Orders and excitations in quasi-1D antiferromagnets

Oleg Starykh, University of Utah

Leon Balents, UCSB

Masanori Kohno, NIMS, Tsukuba, Japan

PRL **98**, 077205 (2007), Nature Physics (2007)

Phases of quantum antiferromagnet

- Neel phase
 (Neel, Landau 1933;
 but Pomeranchuk neutral fermions 1941)

staggered magnetization $\langle S_r^z \rangle \neq 0$

gapless magnons, S=1

 Valence bond solid (Sachdev,Read 1990)
 crystal of singlets

 $\langle S_r^z \rangle = 0$

Dimer long-range order, broken translational symmetry

gapped triplets (triplons), S=1

• Spin liquid (RVB)

No local order parameter

deconfined spinons, S=1/2

• Luttinger liquid (d=1)

(Bethe 1931, Takhajyan, Faddeev 1974)

deconfined massless spinons, S=1/2

Frustrated quantum magnetism and the search for spin liquids

Theoretical tools in the absence of small parameters

```
quantum dimer models (restricted Hilbert space) easy plane (XY) models (U(1) vs SU(2)) large-N methods (continuation to N=1,2) exact diagonalization (small systems) quantum Monte Carlo (sign problem) series expansions (continuation to \lambda=1 point)
```

- Our approach: Spatially anisotropic SU(2) symmetric models
 - consider 2D (3D) spin system as built from S=1/2 spin chains
 - ⇒ Heisenberg chain is *critical*: not biased to magnetic order starting point
- Many interesting materials are quasi-1D:
 KCuF₃, CuGeO₃, Cu₂GeO₄, Cu(C₆H₅COO)₂· 3H₂O [Cu benzoate],
 CuCl₂ 2((CD₃)₂SO), Cu(C₄H₄N₂)(NO₃)₂ [CuPzN], Cs₂CoCl₄,
 Cs₂CuCl₄, Cs₂CuBr₄, Sr₂CuO₃...

Systems studied:

✓ Frustrated ladder/ quasi-1D J_1 - J_2 model: spontaneously dimerized phase around J_2/J_1 =0.5 OS, Balents 2004

✓ Checkerboard lattice: crossed dimers and the phase diagram

OS, Furusaki, Balents 2005

This talk

✓ Spatially anisotropic triangular antiferromagnet: *collinear AF state/ zig-zag dimers, Inelastic neutron scattering*Kohno, OS, Balents 2007

Anisotropic S=1/2 antiferromagnet Cs₂CuCl₄

$$\mathcal{H} = \sum_{(ij)} J_{ij} \vec{S}_i \cdot \vec{S}_j - \sum_{(ij)} \vec{D}_{ij} \cdot \vec{S}_i \times \vec{S}_j - \vec{h} \cdot \sum_i \vec{S}_i$$

J = 0.37 meV

J' = 0.3 J

D = 0.05 J

Experimental Realization of a 2D Fractional Quantum Spin Liquid

R. Coldea, 1,2 D. A. Tennant, 2,3 A. M. Tsvelik, 4 and Z. Tylczynski 5

PHYSICAL REVIEW B 68, 134424 (2003)

Extended scattering continua characteristic of spin fractionalization in the two-dimensional frustrated quantum magnet Cs2CuCl4 observed by neutron scattering

Nature of continuum: multi-magnon or multi-spinon?

Our strategy

- Approach from the limit of decoupled chains (frustration helps!)
- Allow for ALL symmetry-allowed inter-chain interactions to develop
- Most relevant perturbations of decoupled chains drive ordering
- Study resulting phases and their excitations

R. Coldea et al. 2003

 Opposite to assumption that some "exotic" effective field theory governs intermediate energy behavior: Algebraic Vortex Liquid Alicea, Motrunich, Fisher (2005); Proximity to O(4) QCP Isakov, Senthil, Kim (2005); Quantum Orders Zhou, Wen (2002); Projective symmetry Wang, Vishwanath (2006)

Outline

- Key properties of Heisenberg chain
- Ground states of triangular J-J' model
 - Competition between collinear and dimerized states (both are generated by quantum fluctuations!)
 - Very subtle order
- Experiments on Cs₂CuCl₄
- Dynamical response of 1D spinons
 - spectral weight redistribution
 - coherent pair propagation
 - Detailed comparison with Cs₂CuCl₄
- Conclusions
- Cs₂CuCl₄ in magnetic field

Heisenberg spin chain via free Dirac fermions

- Spin-1/2 AFM chain = half-filled (1 electron per site, $k_F = \pi/2a$) fermion chain
- Spin-charge separation

Separation
$$H_{
m dirac}=iv\int dx \sum_{s=\uparrow,\downarrow} (\Psi_{L,s}^+\partial_x\Psi_{L,s}-\Psi_{R,s}^+\partial_x\Psi_{R,s})$$

■ q=0 fluctuations: right- and left- spin currents

$$ec{J}_{R} = \Psi_{Rs}^{+} rac{ec{\sigma}_{ss'}}{2} \Psi_{Rs'} \; , \; ec{J}_{L} = \Psi_{Ls}^{+} rac{ec{\sigma}_{ss'}}{2} \Psi_{Ls'}$$

• $2k_F$ (= π /a) fluctuations: charge density wave $\mathcal E$, spin density wave N

 $\begin{array}{ll} \text{Staggered} \\ \text{Dimerization} \end{array} \qquad \epsilon \sim i \Big(\Psi_{R\uparrow}^\dagger \Psi_{L\uparrow} + \Psi_{R\downarrow}^\dagger \Psi_{L\downarrow} - \text{h.c.} \Big) \qquad _{\Delta S=0} \end{array} \qquad \begin{array}{c} \\ -k_F \end{array}$

$$\mathcal{E} = (-1)^{x} S_{x} S_{x+a}$$

Must be careful: often spin-charge separation must be enforced by hand

Low-energy degrees of freedom

- Quantum triad: uniform magnetization $\mathbf{M} = \mathbf{J_R} + \mathbf{J_L}$, staggered magnetization \mathbf{N} and staggered dimerization $\mathbf{E} = (-1)^{\mathsf{x}} \, \mathsf{S_x} \, \mathsf{S_{x+1}}$
- \checkmark Components of Wess-Zumino-Witten-Novikov SU(2) matrix $~G=\epsilon+i\vec{N}\cdot\vec{\sigma}$
- Hamiltonian H ~ $J_RJ_R + J_LJ_L + \gamma_{bs} J_RJ_L$ marginal perturbation
- Operator product expansion $z = v \tau ix$ (similar to commutation relations)

$$\begin{cases} J_{R}^{a}(x,\tau)J_{R}^{b}(0,0) = \frac{\delta^{ab}}{8\pi^{2}z^{2}} + \frac{i\epsilon^{abc}J_{R}^{c}(x,\tau)}{2\pi z} \\ J_{R}^{a}(x,\tau)N^{b}(0,0) = \frac{-i\delta^{ab}\epsilon(x,\tau) + i\epsilon^{abc}N^{c}(x,\tau)}{4\pi z}, J_{R}^{a}(x,\tau)\epsilon(0,0) = \frac{iN^{a}(x,\tau)}{4\pi z} \end{cases}$$

- Scaling dimension 1/2 (relevant) $\langle N^a(x,\tau)N^a(0,0)\rangle \sim \frac{1}{\sqrt{v^2\tau^2+x^2}} \sim \langle \epsilon(x,\tau)\epsilon(0,0)\rangle$
- Scaling dimension 1 (marginal) $\langle M^a(x,\tau)M^a(0,0)\rangle \sim \frac{1}{z^2} + \frac{1}{\bar{z}^2}$

More on staggered dimerization

Measure of bond strength:
$$\varepsilon(x) = (-1)^x \vec{S}(x) \cdot \vec{S}(x+1)$$

Critical correlations:
$$\langle \varepsilon(x)\varepsilon(0)\rangle = 1/x$$
 [same as $\langle \vec{N}(x)\cdot\vec{N}(0)\rangle = 1/x$]

- Lieb-Schultz-Mattis theorem: either critical or doubly degenerate ground state
- Frustration leads to spontaneous dimerization (Majumdar, Ghosh 1970) J_1 - J_2 spin chain spontaneously dimerized ground state ($J_2 > 0.24J_1$)

Spin singlet
$$\downarrow = |\uparrow\downarrow - \downarrow\uparrow\rangle/\sqrt{2}$$

• Kink between dimerization patterns - massive but free S=1/2 spinon!

Shastry, Sutherland 1981

Weakly coupled spin chains

Simple "chain mean-field theory": adjacent chains replaced by self-consistent field

$$J'(\vec{S}_{x,y+1} + \vec{S}_{x,y-1}) \cdot \vec{S}_{x,y} \rightarrow \vec{B}_{\text{eff}} \cdot \vec{N}_y$$

Schulz 1996; Essler, Tsvelik, Delfino 1997; Irkhin, Katanin 2000

■ Captured by RPA
$$\chi_{2d}(q) = \frac{\chi_{1d}(q)}{1 - J'_{inter}(q)\chi_{1d}(q)}$$

- χ_{1d} ~ 1/q
- non-frustrated J': J'(q) = const
- diverges at some q₀ / energy / Temperature => long range order
- critical T $_{\rm c}$ ~ J $^{\prime}$, on-site magnetization $m \propto \sqrt{J^{\prime}/J}$

material
$$J$$
 J' exp. T_N $KCuF_3$ 406 19 39 K Sr_2CuO_3 2600 1.85 5 K Ca_2CuO_3 2600 4.3 11 K

 Weakly coupled chains are generally unstable with respect to Long Range Magnetic Order

Numerical studies of spatially anisotropic model

• J'=J/3
$$H = \sum_{(ij)} J_{ij} \vec{S}_i \cdot \vec{S}_j$$

Series & spin-waves: spiral ordering (Merino et al 1999, Weihong et al 1999, Fjaerestad et al 2007, Veillette et al 2006, Dalidovich et al 2006)

- Large-N expansion: possible dimerized states (Chung et al 2001)
- ■Exact diagonalization (6x6): extended spin-liquid J'/J ~ 0.7 (Weng et al 2006)
- Spiral order but very close to quantum disordered state

Triangular geometry: frustrated inter-chain coupling

- J'<< J: no N_yN_{y+1} coupling between nearest chains (by symmetry)
 - Inter-chain J' is frustrated $\vec{S}_x + \vec{S}_{x+1} \approx 0$

J'_{inter}(q) ~ J' sin(q), hence NO divergence for small J', RPA denominator = 1 - J' sin(q)/q ~ 1-J'

– $\,$ naïve answer: spiral state with exponentially small gap due to "twist" term $\,ec{N}_1\cdot\partial_xec{N}_2$

Nersesyan, Gogolin, Essler 1998; Bocquet, Essler, Tsvelik, Gogolin 2001

Spiral order stabilized the marginal backscattering (in-chain)

$$\left(1 - J'\sin q \frac{\sqrt{\ln(1/q)}}{q}\right)^{-1}$$

 More relevant terms are allowed by the symmetry: Involve next-nearest chains (e.g. N_v N_{v+2})

Main steps towards solution

$$H' = \sum_{y} \int dx \{ \gamma_{\text{bs}} \vec{J}_{R,y} \cdot \vec{J}_{L,y} + \gamma_{\text{M}} \vec{M}_{y} \cdot \vec{M}_{y+1} + \gamma_{\text{twist}} \vec{N}_{y} \cdot \partial_{x} \vec{N}_{y+1} \}$$

- Integrate odd chains: generate non-local coupling between NN chains
- ■Do Renormalization Group on **non-local action**: generate **relevant local** couplings

$$H'' = \sum_{y} \int dx \{ g_N \, \vec{N}_y \cdot \vec{N}_{y+2} + g_\varepsilon \, \varepsilon_y \varepsilon_{y+2} \}$$

$$ullet$$
 Initial couplings: $g_{m{arepsilon}}(\ell_0) = -rac{3}{2}g_N(\ell_0) \sim \left(rac{J'}{J}
ight)^4\,,\; \ell_0 \sim 1$

•Run RG keeping track of next-nearest couplings of staggered magnetizations, dimerizations and in-chain backscattering

$$\partial_\ell \gamma_{\rm bs} = \gamma_{
m bs}^2 \; , \; \partial_\ell g_N = g_N - rac{1}{4} \gamma_{
m bs} g_N \; , \; \partial_\ell g_\epsilon = g_\epsilon + rac{3}{4} \gamma_{
m bs} g_\epsilon$$

- •Competition between collinear AFM and columnar dimer phases: both are relevant couplings that grow exponentially $g_{N/\epsilon}(\ell^*) = g_{N/\epsilon}(\ell_0) \exp[\ell^*] \sim 1$
- ✓ Almost O(4) symmetric theory [Senthil, Fisher 2006; Essler 2007]

Marginally irrelevant backscattering decides the outcome

• (standard) Heisenberg chain: J₂=0 => large backscattering amplitude

$$\frac{\gamma_{\rm bs}(0)}{2\pi\nu} = \frac{-\Gamma}{\pi J/2} \approx -1.1(0.24 - J_2/J) + 0.86(0.24 - J_2/J)^2 - 1.1(0.24 - J_2/J)^3 + \dots \rightarrow -0.23 \text{ for } J_2 = 0$$

[Eggert 1996]

√Collinear antiferromagnetic (CAF) state

$$\frac{g_N(\ell^*)}{g_{\varepsilon}(\ell^*)} = \frac{g_N(\ell_0)}{g_{\varepsilon}(\ell_0)} \frac{1 + \Gamma\ell^*}{1 + \Gamma\ell_0} \approx \frac{2}{3} \ln(J/J') \gg 1 \text{ for } \ell^* \approx 4 \ln(J/J')$$

■ logarithmic enhancement of CAF

CAF-dimer boundary: $1/\Gamma pprox \ell^*$ CAF dimer collinear J_2

Both CAF and dimerized phases differ from classical *spiral*

✓Zig-zag dimer phase

• frustrated chains: J₂ = 0.24...J => small backscattering

$$\frac{g_N(\ell^*)}{g_{\varepsilon}(\ell^*)} = \frac{g_N(\ell_0)}{g_{\varepsilon}(\ell_0)} \frac{1 + \Gamma \ell^*}{1 + \Gamma \ell_0} \approx \frac{2}{3} \text{ for } \ell^* \approx 4 \ln(J/J') \ll \Gamma^{-1}$$

Anisotropic S=1/2 antiferromagnet Cs₂CuCl₄

$$\mathcal{H} = \sum_{(ij)} J_{ij} \vec{S}_i \cdot \vec{S}_j - \sum_{(ij)} \vec{D}_{ij} \cdot \vec{S}_i \times \vec{S}_j - \vec{h} \cdot \sum_i \vec{S}_i$$

J = 0.37 meV

J' = 0.3 J

D = 0.05 J

Dzyaloshinskii-Moriya term

Compare with Cs₂CuCl₄: spiral due to DM interaction

• Even D=0.05 J >> (J')⁴/J³ (with constants): DM beats CAF, dimerization instabilities

$$\mathcal{H}_{DM} = D \sum_{y} (-1)^{y} \hat{z} \cdot \vec{N}(y) \times \vec{N}(y+1)$$

[y = chain index]

relevant: dim = 1

- DM allows relevant coupling of N^x and N^y on neighboring chains
 - immediately stabilizes spiral state
 - · orthogonal spins on neighboring chains

Finite D, but J'=0

small J' perturbatively makes spiral weakly incommensurate

Dzyaloshinskii-Moriya interaction (DM) controls **zero-field phase** of Cs₂CuCl₄!

Finite D and J'

Phase diagram summary

- Very weak order, via fluctuations generated next-nearest chains coupling (J'/J)⁴ << J'/J (due to frustration).
- Order (B=0) in Cs₂CuCl₄ is different due to crucial Dzyaloshinskii-Moriya term.
- Phase diagram in magnetic field can be understood in great details as well
 - Sensitive to field orientation
 - Field induced spin-density wave to cone quantum phase transitions
 - BEC condensation at ~ 9 T

Excitations of S=1/2 chain

• Spinons = propagating domain walls in AFM background, carries S=1/2

[domain of opposite Neel orientation]

Dispersion
$$\omega(k) = \frac{\pi J}{2} \sin(ka)$$

• Domain walls are created in pairs (but one kink per bond)

• Single spin-flip = two domain walls: spin-1 wave breaks into pairs of deconfined spin-1/2 spinons.

Breaking the spin waves

Create spin-flip and evolve with

$$S_n^+ S_{n+1}^- + S_n^- S_{n+1}^+$$

Segment between two domain walls has opposite to initial orientation. Energy is size independent.

Two-spinon continuum

Spinon energy
$$\omega(k_x) = \frac{\pi J}{2} |\sin(k_x)|$$

S=1 excitation
$$\begin{cases} \mathbf{\varepsilon} = \mathbf{\omega}(k_{x1}) + \mathbf{\omega}(k_{x2}) \\ Q_x = k_{x1} + k_{x2} \end{cases}$$

Upper boundary
$$\omega_{2,\text{upper}} = \pi J \sin(Q_x/2)$$

$$k_{x1} = k_{x2} = Q_x/2$$

$$\omega_{x_1} = k_{x_2} = Q_x/2$$
Lower
$$\omega_{x_1} = \frac{\pi J}{2} \sin(Q_x)$$

$$\omega_{x_1} = \frac{\pi J}{2} \sin(Q_x)$$

$$k_{x_1} = 0, k_{x_2} = Q_x$$

To be compared with the "usual" neutron scattering

2D S=5/2 AFM Rb₂MnF₄, J=0.65meV Huberman et al. PRB 72, 014413 (2005)

Structure factor is determined by single magnon contribution

$$S(k,\omega) \propto \text{Re}\left\langle S_k^- \delta(\omega - H) S_k^+ \right\rangle \sim Z(k) \delta(\omega - \epsilon(k))$$

PHYSICAL REVIEW B 68, 134424 (2003)

Extended scattering continua characteristic of spin fractionalization in the two-dimensional frustrated quantum magnet Cs₂CuCl₄ observed by neutron scattering

R. Coldea, 1,2,3 D. A. Tennant, 1,3 and Z. Tylczynski4

Probably should try spinons...

Effective Schrödinger equation

Study two spinon subspace

$$|k_x, k_y; \epsilon\rangle = \sum_y e^{ik_y y} |k_x, \epsilon\rangle_y \otimes_{y' \neq y} |0\rangle_{y'}$$
 (two spinons on chain y with Sz=+1)

– Momentum conservation: 1d Schrödinger equation in ε space

$$\epsilon \psi_{\mathbf{k}}(\epsilon) + \int d\tilde{\epsilon} D_{k_x}(\tilde{\epsilon}) J'(\mathbf{k}) A_{k_x}^*(\epsilon) A_{k_x}(\tilde{\epsilon}) \psi_{\mathbf{k}}(\tilde{\epsilon}) = E \psi_{\mathbf{k}}(\epsilon)$$

Crucial matrix elements known exactly

$$A_{k_x}(\epsilon) \equiv \frac{1}{\sqrt{2}} \langle 0|S_{-k_x,y}^-|k_x,\epsilon\rangle_y$$
 Bougourzi *et al*, 1996

Types of behavior

• Behavior depends upon spinon interaction J'(k_x,k_y)

Bound "triplon"

Identical to 1D

Upward shift of spectral weight. Broad resonance in continuum or antibound state (small k)

Broad lineshape: "free spinons"

- "Power law" fits well to free spinon result
 - Fit determines normalization

Line shape in Cs₂CuCl₄

J'(k)=0 here

Triplon: S=1 bound state of two spinons

• Compare spectra at J'(k)<0 and J'(k)>0:

- Curves: 2-spinon theory w/ experimental resolution
- Curves: 4-spinon RPA w/ experimental resolution

Transverse dispersion

Bound state and resonance

Solid symbols: experiment Note peak (blue diamonds) coincides with bottom edge only for J'(k)<0

Details of triplon dispersion

- Energy separation from the continuum $\delta E \sim [J'(k)]^2$
- Spectral weight of the triplon pole Z ~ |J'(k)|

- Anti-bound triplon when $J'(k) > J'_{critical}(k)$ and $1 + J'_{critical}(k)\chi'(k_x, \omega_{2,upper}) = 0$
- Expect at small k~0 where continuum is narrow.
- Always of finite width due to 4-spinon contributions.

Spectral asymmetry

□ Vertical lines: J'(k)=0.

Conclusion

- Phase diagram of spatially anisotropic triangular antiferromagnet: quantum fluctuations promote collinear phase in favor of classical spiral ("order from order")
- Dynamic response: simple theory works well for frustrated quasi-1d antiferromagnets
 - Frustration actually simplifies problem by enhancing one-dimensionality and reducing modifications to the ground state (even for not too small inter-chain couplings)
- "Mystery" of Cs₂CuCl₄ solved
 - Need to look elsewhere for 2d spin liquids!

Magnetization measurements

• M(h) is smooth: not sensitive to low-energy (long-distance) fluctuations. Determined by uncorrelated (but magnetized) chains.

• dM/dh delineates phase boundaries: divergent derivative = phase transition

S=1/2 AFM Chain in a Field

$$\mathcal{H} = J \sum_{x} \vec{S}(x) \cdot \vec{S}(x+1) - h \sum_{x} S^{z}(x)$$

✓ Uniform magnetization
$$M = \frac{k_{F\uparrow} - k_{F\downarrow}}{2\pi} \rightarrow \delta = \pi M$$

$$\checkmark$$
 Half-filled condition $n=rac{1}{2}=rac{ec{k}_{F\uparrow}+k_{F\downarrow}}{2\pi}
ightarrow k_{F\uparrow}+k_{F\downarrow}=\pi$

• Sz component (Δ S=0) peaked at $\pi\pm2\delta$ scaling dimension $1/4\pi R^2$ increases

$$S_{\pi\pm2\delta}^z$$

• S^{x,y} components (Δ S=1) remain at π scaling dimension πR^2 decreases

1

• Derived for free electrons but correct always - Luttinger Theorem

Affleck and Oshikawa, 1999

- XY AF correlations grow with h and remain commensurate
- Ising "SDW" correlations decrease with h and shift from π

Transverse Field: B || D

- DM term becomes *more relevant*
- *b-c* spin components (XY) remain commensurate: spin simply tilt in the direction of the field
- Spiral (cone) state just persists for all fields.

Longitudinal Field: B⊥ D

- DM term involves S^z (at $\pi 2\delta$) and S^x (at π):
 - ✓ Leads to momentum mis-match for h>0: DM "irrelevant" for h > D
 - "averages out"
- With DM killed, sub-dominant instabilities take hold
- Two important couplings for h>0:

Magnetic field relieves frustration!

$$\mathcal{H}_{\text{eff}} \sim \sum_{y \in 2\mathcal{Z}} \left[J' \sin(\delta) S_{\pi-2\delta}^z(y) S_{\pi+2\delta}^z(y+1) + J' \left(S_{\pi}^+(y) \partial_x S_{\pi}^-(y+1) + \text{h.c.} \right) \right] \\ \dim 1/2\pi R^2: 1 -> 2 \\ \text{"collinear" SDW} \\ \dim 1 + 2\pi R^2: 2 -> 3/2 \\ \text{spiral "cone" state}$$

• "Critical point": $1+2\pi R^2 = 1/2\pi R^2$ gives $2\pi R^2 = (\sqrt{5}-1)/2 \approx 0.62$

Predicts spiral (cone) state for $h>h_c=0.9 h_{sat}=7.2 T$

observed for h>7.1T

EXPERIMENT: Longitudinal Field ,T_c vs B; SDW, ..., cone

- Very different behavior for B along b, c axes (both orthogonal to DM direction a)
 - Additional anisotropies in the problem?
 - Nature of AFM and AFM' phases ?

R. Coldea et al, 2001;

T. Radu et al, 2005;

Y. Tokiwa et al, 2006

Cs₂CuBr₄

• Isostructural to Cs₂CuCl₄ but believed to be less quasi-1d: J'/J = 0.5

Fig. 8. The magnetization curve and dM/dH versus H for H || b measured at T = 0.4 K in magnetic fields up to 20 T.