

Why are magnetism and ferroelectricity contra-indicated?

Nicola Spaldin Materials Department, UC Santa Barbara

Outline

Multiferroics: definition

Conventional mechanism for ferroelectricity (" do-ness")

Combining magnetism and ferroelectricity alternative mechanisms for ferroelectricity non-d-electron magnets

Multiferroics

ferroelectrics

The renaissance of magnetoelectric multiferroics, N. A. Spaldin and M. Fiebig, Science 15, 5733 (2005)

Increasing interest in magnetoelectric multiferroics

The revival of the magnetoelectric effect, M. Fiebig, J. Phys. D 38, R123 (2005)

Problem

There are (almost) no magnetic ferroelectrics

Magnetism and ferroelectricity are *chemically contra-indicated*:

Magnetism requires localized (transition metal d) electrons

Atoms with localized *d* electrons don't off-center to form polar ferroelectric states

requires empty *d* orbitals
Second-order Jahn-Teller effect

Ferromagnetism requires filled *d* orbitals Stoner instability

N.A. Hill, Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694-6709 (2000)

Conventional ferroelectricity mechanism I. Hand-waving explanation of "do-ness"

+

+

paraelectric

ferroelectric

Conventional ferroelectricity mechanism I. Hand-waving explanation of "do-ness"

+

paraelectric

+

ferroelectric

Unfavorable Coulomb repulsion between oxygen and transition metal valence electrons

Conventional ferroelectricity mechanism I. Hand-waving explanation of "do-ness"

paraelectric

ferroelectric

Favorable "ligand field stabilization" of *empty* cation *d* orbitals by oxygen *p* electrons

Illustration within LDA

A. Filippetti and N.A. Hill, *Coexistence of magnetism and ferroelectricity in perovskites*, PRB **65**, 195120 (2002).

Perturbation theory

Expand Hamiltonian as function of atomic distortion (normal coordinate), Q:

$$H=H^{(0)}+H^{(1)}Q+rac{1}{2}H^{(2)}Q^2 \quad ext{ where } \qquad egin{aligned} H^{(1)}Q&=(\delta H/\delta Q)_0Q\ H^{(2)}Q^2&=(\delta^2 H/\delta Q^2)_0Q^2 \end{aligned}$$

then

$$E(Q) = E(0) + <0 |(\delta H/\delta Q)_0|0 > Q + \frac{1}{2} \left(<0 |(\delta^2 H/\delta Q^2)_0|0 > -2\Sigma_n' \frac{|<0|(\delta H/\delta Q)_0|n>|^2}{E_n - E(0)} \right) Q^2 + ...$$

1st-order JT Non-zero for orbitally degenerate states

> always positive (moving nuclei with fixed electrons); want this to be small

always negative (relaxation of electron distribution); want this to be large 1) need a non-zero matrix element; 2) need En close to E(0)

Second-order Jahn-Teller effect

Perturbation theory (slightly hand-waving)

$$+ \frac{1}{2} \left(<0 |(\delta^2 H/\delta Q^2)_0|0> -2\Sigma_n' \frac{|<0|(\delta H/\delta Q)_0|n>|^2}{E_n - E(0)} \right) Q^2 - \frac{1}{2} \left(<0 |(\delta^2 H/\delta Q^2)_0|0> -2\Sigma_n' \frac{|<0|(\delta H/\delta Q)_0|n>|^2}{E_n - E(0)} \right) Q^2 - \frac{1}{2} \left(<0 |(\delta^2 H/\delta Q^2)_0|0> -2\Sigma_n' \frac{|<0|(\delta H/\delta Q)_0|n>|^2}{E_n - E(0)} \right) Q^2 - \frac{1}{2} \left(<0 |(\delta^2 H/\delta Q^2)_0|0> -2\Sigma_n' \frac{|<0|(\delta H/\delta Q)_0|n>|^2}{E_n - E(0)} \right) Q^2 - \frac{1}{2} \left(<0 |(\delta^2 H/\delta Q^2)_0|0> -2\Sigma_n' \frac{|<0|(\delta H/\delta Q)_0|n>|^2}{E_n - E(0)} \right) Q^2 - \frac{1}{2} \left(<0 |(\delta^2 H/\delta Q^2)_0|0> -2\Sigma_n' \frac{|<0|(\delta H/\delta Q)_0|n>|^2}{E_n - E(0)} \right) Q^2 - \frac{1}{2} \left(<0 |(\delta^2 H/\delta Q^2)_0|0> -2\Sigma_n' \frac{|<0|(\delta H/\delta Q)_0|n>|^2}{E_n - E(0)} \right) Q^2 - \frac{1}{2} \left(<0 |(\delta^2 H/\delta Q^2)_0|0> -2\Sigma_n' \frac{|<0|(\delta^2 H/\delta Q)_0|n>|^2}{E_n - E(0)} \right) Q^2 - \frac{1}{2} \left(<0 |(\delta^2 H/\delta Q^2)_0|0> -2\Sigma_n' \frac{|<0|(\delta^2 H/\delta Q)_0|n>|^2}{E_n - E(0)} \right) Q^2 - \frac{1}{2} \left(<0 |(\delta^2 H/\delta Q)_0|0> -2\Sigma_n' \frac{|<0|(\delta^2 H/\delta Q)_0|n>|^2}{E_n - E(0)} \right) Q^2 - \frac{1}{2} \left(<0 |(\delta^2 H/\delta Q)_0|0> -2\Sigma_n' \frac{|<0|(\delta^2 H/\delta Q)_0|n>|^2}{E_n - E(0)} \right) Q^2 - \frac{1}{2} \left(<0 |(\delta^2 H/\delta Q)_0|0> -2\Sigma_n' \frac{|<0|(\delta^2 H/\delta Q)_0|n>|^2}{E_n - E(0)} \right) Q^2 - \frac{1}{2} \left(<0 |(\delta^2 H/\delta Q)_0|0> -2\Sigma_n' \frac{|<0|(\delta^2 H/\delta Q)_0|n>|^2}{E_n - E(0)} \right) Q^2 - \frac{1}{2} \left(<0 |(\delta^2 H/\delta Q)_0|0> -2\Sigma_n' \frac{|<0|(\delta^2 H/\delta Q)_0|n>|^2}{E_n - E(0)} \right) Q^2 - \frac{1}{2} \left(<0 |(\delta^2 H/\delta Q)_0|0> -2\Sigma_n' \frac{|<0|(\delta^2 H/\delta Q)_0|n>|^2}{E_n - E(0)} \right) Q^2 - \frac{1}{2} \left(<0 |(\delta^2 H/\delta Q)_0|0> -2\Sigma_n' \frac{|<0|(\delta^2 H/\delta Q)_0|n>|^2}{E_n - E(0)} \right) Q^2 - \frac{1}{2} \left(<0 |(\delta^2 H/\delta Q)_0|0> -2\Sigma_n' \frac{|<0|(\delta^2 H/\delta Q)_0|n>|^2}{E_n - E(0)} Q^2 - \frac{1}{2} \left(<0 |(\delta^2 H/\delta Q)_0|0> -2\Sigma_n' \frac{|<0|(\delta^2 H/$$

$BaTiO_3(d^0)$

Repulsive term small Energy-lowering term non-zero

$CaMnO_3(d^3)$

Repulsive term large Energy-lowering term 0 by symmetry

BUT magnetism requires localized electrons!

In perovskite structure oxides the source of magnetic, localized electrons is usually the transition metal *d* electrons e.g. LaMnO₃, SrRuO₃, etc.

Photo: Anna Karin-Axelsson, Imperial College, London

How to combine M and P?

either

- 1) use an alternative mechanism for P or
- 2) use an alternative mechanism for M

How to combine M and P?

either

1) use an alternative mechanism for P

or

2) use an alternative mechanism for M

"Lone-pair active" multiferroics

Ferroelectricity from the "stereochemically active lone pair" on Bi³⁺ (cf ammonia, NH₃)

Magnetism from a 3d transition metal (Mn³⁺ or Fe³⁺)

<u>BiMnO₃:</u>

Ferromagnetic
Polar instability from Bi lone pairs
Anti-polar? (C2/c) Bi Bi

P. Baettig, R. Seshadri and N. A. Spaldin, *Anti-polarity in ideal BiMnO₃*, JACS **129**, 9854-9855 (2007).

BiFeO₃:

Ferroelectric, $P = 90 \mu C/cm^2$ Polar instability from Bi lone pairs *Anti*-ferromagnetic (weak FM)

Epitaxial BiFeO₃ multiferroic thin film heterostructures, Wang, Spaldin, Ramesh et al., Science 299, 1719 (2003)

<u>Another idea:</u> Combining ferroelectricity with ferromagnetism is HARD! ferr *i* magnetism might be easier...

P. Baettig, C. Ederer and N.A. Spaldin, PRB 72, 214105 (2005)

Geometric ferroelectrics

rotations driven by non-ideal ion packing doesn't yield a net P with 3D connectivity

in 2D, inversion center can be lifted e.g. BaNiF₄ (FE $T_C = 1200K$; AFM, $T_N = 60K$)

reference structure

polar ground state

C. Ederer and N.A. Spaldin, Electric-field switchable magnets: The case of BaNiF₄, PRB **74**, 020401(R) (2006)

Charge ordered

e.g. LuFe₂O₄ (FE, T_C = 330K; frustrated magnet)

Asymmetric charge ordering of Fe²⁺ and Fe³⁺ causes polarization

Proposed structure:

N. Ikeda et al., Nature 436, 1136 (2005)

Magnetically-driven (spiral) ferroelectricity

e.g. TbMnO₃ P very small BUT coupled to magnetic axis

T. Kimura et al., *Magnetic control of ferroelectric polarization*, Nature **426**, 55 (2004).

Another idea

Inversion symmetry breaking by three-component layering

Strong polarization enhancement in asymmetric three-component ferroelectric superlattices, H. N. Lee et al., Nature 433, 395 (2005).

A.J. Hatt and N.A. Spaldin, Tri-layer superlattices: A route to magnetoelectric multiferroics? APL **90**, 242916 (2007)

How to combine M and P?

either

- 1) use an alternative mechanism for P or
- 2) use an alternative mechanism for M

f electron magnetism

EuTiO₃ (Eu²⁺; Ti⁴⁺ is d^0) prediction (Fennie and Rabe): FM under strain

Summary

do cations can provide ferroelectricity but not magnetism

Alternative mechanisms for ferroelectricity are compatible with magnetism

f electron magnetism is compatible with d^0 ferroelectricity

Multiferroic with large magnetization and large polarization at room temperature not yet achieved

Magnetoelectric coupling an additional challenge