines, second order transitions. Spin
configurations and irrep of the order parameter in each phase is
also shown.
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where the summation hi; ji runs over the nearest neighbor
bonds of a pyrochlore lattice and "i;j is the change in
distance between neighboring spins Si and Sj, relative to
the equilibrium lattice constant. We assume the existence
of a linear regime in which exchange interactions and
elastic energies depend only on the distance between
lattice sites. It is convenient to introduce a single dimen-
sionless parameter b ! J!2=K to measure the strength of
the spin-lattice coupling. As written, the antiferromag-
netic exchange interaction J, elastic constant K, and a
spin-lattice coupling ! are all taken to be positive.

The pyrochlore is a bipartite network of corner-sharing
tetrahedra. This means that, if we neglect coupling to the
lattice, we can write the energy per spin as
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where the sum runs over all the tetrahedra and M !
"S1 % S2 % S3 % S4$=4 is the magnetization per site.
Clearly, the energy can be minimized by ensuring M !
h=8 in each tetrahedron. However this local constraint
does not select any one ground state, but rather a vast
manifold of states. If we consider classical spins, one
angular variable remains undetermined per tetrahedron,
and the magnetization is linear in h right up the satura-
tion field of h ! 8J.

Coupling to the lattice provides a very efficient mecha-
nism for lifting this degeneracy. Since bond energies vary
linearly with "i;j, while elastic energies increase as "2

i;j, at
any given value of magnetic field the system can always
gain energy by ordering the spins and distorting the
lattice. In this sense the Hamiltonian (1) can be thought
of as a three dimensional generalization of the spin-
Peierls problem. The system gains the most energy from
distorting bonds for which SiSj takes on its extremal
values. For this reason, coupling to the lattice tends to
favor collinear spin configurations and, for quantum
spins, bond singlets (see, e.g., [12]). Our goal is to under-
stand which states emerge from this competition between
applied field and frustrated AF interactions and for what
range of fields they are stable.

For the sake of simplicity, and in the spirit of earlier
work [13,14], we shall restrict our analysis to uniform
spin and lattice order with crystal momentum q ! 0. It is
instructive to further simplify the problem by treating the
spins as classical vectors, in which case we can safely
neglect all states which are odd under the inversion IT
which exchanges the two tetrahedron sublattices. Both of
these approximations can be relaxed at will.

Under these assumptions, the system must have four
sublattice order, and we can find the ground state of Eq. (1)
by a straightforward minimization of energy with respect
to bond length. This is equivalent to solving a Heisenberg
model with biquadratic-bilinear terms[15]:
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Our results are summarized in the phase diagram Fig. 2,
with the corresponding magnetization curves shown in
Fig. 3. For small h, the lattice has overall tetragonal
symmetry, with tetrahedra distorted so as to have two
long ferromagnetic (FM) and four short canted AF
bonds. This is broadly compatible with the experimentally
observed ground state of ZnCr2O4 [3]. In this regime the
magnetization of the system remains linear but with
reduced slope M ( h=&8J"1% 2b$'.

For h ( 3J and b * 0:05 the system makes a first order
transition into state with exactly three up and one down
spins per tetrahedron, i.e., M ) S=2, regardless of h. In
this half-magnetization plateau phase, each tetrahedron
has three long FM and three short AF bonds, giving rise
to an overall trigonal lattice distortion. For any finite
value of b the plateau is extremely broad. Its width
shrinks linearly as b ! 0; for h=J * 4# 16b we find a
transition into a coplanar 2:1:1 canted state with mixed E
and T2 symmetry, and for h=J ! 4% 8b, a transition into
a coplanar 3:1 canted phase with trigonal symmetry for
h=J ! 4% 8b. Both transitions are of second order.

Finally, for 8J > h > 6J, there is a transition into a
fully saturated FM in which the lattice regains overall
cubic symmetry. In the absence of longer range exchange
interactions, the two lowest lying spin wave branches of
the FM phase are local in character and dispersionless.
For b < 3=38, the transition from the 3:1 canted phase
into the FM is of second order and occurs on the line
h=J ! 8# 16b. For b > 3=38 the transition becomes first
order, and for b > 1=4 it is energetically favorable to
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FIG. 2 (color online). Phase diagram as a function of mag-
netic field h and dimensionless coupling constant b. Solid lines
denote first and dashed lines, second order transitions. Spin
configurations and irrep of the order parameter in each phase is
also shown.
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where the summation hi; ji runs over the nearest neighbor
bonds of a pyrochlore lattice and "i;j is the change in
distance between neighboring spins Si and Sj, relative to
the equilibrium lattice constant. We assume the existence
of a linear regime in which exchange interactions and
elastic energies depend only on the distance between
lattice sites. It is convenient to introduce a single dimen-
sionless parameter b ! J!2=K to measure the strength of
the spin-lattice coupling. As written, the antiferromag-
netic exchange interaction J, elastic constant K, and a
spin-lattice coupling ! are all taken to be positive.

The pyrochlore is a bipartite network of corner-sharing
tetrahedra. This means that, if we neglect coupling to the
lattice, we can write the energy per spin as
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where the sum runs over all the tetrahedra and M !
"S1 % S2 % S3 % S4$=4 is the magnetization per site.
Clearly, the energy can be minimized by ensuring M !
h=8 in each tetrahedron. However this local constraint
does not select any one ground state, but rather a vast
manifold of states. If we consider classical spins, one
angular variable remains undetermined per tetrahedron,
and the magnetization is linear in h right up the satura-
tion field of h ! 8J.

Coupling to the lattice provides a very efficient mecha-
nism for lifting this degeneracy. Since bond energies vary
linearly with "i;j, while elastic energies increase as "2

i;j, at
any given value of magnetic field the system can always
gain energy by ordering the spins and distorting the
lattice. In this sense the Hamiltonian (1) can be thought
of as a three dimensional generalization of the spin-
Peierls problem. The system gains the most energy from
distorting bonds for which SiSj takes on its extremal
values. For this reason, coupling to the lattice tends to
favor collinear spin configurations and, for quantum
spins, bond singlets (see, e.g., [12]). Our goal is to under-
stand which states emerge from this competition between
applied field and frustrated AF interactions and for what
range of fields they are stable.

For the sake of simplicity, and in the spirit of earlier
work [13,14], we shall restrict our analysis to uniform
spin and lattice order with crystal momentum q ! 0. It is
instructive to further simplify the problem by treating the
spins as classical vectors, in which case we can safely
neglect all states which are odd under the inversion IT
which exchanges the two tetrahedron sublattices. Both of
these approximations can be relaxed at will.

Under these assumptions, the system must have four
sublattice order, and we can find the ground state of Eq. (1)
by a straightforward minimization of energy with respect
to bond length. This is equivalent to solving a Heisenberg
model with biquadratic-bilinear terms[15]:

H !
X

hi;ji
J&SiSj # b"SiSj$2' # h

X

i
Si: (3)

Our results are summarized in the phase diagram Fig. 2,
with the corresponding magnetization curves shown in
Fig. 3. For small h, the lattice has overall tetragonal
symmetry, with tetrahedra distorted so as to have two
long ferromagnetic (FM) and four short canted AF
bonds. This is broadly compatible with the experimentally
observed ground state of ZnCr2O4 [3]. In this regime the
magnetization of the system remains linear but with
reduced slope M ( h=&8J"1% 2b$'.

For h ( 3J and b * 0:05 the system makes a first order
transition into state with exactly three up and one down
spins per tetrahedron, i.e., M ) S=2, regardless of h. In
this half-magnetization plateau phase, each tetrahedron
has three long FM and three short AF bonds, giving rise
to an overall trigonal lattice distortion. For any finite
value of b the plateau is extremely broad. Its width
shrinks linearly as b ! 0; for h=J * 4# 16b we find a
transition into a coplanar 2:1:1 canted state with mixed E
and T2 symmetry, and for h=J ! 4% 8b, a transition into
a coplanar 3:1 canted phase with trigonal symmetry for
h=J ! 4% 8b. Both transitions are of second order.

Finally, for 8J > h > 6J, there is a transition into a
fully saturated FM in which the lattice regains overall
cubic symmetry. In the absence of longer range exchange
interactions, the two lowest lying spin wave branches of
the FM phase are local in character and dispersionless.
For b < 3=38, the transition from the 3:1 canted phase
into the FM is of second order and occurs on the line
h=J ! 8# 16b. For b > 3=38 the transition becomes first
order, and for b > 1=4 it is energetically favorable to
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FIG. 2 (color online). Phase diagram as a function of mag-
netic field h and dimensionless coupling constant b. Solid lines
denote first and dashed lines, second order transitions. Spin
configurations and irrep of the order parameter in each phase is
also shown.
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recent high field magnetization measurements on the
closely related Cr spinels CdCr2O4 and HgCr2O4 [11].

We take as a starting point the Hamiltonian

H !
X

hi;ji

!

J"1# !1"i;j$SiSj %
K
2
"2
i;j

"

# h
X

i
Si; (1)

where the summation hi; ji runs over the nearest neighbor
bonds of a pyrochlore lattice and "i;j is the change in
distance between neighboring spins Si and Sj, relative to
the equilibrium lattice constant. We assume the existence
of a linear regime in which exchange interactions and
elastic energies depend only on the distance between
lattice sites. It is convenient to introduce a single dimen-
sionless parameter b ! J!2=K to measure the strength of
the spin-lattice coupling. As written, the antiferromag-
netic exchange interaction J, elastic constant K, and a
spin-lattice coupling ! are all taken to be positive.

The pyrochlore is a bipartite network of corner-sharing
tetrahedra. This means that, if we neglect coupling to the
lattice, we can write the energy per spin as

H ! 4J
X

tetr

#

M# h
8J

$

2
# h2

16J
% const; (2)

where the sum runs over all the tetrahedra and M !
"S1 % S2 % S3 % S4$=4 is the magnetization per site.
Clearly, the energy can be minimized by ensuring M !
h=8 in each tetrahedron. However this local constraint
does not select any one ground state, but rather a vast
manifold of states. If we consider classical spins, one
angular variable remains undetermined per tetrahedron,
and the magnetization is linear in h right up the satura-
tion field of h ! 8J.

Coupling to the lattice provides a very efficient mecha-
nism for lifting this degeneracy. Since bond energies vary
linearly with "i;j, while elastic energies increase as "2

i;j, at
any given value of magnetic field the system can always
gain energy by ordering the spins and distorting the
lattice. In this sense the Hamiltonian (1) can be thought
of as a three dimensional generalization of the spin-
Peierls problem. The system gains the most energy from
distorting bonds for which SiSj takes on its extremal
values. For this reason, coupling to the lattice tends to
favor collinear spin configurations and, for quantum
spins, bond singlets (see, e.g., [12]). Our goal is to under-
stand which states emerge from this competition between
applied field and frustrated AF interactions and for what
range of fields they are stable.

For the sake of simplicity, and in the spirit of earlier
work [13,14], we shall restrict our analysis to uniform
spin and lattice order with crystal momentum q ! 0. It is
instructive to further simplify the problem by treating the
spins as classical vectors, in which case we can safely
neglect all states which are odd under the inversion IT
which exchanges the two tetrahedron sublattices. Both of
these approximations can be relaxed at will.

Under these assumptions, the system must have four
sublattice order, and we can find the ground state of Eq. (1)
by a straightforward minimization of energy with respect
to bond length. This is equivalent to solving a Heisenberg
model with biquadratic-bilinear terms[15]:

H !
X

hi;ji
J&SiSj # b"SiSj$2' # h

X

i
Si: (3)

Our results are summarized in the phase diagram Fig. 2,
with the corresponding magnetization curves shown in
Fig. 3. For small h, the lattice has overall tetragonal
symmetry, with tetrahedra distorted so as to have two
long ferromagnetic (FM) and four short canted AF
bonds. This is broadly compatible with the experimentally
observed ground state of ZnCr2O4 [3]. In this regime the
magnetization of the system remains linear but with
reduced slope M ( h=&8J"1% 2b$'.

For h ( 3J and b * 0:05 the system makes a first order
transition into state with exactly three up and one down
spins per tetrahedron, i.e., M ) S=2, regardless of h. In
this half-magnetization plateau phase, each tetrahedron
has three long FM and three short AF bonds, giving rise
to an overall trigonal lattice distortion. For any finite
value of b the plateau is extremely broad. Its width
shrinks linearly as b ! 0; for h=J * 4# 16b we find a
transition into a coplanar 2:1:1 canted state with mixed E
and T2 symmetry, and for h=J ! 4% 8b, a transition into
a coplanar 3:1 canted phase with trigonal symmetry for
h=J ! 4% 8b. Both transitions are of second order.

Finally, for 8J > h > 6J, there is a transition into a
fully saturated FM in which the lattice regains overall
cubic symmetry. In the absence of longer range exchange
interactions, the two lowest lying spin wave branches of
the FM phase are local in character and dispersionless.
For b < 3=38, the transition from the 3:1 canted phase
into the FM is of second order and occurs on the line
h=J ! 8# 16b. For b > 3=38 the transition becomes first
order, and for b > 1=4 it is energetically favorable to
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FIG. 2 (color online). Phase diagram as a function of mag-
netic field h and dimensionless coupling constant b. Solid lines
denote first and dashed lines, second order transitions. Spin
configurations and irrep of the order parameter in each phase is
also shown.
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recent high field magnetization measurements on the
closely related Cr spinels CdCr2O4 and HgCr2O4 [11].

We take as a starting point the Hamiltonian

H !
X

hi;ji

!

J"1# !1"i;j$SiSj %
K
2
"2
i;j

"

# h
X

i
Si; (1)

where the summation hi; ji runs over the nearest neighbor
bonds of a pyrochlore lattice and "i;j is the change in
distance between neighboring spins Si and Sj, relative to
the equilibrium lattice constant. We assume the existence
of a linear regime in which exchange interactions and
elastic energies depend only on the distance between
lattice sites. It is convenient to introduce a single dimen-
sionless parameter b ! J!2=K to measure the strength of
the spin-lattice coupling. As written, the antiferromag-
netic exchange interaction J, elastic constant K, and a
spin-lattice coupling ! are all taken to be positive.

The pyrochlore is a bipartite network of corner-sharing
tetrahedra. This means that, if we neglect coupling to the
lattice, we can write the energy per spin as

H ! 4J
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16J
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where the sum runs over all the tetrahedra and M !
"S1 % S2 % S3 % S4$=4 is the magnetization per site.
Clearly, the energy can be minimized by ensuring M !
h=8 in each tetrahedron. However this local constraint
does not select any one ground state, but rather a vast
manifold of states. If we consider classical spins, one
angular variable remains undetermined per tetrahedron,
and the magnetization is linear in h right up the satura-
tion field of h ! 8J.

Coupling to the lattice provides a very efficient mecha-
nism for lifting this degeneracy. Since bond energies vary
linearly with "i;j, while elastic energies increase as "2

i;j, at
any given value of magnetic field the system can always
gain energy by ordering the spins and distorting the
lattice. In this sense the Hamiltonian (1) can be thought
of as a three dimensional generalization of the spin-
Peierls problem. The system gains the most energy from
distorting bonds for which SiSj takes on its extremal
values. For this reason, coupling to the lattice tends to
favor collinear spin configurations and, for quantum
spins, bond singlets (see, e.g., [12]). Our goal is to under-
stand which states emerge from this competition between
applied field and frustrated AF interactions and for what
range of fields they are stable.

For the sake of simplicity, and in the spirit of earlier
work [13,14], we shall restrict our analysis to uniform
spin and lattice order with crystal momentum q ! 0. It is
instructive to further simplify the problem by treating the
spins as classical vectors, in which case we can safely
neglect all states which are odd under the inversion IT
which exchanges the two tetrahedron sublattices. Both of
these approximations can be relaxed at will.

Under these assumptions, the system must have four
sublattice order, and we can find the ground state of Eq. (1)
by a straightforward minimization of energy with respect
to bond length. This is equivalent to solving a Heisenberg
model with biquadratic-bilinear terms[15]:

H !
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hi;ji
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i
Si: (3)

Our results are summarized in the phase diagram Fig. 2,
with the corresponding magnetization curves shown in
Fig. 3. For small h, the lattice has overall tetragonal
symmetry, with tetrahedra distorted so as to have two
long ferromagnetic (FM) and four short canted AF
bonds. This is broadly compatible with the experimentally
observed ground state of ZnCr2O4 [3]. In this regime the
magnetization of the system remains linear but with
reduced slope M ( h=&8J"1% 2b$'.

For h ( 3J and b * 0:05 the system makes a first order
transition into state with exactly three up and one down
spins per tetrahedron, i.e., M ) S=2, regardless of h. In
this half-magnetization plateau phase, each tetrahedron
has three long FM and three short AF bonds, giving rise
to an overall trigonal lattice distortion. For any finite
value of b the plateau is extremely broad. Its width
shrinks linearly as b ! 0; for h=J * 4# 16b we find a
transition into a coplanar 2:1:1 canted state with mixed E
and T2 symmetry, and for h=J ! 4% 8b, a transition into
a coplanar 3:1 canted phase with trigonal symmetry for
h=J ! 4% 8b. Both transitions are of second order.

Finally, for 8J > h > 6J, there is a transition into a
fully saturated FM in which the lattice regains overall
cubic symmetry. In the absence of longer range exchange
interactions, the two lowest lying spin wave branches of
the FM phase are local in character and dispersionless.
For b < 3=38, the transition from the 3:1 canted phase
into the FM is of second order and occurs on the line
h=J ! 8# 16b. For b > 3=38 the transition becomes first
order, and for b > 1=4 it is energetically favorable to
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where the summation hi; ji runs over the nearest neighbor
bonds of a pyrochlore lattice and "i;j is the change in
distance between neighboring spins Si and Sj, relative to
the equilibrium lattice constant. We assume the existence
of a linear regime in which exchange interactions and
elastic energies depend only on the distance between
lattice sites. It is convenient to introduce a single dimen-
sionless parameter b ! J!2=K to measure the strength of
the spin-lattice coupling. As written, the antiferromag-
netic exchange interaction J, elastic constant K, and a
spin-lattice coupling ! are all taken to be positive.

The pyrochlore is a bipartite network of corner-sharing
tetrahedra. This means that, if we neglect coupling to the
lattice, we can write the energy per spin as
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where the sum runs over all the tetrahedra and M !
"S1 % S2 % S3 % S4$=4 is the magnetization per site.
Clearly, the energy can be minimized by ensuring M !
h=8 in each tetrahedron. However this local constraint
does not select any one ground state, but rather a vast
manifold of states. If we consider classical spins, one
angular variable remains undetermined per tetrahedron,
and the magnetization is linear in h right up the satura-
tion field of h ! 8J.

Coupling to the lattice provides a very efficient mecha-
nism for lifting this degeneracy. Since bond energies vary
linearly with "i;j, while elastic energies increase as "2

i;j, at
any given value of magnetic field the system can always
gain energy by ordering the spins and distorting the
lattice. In this sense the Hamiltonian (1) can be thought
of as a three dimensional generalization of the spin-
Peierls problem. The system gains the most energy from
distorting bonds for which SiSj takes on its extremal
values. For this reason, coupling to the lattice tends to
favor collinear spin configurations and, for quantum
spins, bond singlets (see, e.g., [12]). Our goal is to under-
stand which states emerge from this competition between
applied field and frustrated AF interactions and for what
range of fields they are stable.

For the sake of simplicity, and in the spirit of earlier
work [13,14], we shall restrict our analysis to uniform
spin and lattice order with crystal momentum q ! 0. It is
instructive to further simplify the problem by treating the
spins as classical vectors, in which case we can safely
neglect all states which are odd under the inversion IT
which exchanges the two tetrahedron sublattices. Both of
these approximations can be relaxed at will.

Under these assumptions, the system must have four
sublattice order, and we can find the ground state of Eq. (1)
by a straightforward minimization of energy with respect
to bond length. This is equivalent to solving a Heisenberg
model with biquadratic-bilinear terms[15]:
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Our results are summarized in the phase diagram Fig. 2,
with the corresponding magnetization curves shown in
Fig. 3. For small h, the lattice has overall tetragonal
symmetry, with tetrahedra distorted so as to have two
long ferromagnetic (FM) and four short canted AF
bonds. This is broadly compatible with the experimentally
observed ground state of ZnCr2O4 [3]. In this regime the
magnetization of the system remains linear but with
reduced slope M ( h=&8J"1% 2b$'.

For h ( 3J and b * 0:05 the system makes a first order
transition into state with exactly three up and one down
spins per tetrahedron, i.e., M ) S=2, regardless of h. In
this half-magnetization plateau phase, each tetrahedron
has three long FM and three short AF bonds, giving rise
to an overall trigonal lattice distortion. For any finite
value of b the plateau is extremely broad. Its width
shrinks linearly as b ! 0; for h=J * 4# 16b we find a
transition into a coplanar 2:1:1 canted state with mixed E
and T2 symmetry, and for h=J ! 4% 8b, a transition into
a coplanar 3:1 canted phase with trigonal symmetry for
h=J ! 4% 8b. Both transitions are of second order.

Finally, for 8J > h > 6J, there is a transition into a
fully saturated FM in which the lattice regains overall
cubic symmetry. In the absence of longer range exchange
interactions, the two lowest lying spin wave branches of
the FM phase are local in character and dispersionless.
For b < 3=38, the transition from the 3:1 canted phase
into the FM is of second order and occurs on the line
h=J ! 8# 16b. For b > 3=38 the transition becomes first
order, and for b > 1=4 it is energetically favorable to
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netic field h and dimensionless coupling constant b. Solid lines
denote first and dashed lines, second order transitions. Spin
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where the summation hi; ji runs over the nearest neighbor
bonds of a pyrochlore lattice and "i;j is the change in
distance between neighboring spins Si and Sj, relative to
the equilibrium lattice constant. We assume the existence
of a linear regime in which exchange interactions and
elastic energies depend only on the distance between
lattice sites. It is convenient to introduce a single dimen-
sionless parameter b ! J!2=K to measure the strength of
the spin-lattice coupling. As written, the antiferromag-
netic exchange interaction J, elastic constant K, and a
spin-lattice coupling ! are all taken to be positive.

The pyrochlore is a bipartite network of corner-sharing
tetrahedra. This means that, if we neglect coupling to the
lattice, we can write the energy per spin as
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where the sum runs over all the tetrahedra and M !
"S1 % S2 % S3 % S4$=4 is the magnetization per site.
Clearly, the energy can be minimized by ensuring M !
h=8 in each tetrahedron. However this local constraint
does not select any one ground state, but rather a vast
manifold of states. If we consider classical spins, one
angular variable remains undetermined per tetrahedron,
and the magnetization is linear in h right up the satura-
tion field of h ! 8J.

Coupling to the lattice provides a very efficient mecha-
nism for lifting this degeneracy. Since bond energies vary
linearly with "i;j, while elastic energies increase as "2

i;j, at
any given value of magnetic field the system can always
gain energy by ordering the spins and distorting the
lattice. In this sense the Hamiltonian (1) can be thought
of as a three dimensional generalization of the spin-
Peierls problem. The system gains the most energy from
distorting bonds for which SiSj takes on its extremal
values. For this reason, coupling to the lattice tends to
favor collinear spin configurations and, for quantum
spins, bond singlets (see, e.g., [12]). Our goal is to under-
stand which states emerge from this competition between
applied field and frustrated AF interactions and for what
range of fields they are stable.

For the sake of simplicity, and in the spirit of earlier
work [13,14], we shall restrict our analysis to uniform
spin and lattice order with crystal momentum q ! 0. It is
instructive to further simplify the problem by treating the
spins as classical vectors, in which case we can safely
neglect all states which are odd under the inversion IT
which exchanges the two tetrahedron sublattices. Both of
these approximations can be relaxed at will.

Under these assumptions, the system must have four
sublattice order, and we can find the ground state of Eq. (1)
by a straightforward minimization of energy with respect
to bond length. This is equivalent to solving a Heisenberg
model with biquadratic-bilinear terms[15]:

H !
X

hi;ji
J&SiSj # b"SiSj$2' # h
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Si: (3)

Our results are summarized in the phase diagram Fig. 2,
with the corresponding magnetization curves shown in
Fig. 3. For small h, the lattice has overall tetragonal
symmetry, with tetrahedra distorted so as to have two
long ferromagnetic (FM) and four short canted AF
bonds. This is broadly compatible with the experimentally
observed ground state of ZnCr2O4 [3]. In this regime the
magnetization of the system remains linear but with
reduced slope M ( h=&8J"1% 2b$'.

For h ( 3J and b * 0:05 the system makes a first order
transition into state with exactly three up and one down
spins per tetrahedron, i.e., M ) S=2, regardless of h. In
this half-magnetization plateau phase, each tetrahedron
has three long FM and three short AF bonds, giving rise
to an overall trigonal lattice distortion. For any finite
value of b the plateau is extremely broad. Its width
shrinks linearly as b ! 0; for h=J * 4# 16b we find a
transition into a coplanar 2:1:1 canted state with mixed E
and T2 symmetry, and for h=J ! 4% 8b, a transition into
a coplanar 3:1 canted phase with trigonal symmetry for
h=J ! 4% 8b. Both transitions are of second order.

Finally, for 8J > h > 6J, there is a transition into a
fully saturated FM in which the lattice regains overall
cubic symmetry. In the absence of longer range exchange
interactions, the two lowest lying spin wave branches of
the FM phase are local in character and dispersionless.
For b < 3=38, the transition from the 3:1 canted phase
into the FM is of second order and occurs on the line
h=J ! 8# 16b. For b > 3=38 the transition becomes first
order, and for b > 1=4 it is energetically favorable to
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FIG. 2 (color online). Phase diagram as a function of mag-
netic field h and dimensionless coupling constant b. Solid lines
denote first and dashed lines, second order transitions. Spin
configurations and irrep of the order parameter in each phase is
also shown.
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where the summation hi; ji runs over the nearest neighbor
bonds of a pyrochlore lattice and "i;j is the change in
distance between neighboring spins Si and Sj, relative to
the equilibrium lattice constant. We assume the existence
of a linear regime in which exchange interactions and
elastic energies depend only on the distance between
lattice sites. It is convenient to introduce a single dimen-
sionless parameter b ! J!2=K to measure the strength of
the spin-lattice coupling. As written, the antiferromag-
netic exchange interaction J, elastic constant K, and a
spin-lattice coupling ! are all taken to be positive.

The pyrochlore is a bipartite network of corner-sharing
tetrahedra. This means that, if we neglect coupling to the
lattice, we can write the energy per spin as

H ! 4J
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where the sum runs over all the tetrahedra and M !
"S1 % S2 % S3 % S4$=4 is the magnetization per site.
Clearly, the energy can be minimized by ensuring M !
h=8 in each tetrahedron. However this local constraint
does not select any one ground state, but rather a vast
manifold of states. If we consider classical spins, one
angular variable remains undetermined per tetrahedron,
and the magnetization is linear in h right up the satura-
tion field of h ! 8J.

Coupling to the lattice provides a very efficient mecha-
nism for lifting this degeneracy. Since bond energies vary
linearly with "i;j, while elastic energies increase as "2

i;j, at
any given value of magnetic field the system can always
gain energy by ordering the spins and distorting the
lattice. In this sense the Hamiltonian (1) can be thought
of as a three dimensional generalization of the spin-
Peierls problem. The system gains the most energy from
distorting bonds for which SiSj takes on its extremal
values. For this reason, coupling to the lattice tends to
favor collinear spin configurations and, for quantum
spins, bond singlets (see, e.g., [12]). Our goal is to under-
stand which states emerge from this competition between
applied field and frustrated AF interactions and for what
range of fields they are stable.

For the sake of simplicity, and in the spirit of earlier
work [13,14], we shall restrict our analysis to uniform
spin and lattice order with crystal momentum q ! 0. It is
instructive to further simplify the problem by treating the
spins as classical vectors, in which case we can safely
neglect all states which are odd under the inversion IT
which exchanges the two tetrahedron sublattices. Both of
these approximations can be relaxed at will.

Under these assumptions, the system must have four
sublattice order, and we can find the ground state of Eq. (1)
by a straightforward minimization of energy with respect
to bond length. This is equivalent to solving a Heisenberg
model with biquadratic-bilinear terms[15]:
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Si: (3)

Our results are summarized in the phase diagram Fig. 2,
with the corresponding magnetization curves shown in
Fig. 3. For small h, the lattice has overall tetragonal
symmetry, with tetrahedra distorted so as to have two
long ferromagnetic (FM) and four short canted AF
bonds. This is broadly compatible with the experimentally
observed ground state of ZnCr2O4 [3]. In this regime the
magnetization of the system remains linear but with
reduced slope M ( h=&8J"1% 2b$'.

For h ( 3J and b * 0:05 the system makes a first order
transition into state with exactly three up and one down
spins per tetrahedron, i.e., M ) S=2, regardless of h. In
this half-magnetization plateau phase, each tetrahedron
has three long FM and three short AF bonds, giving rise
to an overall trigonal lattice distortion. For any finite
value of b the plateau is extremely broad. Its width
shrinks linearly as b ! 0; for h=J * 4# 16b we find a
transition into a coplanar 2:1:1 canted state with mixed E
and T2 symmetry, and for h=J ! 4% 8b, a transition into
a coplanar 3:1 canted phase with trigonal symmetry for
h=J ! 4% 8b. Both transitions are of second order.

Finally, for 8J > h > 6J, there is a transition into a
fully saturated FM in which the lattice regains overall
cubic symmetry. In the absence of longer range exchange
interactions, the two lowest lying spin wave branches of
the FM phase are local in character and dispersionless.
For b < 3=38, the transition from the 3:1 canted phase
into the FM is of second order and occurs on the line
h=J ! 8# 16b. For b > 3=38 the transition becomes first
order, and for b > 1=4 it is energetically favorable to
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FIG. 2 (color online). Phase diagram as a function of mag-
netic field h and dimensionless coupling constant b. Solid lines
denote first and dashed lines, second order transitions. Spin
configurations and irrep of the order parameter in each phase is
also shown.
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where the summation hi; ji runs over the nearest neighbor
bonds of a pyrochlore lattice and "i;j is the change in
distance between neighboring spins Si and Sj, relative to
the equilibrium lattice constant. We assume the existence
of a linear regime in which exchange interactions and
elastic energies depend only on the distance between
lattice sites. It is convenient to introduce a single dimen-
sionless parameter b ! J!2=K to measure the strength of
the spin-lattice coupling. As written, the antiferromag-
netic exchange interaction J, elastic constant K, and a
spin-lattice coupling ! are all taken to be positive.

The pyrochlore is a bipartite network of corner-sharing
tetrahedra. This means that, if we neglect coupling to the
lattice, we can write the energy per spin as
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where the sum runs over all the tetrahedra and M !
"S1 % S2 % S3 % S4$=4 is the magnetization per site.
Clearly, the energy can be minimized by ensuring M !
h=8 in each tetrahedron. However this local constraint
does not select any one ground state, but rather a vast
manifold of states. If we consider classical spins, one
angular variable remains undetermined per tetrahedron,
and the magnetization is linear in h right up the satura-
tion field of h ! 8J.

Coupling to the lattice provides a very efficient mecha-
nism for lifting this degeneracy. Since bond energies vary
linearly with "i;j, while elastic energies increase as "2

i;j, at
any given value of magnetic field the system can always
gain energy by ordering the spins and distorting the
lattice. In this sense the Hamiltonian (1) can be thought
of as a three dimensional generalization of the spin-
Peierls problem. The system gains the most energy from
distorting bonds for which SiSj takes on its extremal
values. For this reason, coupling to the lattice tends to
favor collinear spin configurations and, for quantum
spins, bond singlets (see, e.g., [12]). Our goal is to under-
stand which states emerge from this competition between
applied field and frustrated AF interactions and for what
range of fields they are stable.

For the sake of simplicity, and in the spirit of earlier
work [13,14], we shall restrict our analysis to uniform
spin and lattice order with crystal momentum q ! 0. It is
instructive to further simplify the problem by treating the
spins as classical vectors, in which case we can safely
neglect all states which are odd under the inversion IT
which exchanges the two tetrahedron sublattices. Both of
these approximations can be relaxed at will.

Under these assumptions, the system must have four
sublattice order, and we can find the ground state of Eq. (1)
by a straightforward minimization of energy with respect
to bond length. This is equivalent to solving a Heisenberg
model with biquadratic-bilinear terms[15]:
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Our results are summarized in the phase diagram Fig. 2,
with the corresponding magnetization curves shown in
Fig. 3. For small h, the lattice has overall tetragonal
symmetry, with tetrahedra distorted so as to have two
long ferromagnetic (FM) and four short canted AF
bonds. This is broadly compatible with the experimentally
observed ground state of ZnCr2O4 [3]. In this regime the
magnetization of the system remains linear but with
reduced slope M ( h=&8J"1% 2b$'.

For h ( 3J and b * 0:05 the system makes a first order
transition into state with exactly three up and one down
spins per tetrahedron, i.e., M ) S=2, regardless of h. In
this half-magnetization plateau phase, each tetrahedron
has three long FM and three short AF bonds, giving rise
to an overall trigonal lattice distortion. For any finite
value of b the plateau is extremely broad. Its width
shrinks linearly as b ! 0; for h=J * 4# 16b we find a
transition into a coplanar 2:1:1 canted state with mixed E
and T2 symmetry, and for h=J ! 4% 8b, a transition into
a coplanar 3:1 canted phase with trigonal symmetry for
h=J ! 4% 8b. Both transitions are of second order.

Finally, for 8J > h > 6J, there is a transition into a
fully saturated FM in which the lattice regains overall
cubic symmetry. In the absence of longer range exchange
interactions, the two lowest lying spin wave branches of
the FM phase are local in character and dispersionless.
For b < 3=38, the transition from the 3:1 canted phase
into the FM is of second order and occurs on the line
h=J ! 8# 16b. For b > 3=38 the transition becomes first
order, and for b > 1=4 it is energetically favorable to
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FIG. 2 (color online). Phase diagram as a function of mag-
netic field h and dimensionless coupling constant b. Solid lines
denote first and dashed lines, second order transitions. Spin
configurations and irrep of the order parameter in each phase is
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where the summation hi; ji runs over the nearest neighbor
bonds of a pyrochlore lattice and "i;j is the change in
distance between neighboring spins Si and Sj, relative to
the equilibrium lattice constant. We assume the existence
of a linear regime in which exchange interactions and
elastic energies depend only on the distance between
lattice sites. It is convenient to introduce a single dimen-
sionless parameter b ! J!2=K to measure the strength of
the spin-lattice coupling. As written, the antiferromag-
netic exchange interaction J, elastic constant K, and a
spin-lattice coupling ! are all taken to be positive.

The pyrochlore is a bipartite network of corner-sharing
tetrahedra. This means that, if we neglect coupling to the
lattice, we can write the energy per spin as
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where the sum runs over all the tetrahedra and M !
"S1 % S2 % S3 % S4$=4 is the magnetization per site.
Clearly, the energy can be minimized by ensuring M !
h=8 in each tetrahedron. However this local constraint
does not select any one ground state, but rather a vast
manifold of states. If we consider classical spins, one
angular variable remains undetermined per tetrahedron,
and the magnetization is linear in h right up the satura-
tion field of h ! 8J.

Coupling to the lattice provides a very efficient mecha-
nism for lifting this degeneracy. Since bond energies vary
linearly with "i;j, while elastic energies increase as "2

i;j, at
any given value of magnetic field the system can always
gain energy by ordering the spins and distorting the
lattice. In this sense the Hamiltonian (1) can be thought
of as a three dimensional generalization of the spin-
Peierls problem. The system gains the most energy from
distorting bonds for which SiSj takes on its extremal
values. For this reason, coupling to the lattice tends to
favor collinear spin configurations and, for quantum
spins, bond singlets (see, e.g., [12]). Our goal is to under-
stand which states emerge from this competition between
applied field and frustrated AF interactions and for what
range of fields they are stable.

For the sake of simplicity, and in the spirit of earlier
work [13,14], we shall restrict our analysis to uniform
spin and lattice order with crystal momentum q ! 0. It is
instructive to further simplify the problem by treating the
spins as classical vectors, in which case we can safely
neglect all states which are odd under the inversion IT
which exchanges the two tetrahedron sublattices. Both of
these approximations can be relaxed at will.

Under these assumptions, the system must have four
sublattice order, and we can find the ground state of Eq. (1)
by a straightforward minimization of energy with respect
to bond length. This is equivalent to solving a Heisenberg
model with biquadratic-bilinear terms[15]:
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Si: (3)

Our results are summarized in the phase diagram Fig. 2,
with the corresponding magnetization curves shown in
Fig. 3. For small h, the lattice has overall tetragonal
symmetry, with tetrahedra distorted so as to have two
long ferromagnetic (FM) and four short canted AF
bonds. This is broadly compatible with the experimentally
observed ground state of ZnCr2O4 [3]. In this regime the
magnetization of the system remains linear but with
reduced slope M ( h=&8J"1% 2b$'.

For h ( 3J and b * 0:05 the system makes a first order
transition into state with exactly three up and one down
spins per tetrahedron, i.e., M ) S=2, regardless of h. In
this half-magnetization plateau phase, each tetrahedron
has three long FM and three short AF bonds, giving rise
to an overall trigonal lattice distortion. For any finite
value of b the plateau is extremely broad. Its width
shrinks linearly as b ! 0; for h=J * 4# 16b we find a
transition into a coplanar 2:1:1 canted state with mixed E
and T2 symmetry, and for h=J ! 4% 8b, a transition into
a coplanar 3:1 canted phase with trigonal symmetry for
h=J ! 4% 8b. Both transitions are of second order.

Finally, for 8J > h > 6J, there is a transition into a
fully saturated FM in which the lattice regains overall
cubic symmetry. In the absence of longer range exchange
interactions, the two lowest lying spin wave branches of
the FM phase are local in character and dispersionless.
For b < 3=38, the transition from the 3:1 canted phase
into the FM is of second order and occurs on the line
h=J ! 8# 16b. For b > 3=38 the transition becomes first
order, and for b > 1=4 it is energetically favorable to
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where the summation hi; ji runs over the nearest neighbor
bonds of a pyrochlore lattice and "i;j is the change in
distance between neighboring spins Si and Sj, relative to
the equilibrium lattice constant. We assume the existence
of a linear regime in which exchange interactions and
elastic energies depend only on the distance between
lattice sites. It is convenient to introduce a single dimen-
sionless parameter b ! J!2=K to measure the strength of
the spin-lattice coupling. As written, the antiferromag-
netic exchange interaction J, elastic constant K, and a
spin-lattice coupling ! are all taken to be positive.

The pyrochlore is a bipartite network of corner-sharing
tetrahedra. This means that, if we neglect coupling to the
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where the sum runs over all the tetrahedra and M !
"S1 % S2 % S3 % S4$=4 is the magnetization per site.
Clearly, the energy can be minimized by ensuring M !
h=8 in each tetrahedron. However this local constraint
does not select any one ground state, but rather a vast
manifold of states. If we consider classical spins, one
angular variable remains undetermined per tetrahedron,
and the magnetization is linear in h right up the satura-
tion field of h ! 8J.

Coupling to the lattice provides a very efficient mecha-
nism for lifting this degeneracy. Since bond energies vary
linearly with "i;j, while elastic energies increase as "2

i;j, at
any given value of magnetic field the system can always
gain energy by ordering the spins and distorting the
lattice. In this sense the Hamiltonian (1) can be thought
of as a three dimensional generalization of the spin-
Peierls problem. The system gains the most energy from
distorting bonds for which SiSj takes on its extremal
values. For this reason, coupling to the lattice tends to
favor collinear spin configurations and, for quantum
spins, bond singlets (see, e.g., [12]). Our goal is to under-
stand which states emerge from this competition between
applied field and frustrated AF interactions and for what
range of fields they are stable.

For the sake of simplicity, and in the spirit of earlier
work [13,14], we shall restrict our analysis to uniform
spin and lattice order with crystal momentum q ! 0. It is
instructive to further simplify the problem by treating the
spins as classical vectors, in which case we can safely
neglect all states which are odd under the inversion IT
which exchanges the two tetrahedron sublattices. Both of
these approximations can be relaxed at will.

Under these assumptions, the system must have four
sublattice order, and we can find the ground state of Eq. (1)
by a straightforward minimization of energy with respect
to bond length. This is equivalent to solving a Heisenberg
model with biquadratic-bilinear terms[15]:
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Our results are summarized in the phase diagram Fig. 2,
with the corresponding magnetization curves shown in
Fig. 3. For small h, the lattice has overall tetragonal
symmetry, with tetrahedra distorted so as to have two
long ferromagnetic (FM) and four short canted AF
bonds. This is broadly compatible with the experimentally
observed ground state of ZnCr2O4 [3]. In this regime the
magnetization of the system remains linear but with
reduced slope M ( h=&8J"1% 2b$'.

For h ( 3J and b * 0:05 the system makes a first order
transition into state with exactly three up and one down
spins per tetrahedron, i.e., M ) S=2, regardless of h. In
this half-magnetization plateau phase, each tetrahedron
has three long FM and three short AF bonds, giving rise
to an overall trigonal lattice distortion. For any finite
value of b the plateau is extremely broad. Its width
shrinks linearly as b ! 0; for h=J * 4# 16b we find a
transition into a coplanar 2:1:1 canted state with mixed E
and T2 symmetry, and for h=J ! 4% 8b, a transition into
a coplanar 3:1 canted phase with trigonal symmetry for
h=J ! 4% 8b. Both transitions are of second order.

Finally, for 8J > h > 6J, there is a transition into a
fully saturated FM in which the lattice regains overall
cubic symmetry. In the absence of longer range exchange
interactions, the two lowest lying spin wave branches of
the FM phase are local in character and dispersionless.
For b < 3=38, the transition from the 3:1 canted phase
into the FM is of second order and occurs on the line
h=J ! 8# 16b. For b > 3=38 the transition becomes first
order, and for b > 1=4 it is energetically favorable to
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where the summation hi; ji runs over the nearest neighbor
bonds of a pyrochlore lattice and "i;j is the change in
distance between neighboring spins Si and Sj, relative to
the equilibrium lattice constant. We assume the existence
of a linear regime in which exchange interactions and
elastic energies depend only on the distance between
lattice sites. It is convenient to introduce a single dimen-
sionless parameter b ! J!2=K to measure the strength of
the spin-lattice coupling. As written, the antiferromag-
netic exchange interaction J, elastic constant K, and a
spin-lattice coupling ! are all taken to be positive.

The pyrochlore is a bipartite network of corner-sharing
tetrahedra. This means that, if we neglect coupling to the
lattice, we can write the energy per spin as
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where the sum runs over all the tetrahedra and M !
"S1 % S2 % S3 % S4$=4 is the magnetization per site.
Clearly, the energy can be minimized by ensuring M !
h=8 in each tetrahedron. However this local constraint
does not select any one ground state, but rather a vast
manifold of states. If we consider classical spins, one
angular variable remains undetermined per tetrahedron,
and the magnetization is linear in h right up the satura-
tion field of h ! 8J.

Coupling to the lattice provides a very efficient mecha-
nism for lifting this degeneracy. Since bond energies vary
linearly with "i;j, while elastic energies increase as "2

i;j, at
any given value of magnetic field the system can always
gain energy by ordering the spins and distorting the
lattice. In this sense the Hamiltonian (1) can be thought
of as a three dimensional generalization of the spin-
Peierls problem. The system gains the most energy from
distorting bonds for which SiSj takes on its extremal
values. For this reason, coupling to the lattice tends to
favor collinear spin configurations and, for quantum
spins, bond singlets (see, e.g., [12]). Our goal is to under-
stand which states emerge from this competition between
applied field and frustrated AF interactions and for what
range of fields they are stable.

For the sake of simplicity, and in the spirit of earlier
work [13,14], we shall restrict our analysis to uniform
spin and lattice order with crystal momentum q ! 0. It is
instructive to further simplify the problem by treating the
spins as classical vectors, in which case we can safely
neglect all states which are odd under the inversion IT
which exchanges the two tetrahedron sublattices. Both of
these approximations can be relaxed at will.

Under these assumptions, the system must have four
sublattice order, and we can find the ground state of Eq. (1)
by a straightforward minimization of energy with respect
to bond length. This is equivalent to solving a Heisenberg
model with biquadratic-bilinear terms[15]:

H !
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hi;ji
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Our results are summarized in the phase diagram Fig. 2,
with the corresponding magnetization curves shown in
Fig. 3. For small h, the lattice has overall tetragonal
symmetry, with tetrahedra distorted so as to have two
long ferromagnetic (FM) and four short canted AF
bonds. This is broadly compatible with the experimentally
observed ground state of ZnCr2O4 [3]. In this regime the
magnetization of the system remains linear but with
reduced slope M ( h=&8J"1% 2b$'.

For h ( 3J and b * 0:05 the system makes a first order
transition into state with exactly three up and one down
spins per tetrahedron, i.e., M ) S=2, regardless of h. In
this half-magnetization plateau phase, each tetrahedron
has three long FM and three short AF bonds, giving rise
to an overall trigonal lattice distortion. For any finite
value of b the plateau is extremely broad. Its width
shrinks linearly as b ! 0; for h=J * 4# 16b we find a
transition into a coplanar 2:1:1 canted state with mixed E
and T2 symmetry, and for h=J ! 4% 8b, a transition into
a coplanar 3:1 canted phase with trigonal symmetry for
h=J ! 4% 8b. Both transitions are of second order.

Finally, for 8J > h > 6J, there is a transition into a
fully saturated FM in which the lattice regains overall
cubic symmetry. In the absence of longer range exchange
interactions, the two lowest lying spin wave branches of
the FM phase are local in character and dispersionless.
For b < 3=38, the transition from the 3:1 canted phase
into the FM is of second order and occurs on the line
h=J ! 8# 16b. For b > 3=38 the transition becomes first
order, and for b > 1=4 it is energetically favorable to
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configurations and irrep of the order parameter in each phase is
also shown.

VOLUME 93, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S week ending
5 NOVEMBER 2004

197203-2 197203-2

recent high field magnetization measurements on the
closely related Cr spinels CdCr2O4 and HgCr2O4 [11].

We take as a starting point the Hamiltonian

H !
X

hi;ji

!

J"1# !1"i;j$SiSj %
K
2
"2
i;j

"

# h
X

i
Si; (1)

where the summation hi; ji runs over the nearest neighbor
bonds of a pyrochlore lattice and "i;j is the change in
distance between neighboring spins Si and Sj, relative to
the equilibrium lattice constant. We assume the existence
of a linear regime in which exchange interactions and
elastic energies depend only on the distance between
lattice sites. It is convenient to introduce a single dimen-
sionless parameter b ! J!2=K to measure the strength of
the spin-lattice coupling. As written, the antiferromag-
netic exchange interaction J, elastic constant K, and a
spin-lattice coupling ! are all taken to be positive.

The pyrochlore is a bipartite network of corner-sharing
tetrahedra. This means that, if we neglect coupling to the
lattice, we can write the energy per spin as

H ! 4J
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where the sum runs over all the tetrahedra and M !
"S1 % S2 % S3 % S4$=4 is the magnetization per site.
Clearly, the energy can be minimized by ensuring M !
h=8 in each tetrahedron. However this local constraint
does not select any one ground state, but rather a vast
manifold of states. If we consider classical spins, one
angular variable remains undetermined per tetrahedron,
and the magnetization is linear in h right up the satura-
tion field of h ! 8J.

Coupling to the lattice provides a very efficient mecha-
nism for lifting this degeneracy. Since bond energies vary
linearly with "i;j, while elastic energies increase as "2

i;j, at
any given value of magnetic field the system can always
gain energy by ordering the spins and distorting the
lattice. In this sense the Hamiltonian (1) can be thought
of as a three dimensional generalization of the spin-
Peierls problem. The system gains the most energy from
distorting bonds for which SiSj takes on its extremal
values. For this reason, coupling to the lattice tends to
favor collinear spin configurations and, for quantum
spins, bond singlets (see, e.g., [12]). Our goal is to under-
stand which states emerge from this competition between
applied field and frustrated AF interactions and for what
range of fields they are stable.

For the sake of simplicity, and in the spirit of earlier
work [13,14], we shall restrict our analysis to uniform
spin and lattice order with crystal momentum q ! 0. It is
instructive to further simplify the problem by treating the
spins as classical vectors, in which case we can safely
neglect all states which are odd under the inversion IT
which exchanges the two tetrahedron sublattices. Both of
these approximations can be relaxed at will.

Under these assumptions, the system must have four
sublattice order, and we can find the ground state of Eq. (1)
by a straightforward minimization of energy with respect
to bond length. This is equivalent to solving a Heisenberg
model with biquadratic-bilinear terms[15]:

H !
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hi;ji
J&SiSj # b"SiSj$2' # h
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Si: (3)

Our results are summarized in the phase diagram Fig. 2,
with the corresponding magnetization curves shown in
Fig. 3. For small h, the lattice has overall tetragonal
symmetry, with tetrahedra distorted so as to have two
long ferromagnetic (FM) and four short canted AF
bonds. This is broadly compatible with the experimentally
observed ground state of ZnCr2O4 [3]. In this regime the
magnetization of the system remains linear but with
reduced slope M ( h=&8J"1% 2b$'.

For h ( 3J and b * 0:05 the system makes a first order
transition into state with exactly three up and one down
spins per tetrahedron, i.e., M ) S=2, regardless of h. In
this half-magnetization plateau phase, each tetrahedron
has three long FM and three short AF bonds, giving rise
to an overall trigonal lattice distortion. For any finite
value of b the plateau is extremely broad. Its width
shrinks linearly as b ! 0; for h=J * 4# 16b we find a
transition into a coplanar 2:1:1 canted state with mixed E
and T2 symmetry, and for h=J ! 4% 8b, a transition into
a coplanar 3:1 canted phase with trigonal symmetry for
h=J ! 4% 8b. Both transitions are of second order.

Finally, for 8J > h > 6J, there is a transition into a
fully saturated FM in which the lattice regains overall
cubic symmetry. In the absence of longer range exchange
interactions, the two lowest lying spin wave branches of
the FM phase are local in character and dispersionless.
For b < 3=38, the transition from the 3:1 canted phase
into the FM is of second order and occurs on the line
h=J ! 8# 16b. For b > 3=38 the transition becomes first
order, and for b > 1=4 it is energetically favorable to
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where the summation hi; ji runs over the nearest neighbor
bonds of a pyrochlore lattice and "i;j is the change in
distance between neighboring spins Si and Sj, relative to
the equilibrium lattice constant. We assume the existence
of a linear regime in which exchange interactions and
elastic energies depend only on the distance between
lattice sites. It is convenient to introduce a single dimen-
sionless parameter b ! J!2=K to measure the strength of
the spin-lattice coupling. As written, the antiferromag-
netic exchange interaction J, elastic constant K, and a
spin-lattice coupling ! are all taken to be positive.

The pyrochlore is a bipartite network of corner-sharing
tetrahedra. This means that, if we neglect coupling to the
lattice, we can write the energy per spin as
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where the sum runs over all the tetrahedra and M !
"S1 % S2 % S3 % S4$=4 is the magnetization per site.
Clearly, the energy can be minimized by ensuring M !
h=8 in each tetrahedron. However this local constraint
does not select any one ground state, but rather a vast
manifold of states. If we consider classical spins, one
angular variable remains undetermined per tetrahedron,
and the magnetization is linear in h right up the satura-
tion field of h ! 8J.

Coupling to the lattice provides a very efficient mecha-
nism for lifting this degeneracy. Since bond energies vary
linearly with "i;j, while elastic energies increase as "2

i;j, at
any given value of magnetic field the system can always
gain energy by ordering the spins and distorting the
lattice. In this sense the Hamiltonian (1) can be thought
of as a three dimensional generalization of the spin-
Peierls problem. The system gains the most energy from
distorting bonds for which SiSj takes on its extremal
values. For this reason, coupling to the lattice tends to
favor collinear spin configurations and, for quantum
spins, bond singlets (see, e.g., [12]). Our goal is to under-
stand which states emerge from this competition between
applied field and frustrated AF interactions and for what
range of fields they are stable.

For the sake of simplicity, and in the spirit of earlier
work [13,14], we shall restrict our analysis to uniform
spin and lattice order with crystal momentum q ! 0. It is
instructive to further simplify the problem by treating the
spins as classical vectors, in which case we can safely
neglect all states which are odd under the inversion IT
which exchanges the two tetrahedron sublattices. Both of
these approximations can be relaxed at will.

Under these assumptions, the system must have four
sublattice order, and we can find the ground state of Eq. (1)
by a straightforward minimization of energy with respect
to bond length. This is equivalent to solving a Heisenberg
model with biquadratic-bilinear terms[15]:
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Our results are summarized in the phase diagram Fig. 2,
with the corresponding magnetization curves shown in
Fig. 3. For small h, the lattice has overall tetragonal
symmetry, with tetrahedra distorted so as to have two
long ferromagnetic (FM) and four short canted AF
bonds. This is broadly compatible with the experimentally
observed ground state of ZnCr2O4 [3]. In this regime the
magnetization of the system remains linear but with
reduced slope M ( h=&8J"1% 2b$'.

For h ( 3J and b * 0:05 the system makes a first order
transition into state with exactly three up and one down
spins per tetrahedron, i.e., M ) S=2, regardless of h. In
this half-magnetization plateau phase, each tetrahedron
has three long FM and three short AF bonds, giving rise
to an overall trigonal lattice distortion. For any finite
value of b the plateau is extremely broad. Its width
shrinks linearly as b ! 0; for h=J * 4# 16b we find a
transition into a coplanar 2:1:1 canted state with mixed E
and T2 symmetry, and for h=J ! 4% 8b, a transition into
a coplanar 3:1 canted phase with trigonal symmetry for
h=J ! 4% 8b. Both transitions are of second order.

Finally, for 8J > h > 6J, there is a transition into a
fully saturated FM in which the lattice regains overall
cubic symmetry. In the absence of longer range exchange
interactions, the two lowest lying spin wave branches of
the FM phase are local in character and dispersionless.
For b < 3=38, the transition from the 3:1 canted phase
into the FM is of second order and occurs on the line
h=J ! 8# 16b. For b > 3=38 the transition becomes first
order, and for b > 1=4 it is energetically favorable to
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configurations and irrep of the order parameter in each phase is
also shown.

VOLUME 93, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S week ending
5 NOVEMBER 2004

197203-2 197203-2

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8

T=0.08
T=0.16
T=0.24
T=0.32

Qxy

h

T=0

b=0.1

Qx2−y2
= 〈SxSx−SySy〉

Qxy = 〈2SxSx〉

exp 2iφ = cos 2φ + i sin 2φ
= cos2 φ− sin2 φ + i 2 sinφ cos φ
= S2

x − S2
y + i 2SxSy

= Qx2−y2 + i Qxy

φ φ + π

≡



 0.25  0.3

h/
J

E

2

b
 0  0.15  0.2

T2

E+T2

 6

 7

 8

 5

 4 T

 3

 2

A

 1

 0
 0.05  0.1

1

0

1

2

3

4

5

6

7

h/
J

8

b
0 0.05 0.1 0.15 0.2 0.25 0.3

0

1

2

3

4

5

6

7

8

0.0 0.1 0.2 0.3 0.4 0.5

h/J

T/J

b=0.1
J3=-0.05

Phase Diagram at Finite T

E

T2

T2

T=0

b=0.1



0.0

0.2

0.4

0.6

0.8

χ

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8

T=0
T=0.08
T=0.16
T=0.24
T=0.32
T=0.40

m

h

Comparison with Experiments

0

1

2

3

4

5

6

7

8

0.0 0.1 0.2 0.3 0.4 0.5

h/J

T/J

H. Ueda et al., unpublished

4

3.0

2.5

2.0

1.5

1.0

0.5

0.0

M
 (µ

B
/C

r3+
)

50403020100
H (T)

dM
/d

H
 (a

rb
. u

ni
t)

1.8K 4.2K
5.0K
6.0K

7.0K
7.2K

7.5K

5K

6K

7.0K
7.2K

7.5K

HgCr2O4

50

40

30

20

10

0

H
 (T

)

86420
T (K)

ParaAF

Ferri

cant Ferri

(cant) Ferro

FIG. 4: Temperature dependence of magnetization curves of
HgCr2O4 measured in field raising process. The upper panel
describes derivation of magnetization dM/dH above 5 K, and
arrows indicate signals that correspond to the beginning and
ending of plateau phase. The inset illustrates H-T phase di-
agram. The abbreviations used are as follows. (Para: para-
magnetic, AF: antiferromagnetic, Ferri: ferrimagnetic, cant
Ferri: canted ferrimagnetic, (cant) Ferro: ferromagnetic or
canted ferromagnetic)

of a phase transition.
These phase boundaries are plotted to draw a H-T

phase diagram in the inset of the figure. This phase di-
agram within low field region is very similar to that of
CdCr2O4. Below TN, the critical field to plateau phase
slightly decreases with raising temperature. Oppositely,
above TN, it shows an upturn. Besides, the upper field
limit of plateau phase increases with temperature be-
low TN, and then decreases above TN. By raising tem-
perature, plateau phase becomes more stable below TN,
suggesting the effect of temperature fluctuation in a cer-
tain extent to stabilize collinear spin configuration. The
phase boundary, which we assign, between canted ferri-
magnetic phase and canted ferromagnetic phase, mono-
tonically decrease with temperature. Around 7.5K these
phase boundaries are likely connected. These features are
almost similar to recent Monte-Carlo simulation [14] ex-
cept for the behavior of upper limit of the plateau phase.

Due to strong spin-lattice couplings in this compound,
lattice structures are supposed to be different among dif-

ferent magnetic phases. Indeed, structural change is ob-
served in half-magnetization plateau region for CdCr2O4.
Considering symmetry of magnetic orderings in this H-
T phase diagram, we predict that three kinds of lattice
structure are realized, namely, cubic (canted) ferroma-
netic phase that connects to paramagnetic phase, or-
thorhombic antiferromagntic phase, and (canted) ferri-
magnetic phase with an unknown lattice structure. We
suggest that field-induced two successive structural tran-
sitions take place between antiferromagnetic phase and
ferrimagnetic phase as is observed for CdCr2O4, and be-
tween canted antiferromagnetic phase and ferromagnetic
phase.

Finally, we discuss about spin frustration. Magne-
tization plateau in frustrated Heisenberg antiferromat-
nets on triangular lattice [15], kagomé lattice [16], gar-
net lattice [17] have been studied by many researchers.
Now, they are well explained as follows. Applying mag-
netic field can reduce ground state degeneracy in frus-
trated Heisenberg spin systems, then quantum and ther-
mal fluctuations stabilize a certain spin configuration,
which shows magnetization plateau phase. Our observa-
tion of magnetization plateau in chromium spinels may
correspond to such kind of phenomena on pyrochlore lat-
tice. Indeed, we observe the effect of thermal fluctua-
tion to stabilize plateau phase in H-T phase diagram, as
is same as phase diagrams proposed for triangular lat-
tice and kagomé lattice. However, the distinct feature
of chromium spinels from these is a quite wide magne-
tization plateau phase even at T = 0 limit. The half-
magnetization plateau phase extend over more than ten
tesla for both CdCr2O4 and HgCr2O4. This robustness
against magnetic field strongly indicates the existence of
additional effects to stabilize plateau phase. Lattice dis-
tortions are the most likely candidate as is proposed by
our previous letter [4] and the letter of theory [13]. Like-
wise for MgCr2O4 and ZnCr2O4, spin-lattice couplings
in these systems very likely stabilize half-magnetization
plateau, even if the critical field is expected to be over
100T due to large J values.

In conclusion, we synthesized a new member of geo-
metrically frustrated chromium spinels, HgCr2O4, and
evaluated physical properties of this material. Basically,
it is regarded as an antiferromagnet with small exchange
constant J . Like other chromium spinels, it shows a mag-
netic ordering with structural distortions at low temper-
atures, though, the symmetry of lattice is orthorhombic,
which is different from tetragonal of others, and the vol-
ume change is substantially larger. It is very likely that
HgCr2O4 has rather strong spin-lattice couplings. By
applying magnetic field, very wide magnetization plateau
phase is realized, on which lattice distiortions play a fa-
tal role together with the effect of thermal fluctuation.
The critical field for HgCr2O4 is relatively small, which
can be achieved by conventional superconducting mag-
nets. Further experiments to clarify the physics behind
magnetization plateau behavior observed in Heisenberg
antiferromagnet on pyrochlore lattice, are in progress.
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Phase diagram for b = 0 : order by disorder revisited
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The thermal order by disorder effect in magnetic field is studied for a classical Heisenberg antiferro-
magnet on the Kagomé lattice. Using analytical arguments we predict a unique H-T phase diagram for
this strongly frustrated magnet: states with a coplanar and a uniaxial triatic order parameter, respectively,
at low and high magnetic fields and an incompressible collinear spin-liquid state at one-third of the
saturation field. We also present the Monte Carlo data which confirm the existence of these phases.
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Geometrical frustration in lattice spin models is respon-
sible for complete suppression of conventional magnetic
order and appearance of nonmagnetic spin liquids or states
with exotic order parameters [1]. Applied magnetic field
can further enhance frustration. A well known example is a
weakly frustrated triangular lattice antiferromagnet, which
acquires an additional continuous degeneracy in external
field [2]. Investigation of high-field effects in strongly frus-
trated magnets poses a new challenge for experimental and
theoretical studies [3,4].

The Heisenberg antiferromagnet on the Kagomé lattice
(see Fig. 1) is a strongly frustrated spin model, which is
approximately realized in a number of insulating layered
magnets: SrCr8Ga4O19 [5] and Ba2Sn2Ga3ZnCr7O22 [6]
(both with S ! 3!2), KFe3"OH#6"SO4#2 "S ! 5!2# [7].
Gd3Ga5O12 "S ! 7!2# is another frustrated magnet on a
related three-dimensional garnet lattice of corner-sharing
triangles, which is often called a hyper-Kagomé lattice.
This magnet has a weak exchange constant J $ 1 K and
a peculiar unexplained phase diagram in the magnetic field
[3]. Motivated by the above materials with large values
of spin we investigate in this Letter the finite-temperature
magnetization process of a classical antiferromagnet on the
Kagomé lattice. We predict three distinctive field regimes
below the saturation field Hsat, where exotic spin phases
are stabilized.

The Hamiltonian of a nearest-neighbor Heisenberg anti-
ferromagnet on the Kagomé lattice with classical unit spins
can be written up to a constant term as

Ĥ !
1
2

N!
X

%!&
"JS2

! 2 H ? S!# , (1)

where the sum runs over all triangles, S! is the total spin
of a triangular plaquette, and N! ! 2

3N is the number of
plaquettes on an N-site lattice. The zero-field classical
constraint S! ' 0 fails to define a unique ground state.
The ground state coplanar configurations are constructed
by fixing spins on a first plaquette to a 120± structure with
left or right chirality for the triad êa, êb, and êc and, then,
tiling this triad over the whole lattice in a way that three
spins on every plaquette are different [8–10]. The number
of all such states for the Kagomé lattice is known exactly:
UN with U ! 1.1347 . . . [11]. Nonplanar ground states

are constructed from planar configurations by identifying
so-called weather vane defects [9].

The thermal order by disorder effect can appear
because of a different entropy of short-wavelength fluctu-
ations above degenerate configurations [12]. All coplanar
states for a Kagomé antiferromagnet show identical
harmonic spectra. They have one flat zero-energy branch
with N4 ! 1

3N modes, which corresponds to anharmonic
quartic excitations [8–10]. A nonzero harmonic mode de-
scribed by a classical coordinate y has an energy increase
DE2 ( Jy2 and contributes 1

2T ln"J!T# to the thermo-
dynamic potential, whereas a soft quartic mode with
DE4 ( Jy4 makes a reduced contribution of 1

4T ln"J!T#.
Coplanar configurations have the largest number of soft
modes and are, therefore, selected by thermal fluctuations
[8]. Soft modes in coplanar states correspond to alternate
tilting of spins out of the ground state spin plane around
elementary hexagons. There are 1

3 N hexagons on the
Kagomé lattice. The counting of soft modes from such a
geometrical point of view, thus, agrees with the spin-wave
analysis.

Harmonic fluctuations do not select between various
planar configurations, though the highest statistical weight
corresponds to a so-called

p
3 3

p
3 structure [10]. The

low-temperature phase has nematic correlations of the

2

6

T

H/J

T*

a

b

FIG. 1. Schematic phase diagram of the classical Kagomé
antiferromagnet. The top inset shows the clapping mode for
quasicollinear states. The lower inset shows a unit cell of thep

3 3
p

3 quasicollinear state: filled and empty circles denote
the b- and a-type spins, respectively.
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Conclusions

Coupling to lattice distortions provides a very efficient mechanism 
for magnetization plateaux in frustrated and degenerate AF’s.

The phase diagram and order parameters determined.

Plateau can survive without long range order

At finite T : order-by-disorder possible with some help


