Relatedness and the evolution of multicellularity

Roberta Fisher
Oxford University

Multicellularity

Complexity

Simple

Complex

Low # cell types
Small size

Low degree of dimorphism

High # cell types

Large size

High degree of dimorphism

The importance of relatedness

Obligate or facultative?

(Has the species undergone a <u>major transition</u>?)

Myxococcus xanthus

Mus musculus

How does **relatedness** between cells influence:

1. Complexity?

2. Obligate/facultative?

Group formation & relatedness

How does **relatedness** between cells influence:

1. Complexity?

2. Obligate/facultative?

1. Does relatedness influence the transition to obligate multicellularity?

pMCMC = 0.0002

2. Does relatedness influence the level complexity?

pMCMC = 0.0008

pMCMC = 0.02

2. Does relatedness influence the level complexity?

MAJOR TRANSITION to Obligate

multicellularity

Non-clonal r = <1

Facultative multicellularity

Parallels with eusociality.....

Clonal / Subsocial

 $r_{\text{help}} = r_{\text{off}}$

Obligatemulticellularity/eusocial
ity

Non-clonal / Semisocial

 $r_{help} < r_{off}$

Facultative multicellularity/eusocial ity

Acknowledgements

Funding: NERC

Stuart West

Charlie Cornwallis

Ashleigh Griffin

Andy Gardner

