KITP UCSB 11/19/07

Quantum Liquid Produced by Geometrical Frustration in Spinel Oxides

Hidenori TAKAGI

Collaborators

Y.Okamoto, N, Katayama, M.Nohara (U-Tokyo)

S.Niitaka, P.Jonson, H.Katori, A.Yamamoto (RIKEN)

Pressure: N. Takeshita (CERC-AIST)

NMR: S.Fujiyama, K.Kanoda, M.Takigawa (U. Tokyo)

Neutron: S.Shamoto (JAERI)

Discussion D. Khomskii (Koln), R. Arita (RIKEN)

Spinel oxide: AB₂O₄

(cubic: Fd3m) "B-sublattice"

etrahedra

→ geometrical frustration

Geometrical frustration in ice

O - H - O

O - H - O

H: pyrochlore lattice

O:
Inside H
tetrahedron

two short & two long for O ⇒Up spin & down spin

Macroscopic degeneracy remains

S=1/2ln3/2 per hydrogen

Pauling

What do we expect for spinel related oxides?

Strongly degenerate low lying excitations originating from geometrical frustration

- liquid state of spin, charge and (perhaps) orbital (liquid crystal?)

Nature always tries to suppress the degeneracy couple with lattice, orbital, itinerant carriers

- Exotic Phase (transition)?

how to lift the degeneracy self organization of spins, charges, orbitals sensitive to perturbation: gigantic response

Geometrically Frustrated Lattices

Physics Today Feb 2007

New candidate emerges for a quantum spin liquid

A newly synthesized mineral is perhaps the most promising material yet to realize a hypothetical state with exotic behavior.

Nature sometimes surprises us with intriguing material behavior. Witness the fractional quantum Hall effect or high-temperature superconductivity. More rarely, theorists conceive of novel systems and then set out to look for them in nature. One such novel system is the spin liquid, postulated in 1973 by Philip Anderson for an antiferro-

The discovery of high- T_c superconductivity renewed interest in spin liquids because copper oxide materials are antiferromagnetic insulators before they are doped to become superconductors. Anderson and others have used the concept of a resonating-valence-bond, which underlies the prediction of a spin-liquid state, to try to explain the

at MIT were able to synthesize a rare mineral known as herbertsmithite.³ (The small amounts found in nature are not sufficiently pure.) It's a member of the paratacamite family characterized by the formula $Zn_xCu_{4-x}(OH)_6Cl_2$, where x=1 for herbertsmithite. As pictured in figure 2 and confirmed by crystallography, the spin-½ copper atoms

3D Pyrochlore lattice

 $\frac{Spinel (AB_2O_4)}{Fe_3O_4=FeFe_2O_4}$

Pyrochlore(A₂B₂O₇) Y₂Mo₂O₇

a wide variety of materials, most popular oxide structure

Progress in searching for new spinel oxides and exotic spin, charge orbital states at RIKEN/Tokyo

Spin liquid ground state in Na₄Ir₃O₈ with hyper-Kagome lattice (ordered spinel)

new compound

PRL 99 137207 (07)

Charge frustration & heavy fermion formation in mixed valent LiV_2O_4 (1:1 V3+ & 4+) spinel charge analogue of spin liquid strong electron correlations in the presence of frustration

PRL99 167402 (07)

Orbital & charge ordering in mixed valent spinel LiRh₂O₄
new compound

And more ,,,,, LiVS₂, Hg₂Ru₂O₇

Spin liquid ground state in Na₄Ir₃O₈ with hyper-Kagome (ordered spinel) lattice

Okamoto, Nohara, Katori & Takagi PRL 99 137207 (07)

Searched for Ir spinel After struggle, by chance found Na₄Ir₃O₈ closely related to spinel

 $Na_4Ir_3O_8$: cubic $P4_132$, a = 8.985 Å

		X	y	Z	9	B(Å)
Ir	12d	0.61456(7)	x + 1/4	5/8	1.00	0.15
Na1	4b	7/8	7/8	7/8	1.00	2.6
Na2	4a	3/8	3/8	3/8	0.75	2.6
Na3	12d	0.3581(8)	x + 1/4	5/8	0.75	2.6
<i>O</i> 1	8c	0.118(11)	X	X	1.00	0.6
02	24e	0.1348(9)	0.8988(8)	0.908(11)	1.00	0.6

Na₄Ir₃O₈: Ir⁴⁺ oxide with hyper-kagome structure

B-cation ordered spinel

 $2 (Na_{3/2})_1 (Ir_{3/4}, Na_{1/4})_2 O_4$

 $Na_4Ir_3O_8$: cubic $P4_132$, a = 8.985 Å

Isostructural to Na₄Sn₃O₈

"hyper-Kagome" frustration

B-site

 $\frac{3}{4}$: Ir, $\frac{1}{4}$: Na

Cation ordering

Closely related to garnet

Hyperkagome (ordered spinel) lattice has "chirality" P4₁32 P4₃32

Na₄Ir₃O₈ S=1/2 Mott Insulator with AF interaction

Mott insulator

S=1/2 hyper-Kagome

$$\theta_{\rm W}$$
 = -650 K $\mu_{\rm eff}$ = 1.96 $\mu_{\rm B}$ / Ir strong AF int. (S = 1/2 \rightarrow 1.73 $\mu_{\rm B}$) J ~ 400K estimated

No ordering in χ down to 1.8 K $\ll \theta_{cw}$ = 650K

Strong frustration

Spin liquid?

²³Na NMR indicates absence of magnetic ordering down to 2 K - evidence for spin liquid

 $\chi(T) \rightarrow constant at T=0 limit gapless$

Fujiyama, Kanoda

Power law decay of nuclear spin-lattice relaxation rate

S. Fujiyama, K. Kanoda

No 1/T₁ divergence down to 2K no ordering and freezing!

 $1/T_1$ constant above $T\sim 200K (\sim J/2)$

Consistent with a large J~400K

Power low decay below 200 K

 $^{\sim}$ T-linear below 10 K?? 1/ T_1 T const low lying spin excitaion??

C(T) supports for spin liquid ground state

-No evidence for long range ordering in C(T) :only broad peak

-Large entropy remains even at low T

-Magnetic field independent up to 12 T

low E excitation originates from (large) J scale

strongly degenerate low lying spin excitation created by J

<θ_{cw}= 650K

10 T(K) 20

C_m(T) ∝ T² down to 2K E linear DOS (gap node)

Comparison with other geometrically frustrated magnet - entropy weight down shift

Issues:

- T² specific heat in 3D?

 $-(T_1T)^{-1}$ constant?

very small γT term observed below 1 K

likely disorder (imp.)?

Uniqueness: 3D S=1/2

- Much cleaner, no evidence for freezing

Charge frustration & heavy fermion formation in LiV_2O_4 spinel probed by optical response

Jonson, Takenaka, Niitaka, Takagi, PRL99 167402 (07)

Heavy Fermion behavior in mixed valent (3+, 4+) spinel oxide LiV₂O₄

C.Urano, H.T et al PRL 85, 1052 (00) H.T et al. Mat.Sci. Eng. B63, 147 (99)

"charge" frustration

1:1 V3+ & V4+ on pyrochlore lattice

want to order but cannot show any charge & spin ordering due to strong frustration

Charge analogue of spin liquid

Heavy fermion ground state results!

Evolution of quasi-particle DOS peak 4 meVabove E_F

Only t_{2g} electrons involved

A new route to heavy fermion by frustration

not Kondo

Shin, PRL

Key ingredients: close proximity to charge ordered insulator without charge/magnetic ordering due to geometrical frustration

Crystallization of heavy fermions under pressure in LiV₂O₄

HF state of LiV_2O_4 close proximity to CO

S. Niitaka, N. Takeshita

Contrast between LiV₂O₄ and Kondo intermetallics

absence of resistivity saturation (bad metal), logT

analogous to TMOs near Mott(CO) transition, indicative of close proximity to CO: Mott-Hubbard physics rather than Kondo physics?

C. Urano, H.T et al PRL 85, 1052 (00)

Coherent - incoherent crossover seen in optical conductivity $\sigma(\omega)$

PRL99 167402 (07)

E scale of

Spectral weight transfer?

Not $J_k \sim 20 K$ But much larger

Coherent Drude marginally formed only at low T

Spectral weight transfer over eV-scale to establish coherent QP states

PRL99 167402 (07)

Mott physics dominates the QP state rather than low E Kondo physics

Close proximity
to Correlation driven
COstate
in the presence of
Frustration

"Charge" analogue of spin liquid

optical conductivity $\sigma(\omega)$

Orbital & Charge Ordering in Geometrically Frustrated LiRh₂O₄

4d 5d anlogue of LiV2O4??

Discovered as a new compound

Two transitions to lift the degeneracy

Band JT + dimerization

New mixed valent spinel LiRh₂O₄

- Rh^{3.5+}: $4d^{5.5}$ LS 0.5 hole in t_{2g} - 1:1 Rh3+ ($4d^6$) & Rh4+ ($4d^5$)

non-magnetic t_{2g} t_{2g}

- charge ordering (1st order M-I) at 170 K: Contrast to $LiV_2O_4!$ "singlet molecules" in solid to suppress frustration

-Additional anomaly at 230 K (M-M)

Robust spin singlet formation indicated by Li-NMR

Waki, Takigawa

Activation energy ~ 3000K Robust singlet

Valence bond solid (spin singlet insulator) ubiquitous in mixed valent spinel?

CuIr₂S₄ 1:1 Ir 3+ and Ir 4+ Spin singlet octomer of Ir 4+ in CO state

300

200 *T*(K)

100

400

 AIV_2O_4 1:1 V 2+ and V 3+

spin singlet heptamer formation in CO state

Y.Horibe, T.Katsufuji et al. PRL 96 084606 (06)

Very large distorion of metal-metal distance ~10% to form singlet molecule

LiRh₂O₄ NMR suggests singlet stabilized 3000K

Valence bond solid formation also in charge ordered state of LiV₂O₄?

With N, Dragoe (Orsay)

EXAFS, large V-V modulation P>Pc valence bond crystal with orbital ordering

PRB

How does system evolve into spin singlet insulator?

- Rh^{3.5+}: $4d^{5.5}$ LS 0.5 hole in t_{2q}

- 1:1 Rh3+ (4d⁶) & Rh4+ (4d⁵)

non-magnetic
$$t_{2g}$$
 t_{2g}

- charge ordering (1st order M-I) at 170 K:

"singlet molecules" in solid to suppress frustration

-Additional anomaly at 230 K (M-M)

Large (hidden) entropy change and Cubic-Tetragonal transition at M2-M1 transition

orthorhombic

a = 8.29 Åb = 8.36 Å $(b/a \sim 1.01)$ c = 8.67 Å

tetragonal

a = 5.89 Å $(\sqrt{2}a = 8.34 \text{ Å})$ c = 8.67 Å

 $(c/a \sim 1.04)$

cubic

a = 8.46 Å

LiRh₂O₄

~70% of R/Rh4+

ΔS ~20% of R/Rh4+

Likely (band) JT transition

superstructure

No-superstructure in ED

Other related new compound

Mott transition on frustrated lattices

Spin singlet ground state in S=1 Mott insulator with frustrated triangular lattice: LiVO₂

Penc, Khomskii, Sawatzky

Suppression of spin frustration by orbital ordering

Trimer formation observed in ED

LiVS₂: itinerant analogue of LiVO₂ Metal to (trimer) singlet insulator transition spin + orbital may not be enough for LiVO₂

Spin singlet (trimer) state are so robust in the vicinity of M-I

trimer formation just like LiVO₂ indicated by ED in ins, phase

Metal-Insulator Transition in New Pyrochlore $Hg_2Ru^{5+}{}_2O_7$

spin singlet (valence bond solid) formation assciated with Mott transition in Ru4+ pyrochlore: HTI₂Ru₂O₇ (Lee) :0

Singlet ubiquitous even in Mott when frustrated

- Unique system

Ru 5+ system not Ru 4+ t_{2g}³

no orbital degrees of freedom

AF ordering found in ins. phase by Hg NMF (Takigawa) + small distortion

Itinerant analogue of ZnCr₂O₂ (spin-JT)

Hg₂Ru₂O₇ vs. Tl₂Ru₂O₇

Orbitals play a vital role in forming singlet

Summary

Na₄Ir₃O₈

Spin liquid ground state on hyper-Kagome lattice V shaped excitation spectrum?

LiV₂O₄

HF state realized by correlation + frustration ? $LiRh_2O_4$

VBS ubiquitus in mixed valent system
Band JT (orbital ordering) + dimerization
Orbital important for VBS formation

More....