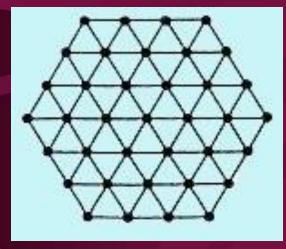
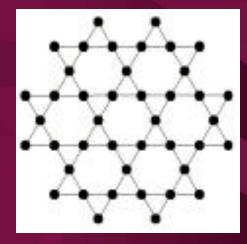
Finite Temperature and Ground State Properties of Kagome Antiferromagnets

RRP SinghUC DAVISM. RigolGeorgetown Univ.D. HusePrinceton Univ.


M Rigol, RRPS PRL 98, 207204 + PRB 76, 184403 (2007) RRPS, D. A. Huse PRB RC (2007)

OUTLINE


- INTRODUCTION
- Numerical Results at T=0 (ED, Series)
- Dimer Expansions: VBC order
- Experiments--Herbertsmithites
- Calculations at finite T (ED,HTE,NLC)
- Discussions and Summary

Triangular-Kagome Lattice Magnets

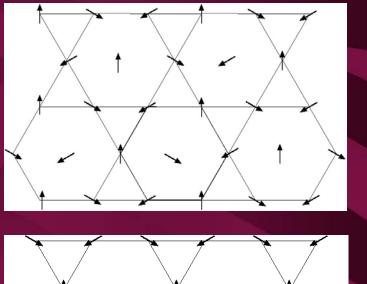
Triangular-Lattice: Edge sharing triangles

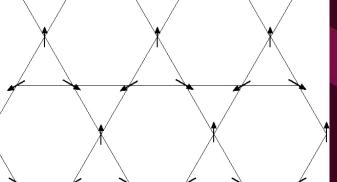
Kagome-Lattice: Corner sharing triangles

Site-depletion makes Kagome-Lattice more frustrated

Classic example of Frustration Ising Model

A Triangle: 6 out of 8 states are ground states) uud udu duu udd dud ddu have same energy uuu ddd have higher energy


Lattice Models are Exactly Soluble


TLM: T=0 critical point Ground state entropy under 50% of total entropy

KLM: Finite (short) correlation length even at T=0 Ground state entropy about 72% of total entropy

Classical Heisenberg Models

- Ground state has 120 degree structure
- TLM: Unique Ground
 State (apart from symmetry) (Fully
 Constrained)
- KLM: Finite ground state entropy (see TLM) (Underconstrained)
- Order by Disorder

TLM

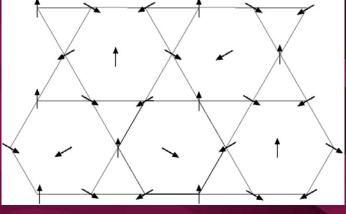
)=()

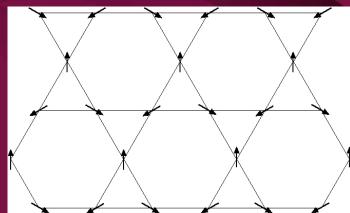
Quantum Heisenberg Model
$$H = \sum_{\langle ij \rangle} J_{ij} \ \hat{S}_i \cdot \hat{S}_j$$
 $J_{ij} > 0$ $[\hat{S}_j^x, \hat{S}_j^y] = i\hbar \ \hat{S}_j^z$ $\hat{S}_i^2 = S(S+1) \ \hbar^2$

Spin is a good quantum number Most interest in spin-half case Pair of spins like to form rotaionally invariant singlets –entangled state

Many Open Questions

$$H = \sum_{\langle ij \rangle} J_{ij} \, \hat{\boldsymbol{S}}_i \cdot \hat{\boldsymbol{S}}_j$$

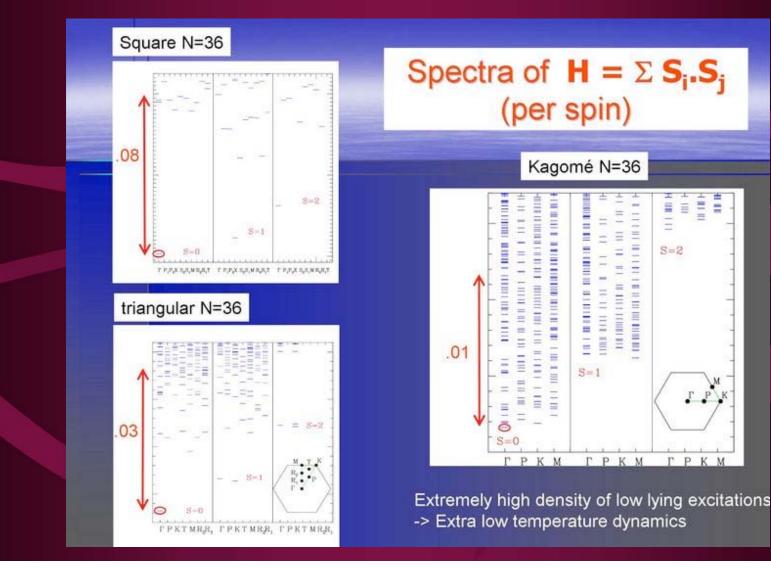

$$J_{ij} > 0$$

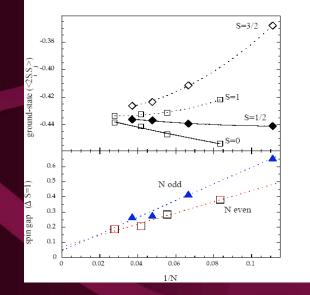

- Is Ground state magnetically ordered? SSB
- Is the ground state a VBC?
- Is there a Quantum Spin-Liquid? RVB
- Is there a spin-gap?
- Is there algebraic spin order?
- Are there fractional-spin excitations? FQHE
- Are there massless Dirac spinons?

Magnetic Long Range Order

Many Candidates

- TLM [root(3)by root(3)] Q=0 Doubled Unit Cell along Y Answer appears to be NO
- Spectra from exact diagonalization
- Series expansions
- Other numerics




Exact Diagonalization French Group, Elser+Zeng, ...

- Clusters upto size 36 PBC (one choice)
- Lots of low lying singlets
- # of singlets below triplet goes as a**(N)?

Low Lying Spectra (Lhuillier)

Spin-gap is zero or small? Extrapolation from Exact Diagonalization

GS Energy =-0.43 -- -0.44

Triplet Gap <0.05

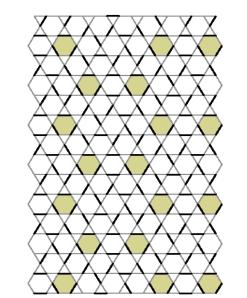
Maybe 0!

Momentum Dependence 36-site PBC

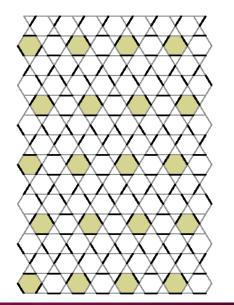
- Four q points- 0(Gamma), K, Q, M
- Minimum triplet gap at q=M (French Group)
- Zeng+Elser Spin and Dimer Correlations (Huse+RRPS)
- Largest eigenvalues of correlation matrices

q	spin-spin (3X3)	dimer-dimer(6X6)				
0	0.49998	0.4013				
Q	0.35856	0.3375				
M	0.43806	0.6736				

Is there a VBC?: SU(N) Large N: Many Possibilities Here Too Large N: Max-Perfect Hexagons

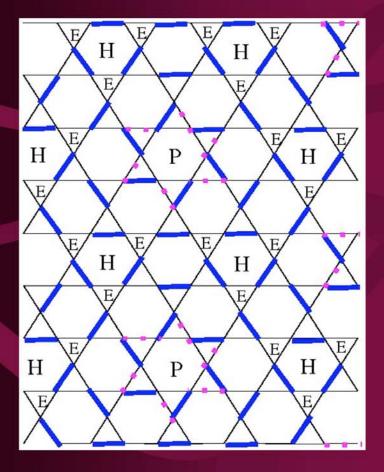

Marston

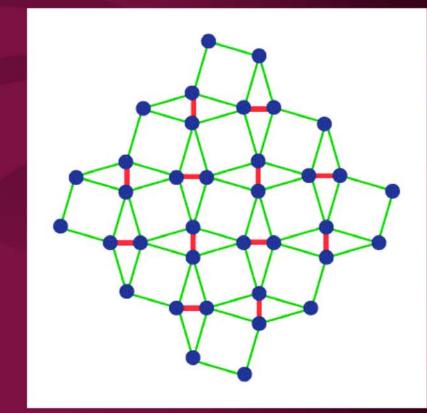
Zeng


Nikolic

Senthil

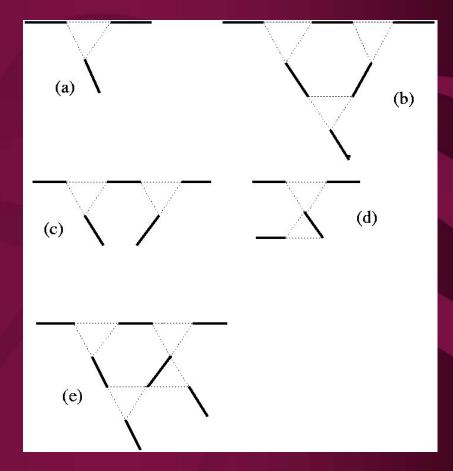
36-site unit cell Both have 36-site unit cells (Need different PBC)




Honeycomb

Stripes

Dimer Expansion for spin-half Empty Triangles are Key The rest are in local ground state

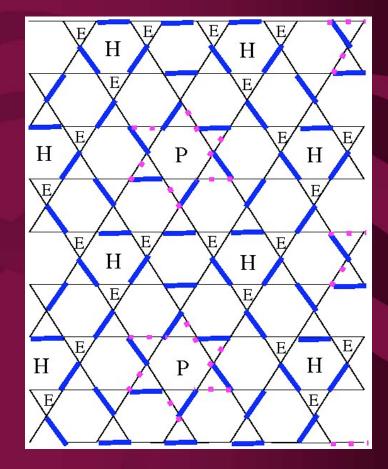

Shastry-Sutherland Lattice

Kagome Lattice

Series Expansion around arbitrary Dimer Configuration

Graphs defined by triangles

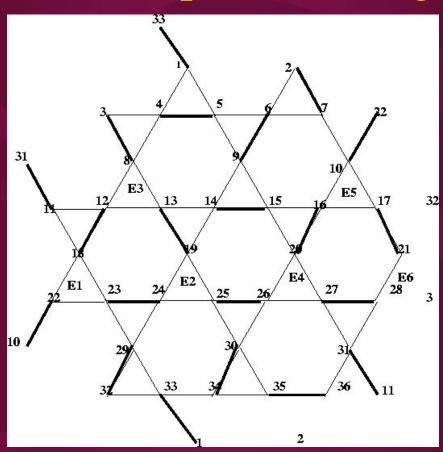
All graphs to 5th order


Degeneracy Lifts in 3rd/4th Order But Not Completely

3rd Order: Bind 3Es into H

4th Order: Honeycomb over Stripe

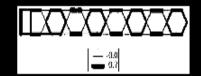
Leftover: Pinwheels


24*2^(N/36) Low energy states

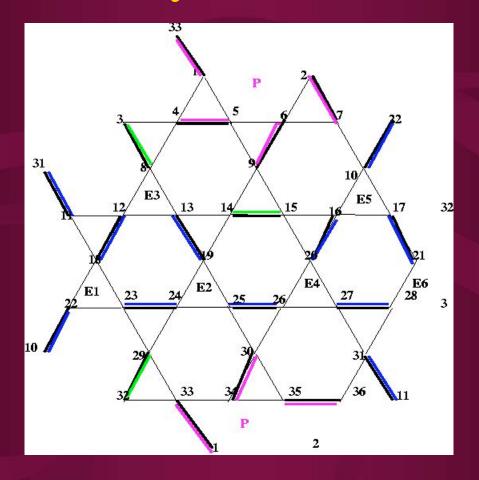
Series show excellent Convergence

Order &	Honeycomb	&	Stripe VBC	&	36-site PBC			
0 &	-0.375	&	-0.375	&	-0.375			
1 &	-0.375	&	-0.375	&	-0.375			
2 &	-0.421875	&	-0.421875	&	-0.421875			
3 &	-0.42578125	&	-0.42578125	&	-0.42578125			
4 &	-0.431559245	&	-0.43101671	&	-0.43400065			
5 &	-0.432088216	&	-0.43153212	&	-0.43624539			
Ground State Energy per site								
Estimated H-VBC energy: -0.433(1)								
36-site PBC: Energy=-0.43837653								
Variational state of Ran et al (Hastings)-0.429								

36-site PBC wraps around New graphs start contributing in 4th order Closed Loops of 4 triangles



Dimer Order Parameter


Order 0th 2nd 3rd 4th 5th 6th Strong (within hexagon) -.75 -.5625 -.516 -.437 -.428 -.423 Weak (within hexagon) -.1875 -.258 \mathbf{O} Resonance within hexagons maybe restored Both strong and weak approximately -0.4! Mean energy per bond = -0.217

Kagome Stripes Azaria et al PRL 81, 1694 (1998) Gapless Singlet Modes

S. R. White and RRPSPRL 85, 3330 (2000)Stripe VBC (gap 0.01)

What about the spin spectra? 18 by 18 matrix

Spin Spectra

Up to Second Order Perturbation Theory:
--Partly like bits of chains
--Partly like Shastry Sutherland Model
--Only some of the triplets can hop

 Lowest lying triplet localized to Hexagons E=1-0.5 -0.875 +0.890625-0.5... (poor convergence) Higher order analysis (future work)

ED (PBC36) has many more states at low energies

Misguich

+Sindzingre

Symmetry of

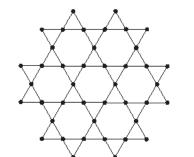
Low Lying States

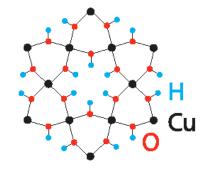
Mambrini+Mila Dimer subspace Has continuous spectra

n	Е	k	R_3	R_2	σ	Deg.
1	-15.7815551190	0	1	1	1	1
5	-15.7714422841	в	$e^{\pm 2i\pi/3}$			4
7	-15.7705526907	0	$e^{\pm 2i\pi/3}$	1		2
8	-15.7677646622	0	1	1	1	1
14	-15.7626378391	\mathbf{C}			1	6
15	-15.7530636858	0	1	-1	1	1
18	-15.7530438440	Α		1	1	3
24	-15.7506986611	\mathbf{C}			-1	6
25	-15.7397638762	0	1	1	-1	1
27	-15.7387667284	0	$e^{\pm 2i\pi/3}$	1		2
30	-15.7373154352	Α		-1	1	3
32	-15.7338387327	0	$e^{\pm 2i\pi/3}$	-1		2
34	-15.7334329978	В	1		1	2
37	-15.7332490188	Α		-1	-1	3
38	-15.7269119422	0	1	-1	-1	1
40	-15.7267147209	в	1		-1	2
43	-15.7261524204	Α		1	-1	3
49	-15.7260314565	\mathbf{C}			1	6
52	-15.7254780685	Α		1	1	3
58	-15.7221590458	С			-1	6
60	-15.7202552097	В	1		1	2
64	-15.7199632440	В	$e^{\pm 2i\pi/3}$			4
70	-15.7186955013	С			1	6
76	-15.7116604180	С			-1	6
79	-15.7115521063	Α		1	-1	3
83	-15.7092916444	В	$e^{\pm 2i\pi/3}$			4
85	-15.7074451283	В	1		-1	2
88	-15.6974529791	Α		1	1	3
94	-15.6953790715	С			-1	6
95	-15.6950982554	0	1	1	-1	1
101	-15.6894717552	С			1	6
103	-15.6881000899	В	1		1	2
105	-15.6870862487	0	$e^{\pm 2i\pi/3}$	1		2
111	-15.6780830086	С			-1	6
117	-15.6775636462	С			1	6
120	-15.6749606790	A		1	1	3
126	-15.6721274935	C			1	6
129	-15.6678064885	A	$e^{\pm 2i\pi/3}$	-1	-1	3
133	-15.6635057830	B) e ^{±2m/3}			4
136	-15.6620584319	A		1	-1	3
139	-15.6567299552	A		-1	1	3
140	-15.6530663535	0	1	1	1	1
141	-15.6524533863	0	$\frac{1}{e^{\pm 2i\pi/3}}$	-1	1	1
143	-15.6508267100	0	-	-1		2
145	-15.6506529276	В	1		-1	2

States with R3 not unity are unrelated to Honeycomb-VBC BUT Energy of PBC is much larger than separation (0.005 vs 0.001)

Dimer order has not yet set in at this scale

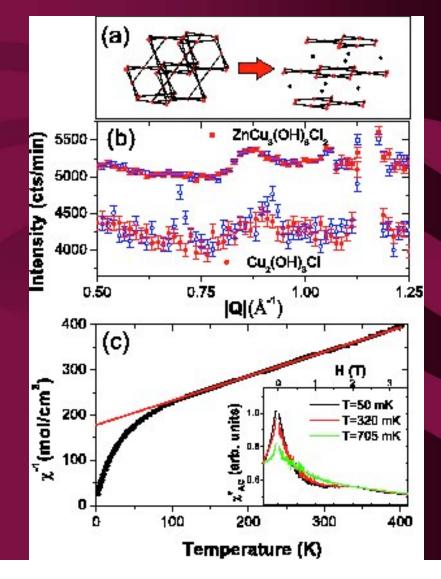

Overall picture from these studies


- VBC Order very weak (Delta E order .001)
- Only sets in at very low T--large L
- Intermediate L,T: Dimer Liquid (RVB?)
- Small spin-gap to nearly localized triplets
- Lots of singlets at the gap-edge (chi)
- Sensitivity to Perturbations (Further Neighbor Js, Spatial anisotropy, DM, Impurity,)

Experimental Status

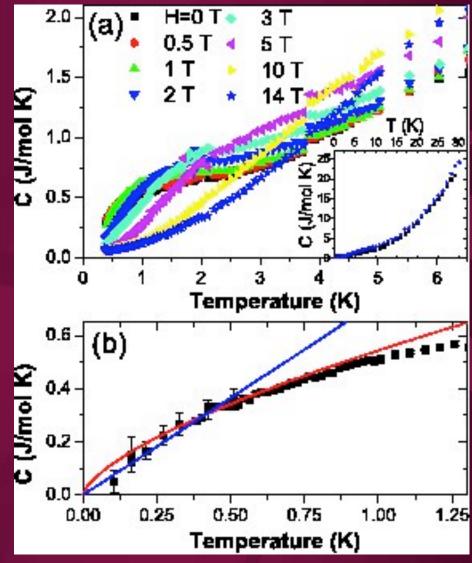
• New material: Herbertsmithite ZnCu_3(OH)_6C1_2

Cu atoms carry spinhalf Kagome-layers of Cu Separated by layers of Zn

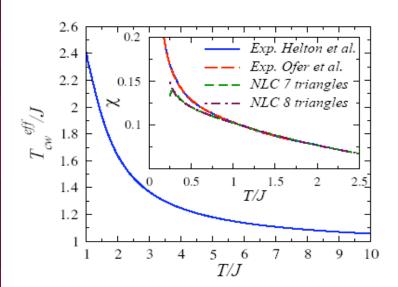


Some experimental properties

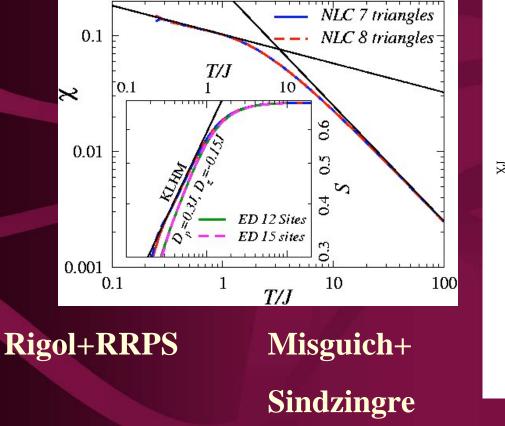
- Curie-Weiss T=300K
- No LRO down to 50mK


BUT

Susceptibility turns up at low T!
Helton et al PRL
Ofer et al cond-mat

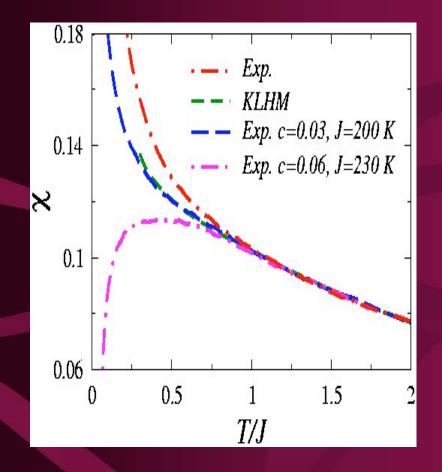

Specifc heat sublinear at low-T

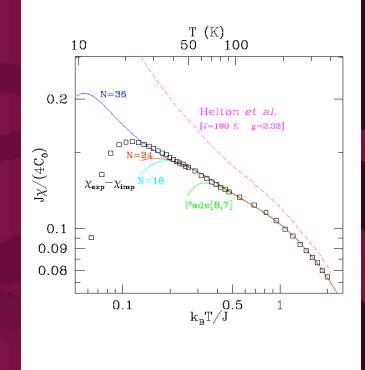
Highly sensitive to magnetic field!



Rigol and RRPSGood Fit withJ=170K, g=2.19CW is not asymptoticPRL 2007

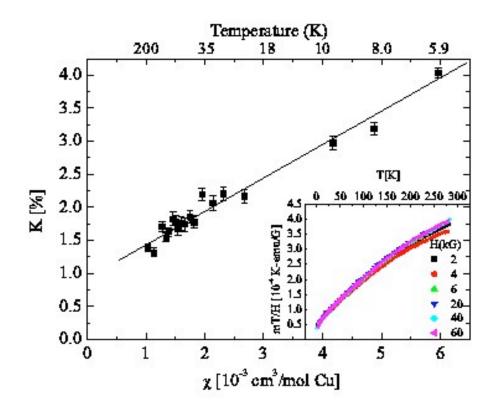
Sharp upturn at low T not consistent with Kagome-HAFM


Where does the Kagome susceptibility peak? (below T=0.1!)

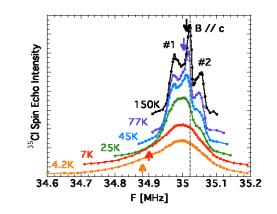

N=18 N=240.15 N=360.1 ХJ 12S13S**8**T 0.05 ___ Wynn Wynn₃³ Wynn⁴ 0 0.1 T/J 1

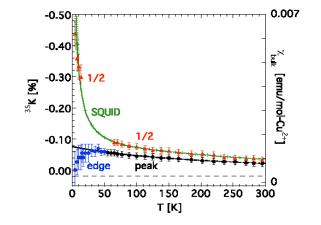
Crossover to Reduced # of Localized Triplets?

Is the upturn due to impurity?



Rigol+RRPS c=0.04 Agrees to 0.3 J


Misguich+sindzingre FM CW constant 6.5K Agrees to 0.1 J

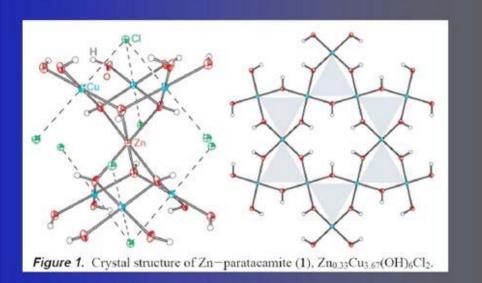

muSR tracks bulk susceptibility suggests it is intrinsic! (Ofer et al)

Neutrons show 6% antisite disorder (Bert et al arXiv:0710.0451)

Cl NMR (Imai's group)

Sign of T-dependent inhomogeneity

Dzyloshinski-Moria Interactions?

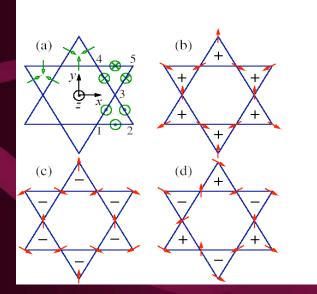

Published on Web 09/09/2005

A Structurally Perfect S = 1/2 Kagomé Antiferromagnet

Matthew P. Shores, Emily A. Nytko, Bart M. Bartlett, and Daniel G. Nocera*

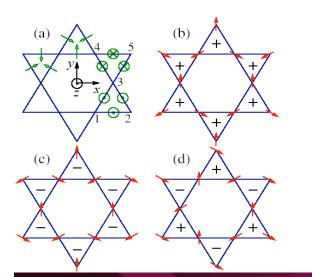
Department of Chemistry, 6-335, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307

Received June 13, 2005; E-mail: nocera@mit.edu

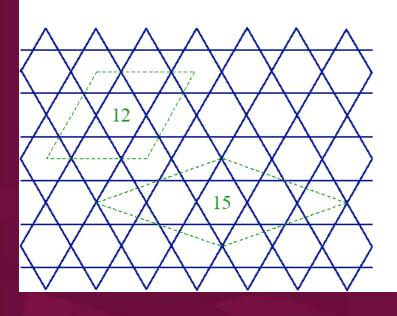

Kagome maybe perfect

But overall structure is quite distorted

Two independent DM parameters allowed by Symmetry

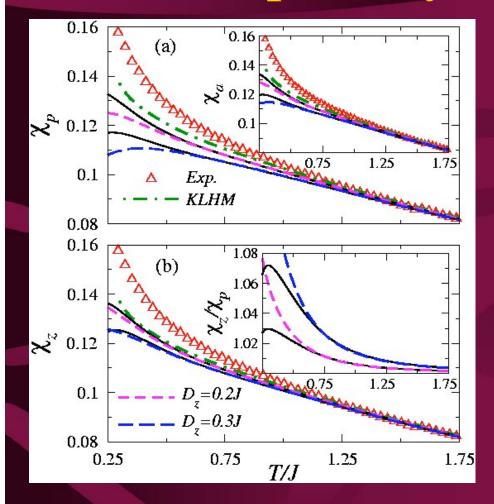

Dz and Dp

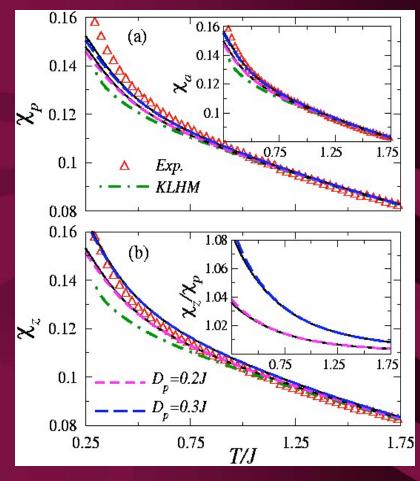
Dzyloshinski-Moria Interactions Cross Product between spins Both Dz and Dp are of order 10% of J in structurally related Fe-based spin-5/2 material


Dz can order the system! Planar + preferred helicity Selects a unique Classical Ground state in the 120-degree subspace

Dzyloshinski-Moria Interactions Cross Product between spins

Dp rotates from bond to bond No spin symmetry left Cannot be satisfied in 120-degree subspace Classically a small Dp leads to canting—like a FM Ising anisotropy!

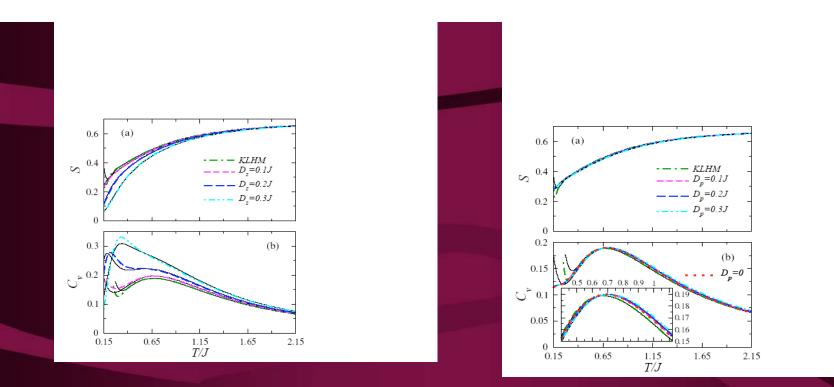

Rigol+RRPS



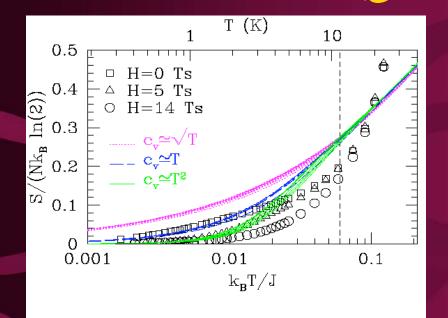
Lack of conservation laws makes numerics harder

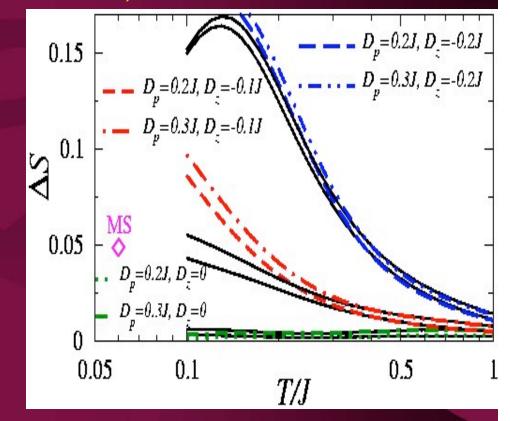
Clusters for finite-size studies with Periodic Boundary Conditions

Susceptibility with Dp and Dz



Dz lowers susceptibility


Dp increases susceptibility


Both lead to anisotropy enhancing z-susceptibility

Entropy and Specific Heat Dz: Entropy drops rapidly Dp: No discernible change What does Dp do to states?

Entropy and experiments: Assuming no frozen entropy, impurity (glassiness)

Misguich and Sinzindgre High-T expansions Lowering of entropy due to DM Interactions

DM Interactions Finite-T studies: conclusions

- D_z: Reduces entropy, reduces isotropic susceptibility—Leads to long-range XY order
 ----cant be the answer by itself
- D_p No change in entropy, increases susceptibility suddenly, makes it highly anisotropic—could be the answer induced FM Ising anisotropy
- Must have D_p greater than D_z (Expt)
- With impurities much smaller Dz maybe enough If Dz >gap chi: 1/Dz (> 10/J at low T)
- Anisotropy measurements

Summary and Conclusions

- Kagome Lattice may have a VBC ground state (Debate Not Over)
- Perfect Hexagons more robust than fragile VBC
- Very small energy scales between different phases What are the implications at finite T?
- Small triplet gap--lots of states near the edge--chi does not peak down to quite low Temperatures
- DM interactions are allowed- Will be there only magnitudes can vary
- Dz and Dp are quite different—the latter is more intriguing and relevant to materials
- If there is an exotic state (such as Dirac spinliquid) how can it be established?

