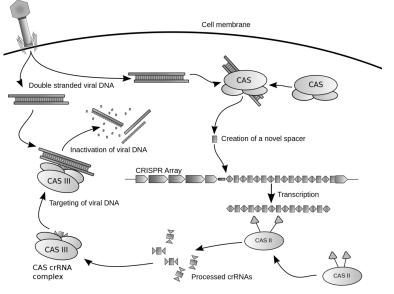
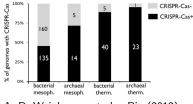

The CRISPR-Cas adaptive immunity system in prokaryotes: Mathematical modeling of virus-host co-evolution

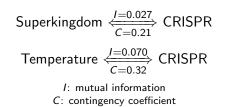
> Alexander E. Lobkovsky[†], Jaime Iranzo-Sanz[‡], Yuri I. Wolf[†], Eugene V. Koonin[†]

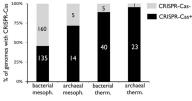
[†] National Center for Biotechnology Information, National Institutes of Health


[‡] Centro de Astrobiología (CSIC/INTA) Instituto Nacional de Téchnica Aeroespacial


Erik J. Sontheimer & Luciano A. Marraffini, Nature. 468, (2010)

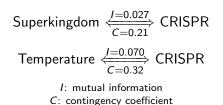
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

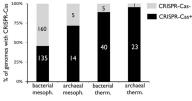

Cells incorporate fragments of foreign DNA and use them later to identify and destroy invading phages or plasmids



> 三 のへの

A. D. Weinberger et al, mBio (2012)

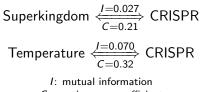




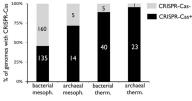
A. D. Weinberger et al, mBio (2012)

CRISPR has a fitness cost:

- Blocks beneficial HGT (horizontal gene transfer)
- Auto-immunity
- Genomic burden



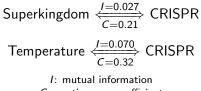
A. D. Weinberger et al, mBio (2012)


CRISPR has a fitness cost:

- Blocks beneficial HGT (horizontal gene transfer)
- Auto-immunity
- Genomic burden

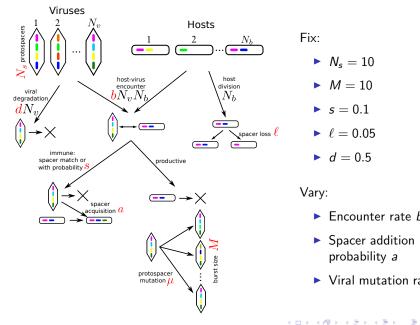
How does CRISPR survive?

C: contingency coefficient


A. D. Weinberger et al, mBio (2012)

CRISPR has a fitness cost:

- Blocks beneficial HGT (horizontal gene transfer)
- Auto-immunity
- Genomic burden


How does CRISPR survive?

Study a stochastic virus-host co-evolution model with explicit CRISPR dynamics

C: contingency coefficient

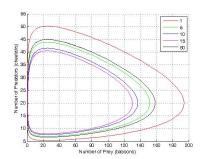
Stochastic model of CRISPR/virus co-evolution

- Fix: $N_{s} = 10$
 - M = 10
 - s = 0.1
 - $\ell = 0.05$
 - d = 0.5

Vary:

- Encounter rate b
- Spacer addition probability a
- Viral mutation rate µ

Without the CRISPR adaptive immunity: Lotka-Volterra


$$\dot{N}_b = N_b - bN_bN_v(1-s)$$

 $\dot{N}_v = -dN_v + bN_bN_v(M-Ms-1)$

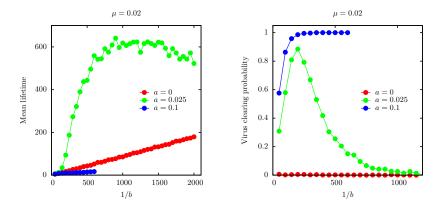
Marginally stable fixed point:

$$egin{aligned} N_b &= rac{d}{b(M-Ms-1)} \ N_
u &= rac{1}{b(1-s)} \end{aligned}$$

Critical immunity: $s_{\rm crit} = 1 - M^{-1}$

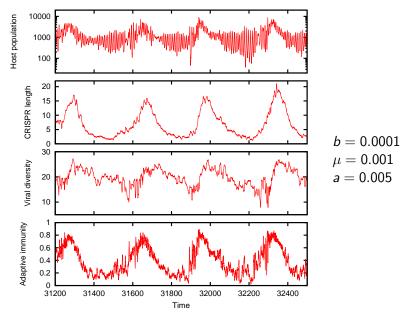
Family of orbits around the fixed points with period $\frac{2\pi}{\sqrt{d}}$

Constant of the motion:

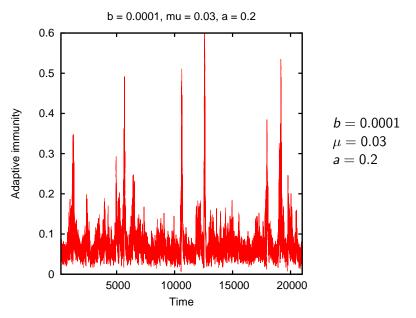

$$V = -b(M - Ms - 1)N_b + d\log N_b - b(1 - s)N_v + \log N_v$$

Finite population \rightarrow stochastic extinction

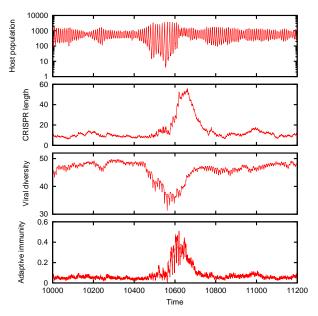
・ロト・西ト・西ト・日・ うらの


(De)stabilization of LV by CRISPR

- Dynamics of the system are **not** canonical LV
- Critical spacer addition probability a_{crit}(µ) above which virus is cleared in large populations


 $1/b\sim$ population size

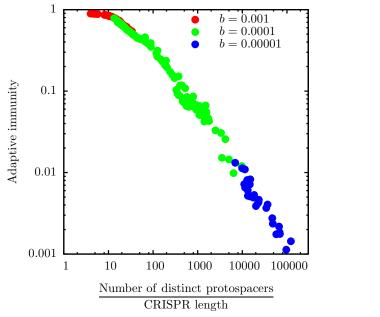
Slow oscillations on top of the LV oscillations



|▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 = ∽ � � �

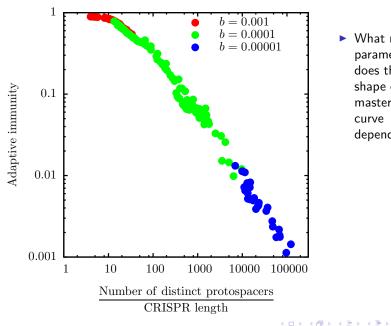
Excitable medium-like behavior

Excitable medium-like behavior

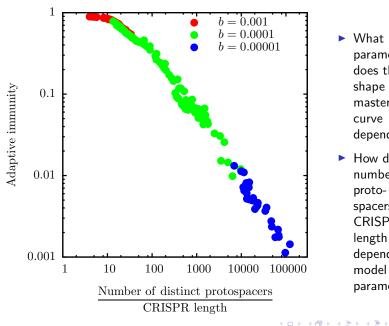


b = 0.0001 $\mu = 0.03$ a = 0.2

FitzHugh-Nagumo description? Slow variable? Small parameter?

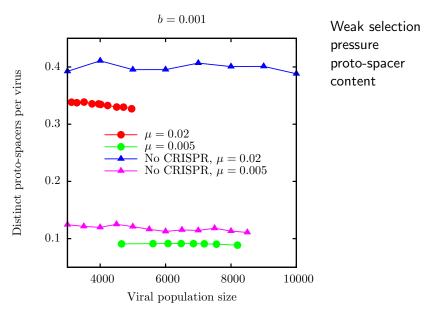

(日) (同) (日) (日)

Spacers are distributed at random among viruses and hosts

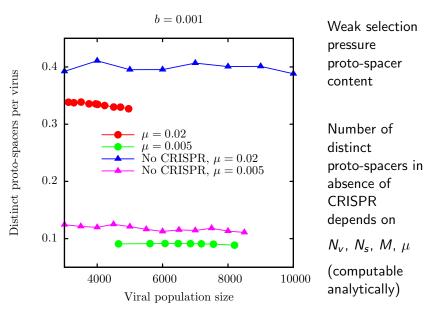

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Spacers are distributed at random among viruses and hosts

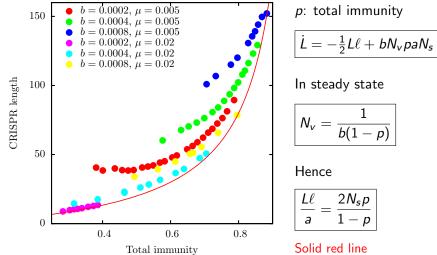
What model parameters does the shape of the master curve depend on?


Spacers are distributed at random among viruses and hosts

- What model parameters does the shape of the master curve depend on?
- How do the number of protospacers and CRISPR length L depend on model parameters?


э

CRISPR only slightly suppresses viral diversity


◆□> ◆□> ◆目> ◆目> ◆目 ● のへで

CRISPR only slightly suppresses viral diversity

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへ(?)

Virus evolution is unconstrained in large populations at high mutation rates

Assumption: CRISPR length and immunity are uncorrelated amoung individuals in a population

• CRISPR- hosts grow with rate 1 + c

- CRISPR- hosts grow with rate 1 + c
- CRISPR+ hosts have immunity p > s

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- CRISPR- hosts grow with rate 1 + c
- CRISPR+ hosts have immunity p > s
- In an infinite system there is coexistence for

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\frac{p-s}{p} < c < \frac{p-s}{s}$$

- CRISPR- hosts grow with rate 1 + c
- CRISPR+ hosts have immunity p > s
- In an infinite system there is coexistence for

$$\frac{p-s}{p} < c < \frac{p-s}{s}$$

Stochastic extinction in a finite system

- CRISPR- hosts grow with rate 1 + c
- CRISPR+ hosts have immunity p > s
- In an infinite system there is coexistence for

$$\frac{p-s}{p} < c < \frac{p-s}{s}$$

Stochastic extinction in a finite system

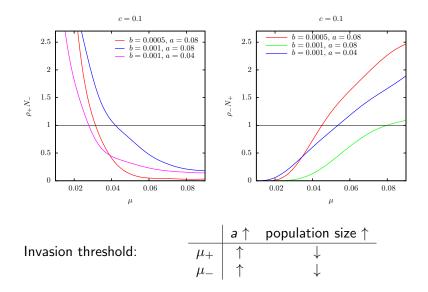
► Introduce a singe CRISPR— host into a steady state system with N₊ CRISPR+ hosts and measure the invasion probability ρ₋

- CRISPR- hosts grow with rate 1 + c
- CRISPR+ hosts have immunity p > s
- In an infinite system there is coexistence for

$$\frac{p-s}{p} < c < \frac{p-s}{s}$$

Stochastic extinction in a finite system

- Introduce a singe CRISPR- host into a steady state system with N_+ CRISPR+ hosts and measure the invasion probability ρ_-
- ▶ CRISPR- host is said to be favored by selection if $\rho_-N_+ > 1$


- CRISPR- hosts grow with rate 1 + c
- CRISPR+ hosts have immunity p > s
- In an infinite system there is coexistence for

$$\frac{p-s}{p} < c < \frac{p-s}{s}$$

Stochastic extinction in a finite system

- Introduce a singe CRISPR- host into a steady state system with N_+ CRISPR+ hosts and measure the invasion probability ρ_-
- ▶ CRISPR- host is said to be favored by selection if $\rho_-N_+ > 1$
- Repeat for CRISPR+ introductions (initially without spacers)

Spacer-less CRISPR+ hosts can be favored by selection

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

 CRISPR/virus co-evolution system shows complexity beyond standard LV: slow oscillations and excitable medium

- CRISPR/virus co-evolution system shows complexity beyond standard LV: slow oscillations and excitable medium
- Nevertheless, steady state time averaged immunity depends only on the number of distinct viral proto-spacers per spacer

- CRISPR/virus co-evolution system shows complexity beyond standard LV: slow oscillations and excitable medium
- Nevertheless, steady state time averaged immunity depends only on the number of distinct viral proto-spacers per spacer

Viral diversity is slightly below its free evolution limit

- CRISPR/virus co-evolution system shows complexity beyond standard LV: slow oscillations and excitable medium
- Nevertheless, steady state time averaged immunity depends only on the number of distinct viral proto-spacers per spacer

- Viral diversity is slightly below its free evolution limit
- CRISPR length can be estimated by assuming that it is uncorrelated with immunity amoung individuals in a population

- CRISPR/virus co-evolution system shows complexity beyond standard LV: slow oscillations and excitable medium
- Nevertheless, steady state time averaged immunity depends only on the number of distinct viral proto-spacers per spacer
- Viral diversity is slightly below its free evolution limit
- CRISPR length can be estimated by assuming that it is uncorrelated with immunity amoung individuals in a population
- CRISPR+ hosts can resist invasion by more fit CRISPRhosts by maintaining a "healthy" viral population

- CRISPR/virus co-evolution system shows complexity beyond standard LV: slow oscillations and excitable medium
- Nevertheless, steady state time averaged immunity depends only on the number of distinct viral proto-spacers per spacer
- Viral diversity is slightly below its free evolution limit
- CRISPR length can be estimated by assuming that it is uncorrelated with immunity amoung individuals in a population
- CRISPR+ hosts can resist invasion by more fit CRISPRhosts by maintaining a "healthy" viral population

Cooperation: CRISPR survives via group selection

- CRISPR/virus co-evolution system shows complexity beyond standard LV: slow oscillations and excitable medium
- Nevertheless, steady state time averaged immunity depends only on the number of distinct viral proto-spacers per spacer
- Viral diversity is slightly below its free evolution limit
- CRISPR length can be estimated by assuming that it is uncorrelated with immunity amoung individuals in a population
- CRISPR+ hosts can resist invasion by more fit CRISPRhosts by maintaining a "healthy" viral population
- Cooperation: CRISPR survives via group selection
- Dependence of CRIPSR± invasion probabilities on the viral mutation rate may explain the prevalence of CRIPSR amoung thermophiles