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Physics of self-assembly and signaling

|. Self-assembly:
— evolution of yeast clusters (Mike Travisano)
— cooperation and aggregation of daughters (Corina Tarnita)

ll. Signaling, Quorum sensing:
— quorum sensing (Avigdor Eldar, Hyun Youk)
— diffusion sensing (R. Redfield) and a toy model
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|. Self assembly < yeast budding/aggregation

9(9) ~-a+bo
9(9)

9(¢) ~-a/p+b

¢

Growth law: M (t) = g(¢(t))M(t), Resources: ep(t) =\ — My
Constraints: g(¢) = —a + by, g(¢) =~ —a/p+b
Effective growth law: M (t) ~ b\ — aM (t), M(t) ~b(1 — S M)M

growth/self-assembly of clusters with total mass contraint
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|. Self-assembly in biology
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Nature Reviews | Microbiology

-associated peptides self-assemble

Integral membrane or membrane
Into antimicrobial pores

maximum cluster size: N ~ 4 — 8
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|. Self-assembly in biology: virus assembly

Z. Yu et al.,, Unclosed HIV-1 Capsids Suggest a Curled Sheet Model of Assembly, J. Mol.
Biol., 425, 112, (2013).

D. C. Rapaport, Simulation of capsid assembly in closed volumes (cells), Phys. Biol. 7,
045001 (2010)

maximum cluster size: N ~ 100 — 1000
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. Self-assembly in biology: Clathrin-coated pits
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Banerjee, Berezhkovskii, and Nossal, Biophys. J., 102, (2012).

maximum cluster size: N ~ 25 — 50
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|. What's been done:

e Mass-action equations for mean size distribution used in many contexts:

Virus capsid assembly: Morozov, Bruinsma, Rudnick, J. Chem. Phys., 131, 155101,
2009

P. L. Krapivsky, E. Ben-Naim, and S. Redner, Statistical Physics of Irreversible
Processes, CUP, 2010

e Extensive work on asymptotic analysis of mass-action, Becker-Doring egs:

P.-E. Jabin and B. Niethammer, J. Differential Equations, 191, 518-543, 2003
J. A. D. Wattis and J. R. King, J. Phys. A: Math. Gen., 31, 7169-7189, 1998

e Very little on full stochastic treatments of nucleation:

J. S. Bhatt and I. J. Ford, J. Chem. Phys., 118, 3166-3176, 2003
F. Schweitzer et al., Physica A, 150, 261-279, 1988
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|. Heterogeneous vs. homogeneous nucleation

Ns= 6, M = 30, N=6

(a),:.‘?.‘. .'. Le ot
.?‘.(3 .E).. .C.z'.d- .:}. e o) 3% | Ns= number of seeds
O L e O‘ ° n. ° M= total mass
°® o 0o o °° Ib <k N= maximum cluster size
M=30,N=6
OF e .. .
o ® % . ° ¢ . !0 : ‘ boqy o
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(a) Heterogeneous nucleation: growth on preexisting seeds (hexagons)

(b) Homogeneous nucleation: spontaneous dimer formation

D’Orsogna, Lakatos, Chou, J. Chem. Phys., 136, (2012)
Chou & D’Orsogna, PRE, 84, (2011).
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|. Heterogeneous nucleation: mass action

Assume fixed number of seeds Ng, pr =p, qx = ¢, and ¢/p=¢ K 1.
Mass-action equations for concentration ¢ (t) of seeds with £ bound

“ligands™:
¢co = —m(t)cy + ecy,
¢, = —m(t)cr —eck +m(t)cg—1 + ecrt1,
¢y = —eey +m(t)en—1,

Constraints: m(t) = M — Z],f:l kck(t), Ny = Z;VZO c;(t),

Initial conditions: cx(t = 0) = Ngdg.0, m(t =0) = M.

Many asymptotic results known
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|. Heterogeneous nucleation: Master egn

Full probability for m free monomers, ng free seeds, n; seeds bound to
one monomer, n; seeds bound to : monomers:

P(m, {n};t) = —A(m, {n})P(m, {n};1)

—1

2

+ > (m—+1)(n + YW W P(m, {n};1)

MZQM

1

+e ) (ni + YW, ,W;"P(m,{n};1)

1

.
I

where A =m Zﬁgl(m + en;41) and

Wi+W¢11P(ma {n};t) =

P(m+17n07n17°"7ni+17ni+1_17"'7nN;t)
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|. Heterogeneous nucleation: Master egn

Constraints:

N N
M:m—l—ank and NS:an.
k=1 k=0

Initial condition:

P(m, {n}, = O) — 5m,M5no,N85ni>1,O

Mean values:
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Heterogeneous nucleation: mass-action vs. ME

e = 0, irreversible kinetics = quenched cluster distribution

(4|5,0,0,0)

l

(314,1,0,0)

|

(2]3,2,0,0) (2]4,0,1,0)

N

(1]2,3,0,0) (113,1,1,0) (1]4,0,0,1)

LN O

(0]1,4,0,0) (0]12,21,00 (0]3,020 (0]31,01)

6/31 18/31 3/31 4/31

e Exact, explicit relations derived for (n}).
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|. Heterogeneous nucleation: mass-action vs. ME

e > 0 = equilibrium distribution after t ~ 1/e:

(415,0,00)
jr
(314.1,00)
\ NS
(213200 " (2]40.10)

S

(1] 2‘,3,0,0) (113,1,1,0) (1]4,0,0,1)

jr \ jr\\» Jr

014,000 ~(0[2210) (0]3,020 ~(0]310,)
1/13 6/13 2/13 4/13

e Recursion relations derived for (nzq>
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|. Heterogeneous nucleation: mass-action vs. ME

o= M/(NgN):

N=5, N=10, M=5

N=5, N=10, M=15

N=5, N=10, M=25

4 ] ] ] ] ] [ N T N R A T N S
©
2 Nyt =
] [ k=5 [
O T - 1 T 1 T T T T 1
-4 2 0 2 4 6 8
o=20.1 o=20.3 o=20.5

e Mass-action models provide reasonably accurate means
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. Heterogeneous nucleation: small errors

Define a standard error between mass-action and discrete model:

N 2
oL SN @) elt)
(t) = —— Z _
N+1Z| N N,
0.008 : b slo”
| @) D C
3 o 4
0.006 - AT S Y o 2.0x10 .
. SR P Sl skt I
‘A 0.004 ISR Sl
3 S S £ Foxio”
o ) [ - 5.0x10”
Oﬂmk _'""'"'|""""'I'""'"'I""""'I""""'_ 0.0

0 10 20 30 40 50 0 10 20 30 40 50
M M

Errors typically small....what about homogeneous nucleation?
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|. Homogeneous nucleation: mass-action

Becker-Doring mass-action egs:

- 2 N—-1 N
by =—Cc1—C1) jp ¢jt+2eca+e) ;3¢
c 1.2
Cg = —C1C2 + 5C] — €C2 + £C3
t=0 0<t<e? t>el
ék; — —C1Ck + C1Cp—1 — ECE + ECk+1

ck(t) : conc. of size-k clusters

CN = C1CN—1 — ECN,

detachment rate/attachmentrate = ¢/p=¢ < 1

|
Physics of self-assembly and signaling — p. 16



. Homogeneous nucleation: mass-action

Becker-Doring (BD) theory, N=4, M=9
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1
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log,,?

Numerics: N =4, M =9, = 107°

Coarsening time t. ~ 1/e: 0 — ¢} — ¢}

Largest cluster dominates: ¢, ' ~ £ (i—%)k/N + Ol —FR/N=-1/N)

2
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. Homogeneous nucleation: Master Equation

- Consider finite size using discrete Master Equation.

- Define Prob. n; monomers, ny dimers,...at t: P(ny,n9,ns,...,ny;t)

P({n};t) = —A({n})P({n};t) + 1 (n1 + 2)(n1 + DWW W5 P({n}; )
+e(ng + L)W Wi Wy P({n};t)

N-—1
+ ) (na + D) (ni + DWW W, P({n};t)
1=2

+e Z n; + — W.rP({n};1),

s

Total rate out of configuration {n} is

A({n}) = —n1 (np—1)+ Z nin; +5Zm,
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|. Homogeneous nucleation: Master Equation

Raising and lower operators Wf. For example,

W;Wz—FWz;lP({n},t) = P(n1 + 1, eyt 1,ni+1 — 1, « oo ,t)

represents detachment of a monomer from a (i + 1)-cluster, forming an
additional free monomer and a (7)-cluster

Initial condition: P({n};t =0) = 0., Am0n.0 Onpy.0

Mass conservation: M = 7" | jn;

With definition of mean: (ny(t)) = Z’{nj} niP({n};t), derive moment
hierarchy:
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. Homogeneous nucleation: moment hierarchy

|
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|. Kinetic Monte-Carlo simulations

Use KMC to simulate full distribution of n. At equilibrium:
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|. Kinetic Monte-Carlo simulations

Compare BD (ci) with KMC ({(ng)) for N =8 and M = 16, 17:

(a) KMC vs BD, N=8, M=16 (b) KMC vs BD, N=8, M=17
L L

(¢) KMC, t=00, N=8
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e ¢;, does not compare well with (n;), especially at equilibrium
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|. Homogeneous nucleation: exact equilibrium solution

How to solve for (n;')? N=4, M=9
9[- (9,000)
I
~ (7,1,00)

=7
%) \ \
5 7 (5200) (6010
j b \ r \
> r A
S 6 (3300 4110* (5001) (4,1,1,0)*
e POSO) A
T 5 (1400 (2210* (3101 (30,20) (22,10
. SISO, A A

4i- (1,20, (2011) (1120)

3 [(0111) (1,00.2)] (0030)]

Enumerate states with minimum number of clusters:

e Forthe N =4, M =9, Npin = 3.
e Identify connections with Vi, + 1 = 4, apply detailed balance:
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|. Homogeneous nucleation: exact equilibrium solution

Define
M=oN—-j5 (0<j<N-1).

o — 1. largest integer divisor

j. Incommensurability or remainder

Exact solution

oo —1)
RCEYES) + O(e)

_ olc—1)jG—1)...(j —k+1)

- (0+j_1)(0+j—2)...(a+j_k_1)+O(5)

(ny)

<n?\(fl—k>

valid for 0 < j < N — 1 and all .
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|. Homogeneous nucleation: exact equilibrium solution

For ; = N — 1 (one additional monomer)

o 2(N—1)!
1) = Do N = 1)
<n?\(fl_k> _ Hézl(N _é)(ol-_[;\:f_l__l)(o- — 2+ 7’) 4 0(8)

(n50) = (o~ )5 0

+ O(e)

where
j—1
D(o,j) = j'+ ][] (e + ).
=1

Results verify KMC simulations in € — 07 limit
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|. Homogeneous nucleation: exact equilibrium solution

(n)') as a function of total mass M: cluster dispersal

Mass in largest cluster only when M divisible by N.
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|. Exact equilibrium solution: cluster dispersal

Mechanism of size-incommensurate cluster dispersal:
For M =17, N = 8, extra monomer yields (1,0,0,0,0,0,0, 2).
If £ > 0, many other (seven) 3-cluster states are also sampled:

(0,1,0,0,0,0,1,1) (0,0,0,1,0,1,1,0) (0,0,1,0,0,0,2,0) (0,0,0,0,1,2,0,0)
(0,0,1,0,0,1,0,1) (0,0,0,0,2,0,1,0)
(0,0,0,1,1,0,0,1)

These & states have similar weights =
flat mean cluster size distribution.
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|. Validity of mean-field, mass-action models

equilibrium cluster numbers (e < 1) | & —0 | 2 finite | & > N
BD (N = o) MFT* X X

BD (finite V) MFT* MFT MFTT
discrete model exact” exact exactf

e Results depend on how N, M — oc limits are taken.

e Results indicated by * or + match in the e — 07 limit.
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|. Table of results

heter ogeneous homogeneous

@
Bo numerical
2] exact formula _ _
T w recursion relation
S

i
£ v .
E’ V numerical explicit
S w : : i
=y recursion relation asymptotic result
%o

e extension to nonconstant p;, gz ?

e grand canonical calculation for e 4 07?2
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|. Time to first maximal cluster formation

How long does it take to form first complete cluster?

Define S(ny,n9,...,ny_1,t) as the probability that starting from the
state {ny,n9,...,ny_1}, that ny = 0 at time ¢. S obeys Backward
equation: .

S(t) = MS(t)

where S(t) is the vector of survival probabilities, and M is a transition
matrix.

mean time: (T'({n;})) = /OOO S({n;},t)dt = S{n;},s = 0).

|
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|. First passage times: heterogenous nucleation

(415000 Traps always arise:

l

(314,1,0,0)

|

(2]3,2,0,0) (214,0,1,0)

N

(1]2,3,0,0) (1]3,11 (114,0,0,1)

I l\ |

(011,400 ((0]221,0))((0]30,20) ] (0]310,1)

6/31 18/31 3/31 4/31

For ¢ = ¢/p < 1, cluster formation may not occur and (T') ~ <.

For e = q/p > 1, cluster formation is a rare event: (T') ~ e.

|
Physics of self-assembly and signaling — p. 31



|. First passage times: homogeneous nucleation

Traps almost always arise:

total # of clusters N

(9,0,0,0)
}
(7,1,0,0)

r \

(5,2,0,0) (6,0,

r \

3300 (41,

N 0

) \

‘}\

(1,40,00 (22,

N=4, M=9

1,0)

1,0* (5,0,0,1)

1,00 (3,1,0,1)

(4,1,1,0*

e

(30,20) (2,21,0*

i i bt ate
NPT

(0.11D)] (1002)] [(0030))

(0310)] (1201 (2011

For ¢ = ¢/p < 1, cluster formation may not occur and (T') ~ L.

For e = q/p > 1, cluster formation is a rare event (T') ~ «.
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l. Summary

® Derived fully stochastic, discrete models for heterogeneous and
homogeneous nucleation

® Found exact results for heterogeneous nucleation (¢ = 0) and
homogeneous nucleation (¢ — 07).

® Qualitative difference between mass-action and discrete problem
arises in homogeneous self-assembly.

® Mean cluster size distribution broadens if size and mass are
Incommensurate, even if N, M — oo, as long as M/N finite

® First nucleation times 7" analyzed. Mean times typcially diverge
due to “traps”.
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ll. Signaling and quorum sensing

N

e Self-signaling: autoinducer (Al) concentration is highest near self

e What are the constraints on detection of global Al concentration?

|
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Il. Signaling and quorum sensing: baseline conc.

Lowest order homogenization = uniform concentration:

dﬁb(t) B np\ _
a 7 (1 N f) ™ (t)
%ﬁt) = —(u+k)C + 4ma® Jynp(t)
ACat) _
BT —1aCa + kC,

Activation C' — C, can represent general delay.
In the the kK — oo and p, — 0 limit:
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ll. Signaling and quorum sensing: local concentration

DV?5C(r) = (p+k)éC
D, V?5C,(r) = pa0Cs(r) —kdC(r),
k J1a2
== v (a + k) D, <D +a/ (1 + k)D>
Define: F(t) = Ca(t)

Global detection efficient only when F(t) ~ 1

Physics o

f se
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. Signaling and quorum sensing: £’ ratio

Using simplest forms for C,,(t) and §C,(r = a) and assume D ~ D,:

draD K In(

F(t) ~ i

(7 1) + 1)

4dmraDngt

g+ 4maDK In(%2(e9 — 1)+ 1)

For gt > 1,

F(gt>1) ~ 4

’

\

gt<1 1+ 4waDngt’

AraDngedt npedt
<1
g + 4draDngedt K
AraDKt nged?t
> 1
1+ 4ra DKt K

|
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ll. Signaling and quorum sensing

e ['(t) depends on parameters/conditions (¢, ng, u, k, D, g, K).

e True quorum sensing only if threshold concentration C > 6C,.

Diffusion sensing hypothesis (R. Redfield, 2002, Trends Microbiol.):

Bacterial release cheap Al. If it Is also sensed, then Al is not
degraded/transported away, and cell can release more expensive
enzymes (e.g. proteases). This process would rely on total C', sensed
regardless of source. F'(t).

|
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Il. Toy model: Diffusion sensing and chemolocation

S. Nowak, B. Chakrabarti, T. Chou, A. Gopinathan, Physical Biol., 2010.

ko> kg
IRo| > |Ry|

— “Protease” (n,(r, t)) released by motile cell simulates targets
— Targets release chemoattractant (n, (r, t)).

— To which target does the cell migrate?

|
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ll. Diffusion sensing and chemolocation

simple moving source model:

fa(r,t) = DoVng — piang + F(£)(r — R(1)),

ny(r,t) = DyV2ny, — ey —|—Z5(r —R)K; [ng(r,t —7),t],
J

R(t) = VU [ny(r, )] e—r)

Integral solutions/approximations possible for linear response U|ny]
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ll. Diffusion sensing and chemolocation

Target Single pulse release Q=F1=20 varying release strengths ykQ
! | ! | ! | ! 15 TR L — T T S
\_)1 _(a) .............................. /’___ I.! | (b)i i
1 // ........... 'Ir o KO=15 !
i | — Q=I5 |
-~ 0.8 1 / /] i ] b kQ=20 i g
‘S{ N /! * 10 4 i i : i
A e t=1; FO:2() / : > _ i - YkQ=25 i ///
8981 __t=2ip=10 | £ : -
8% ! = | A e
& P
5 | § 51 N __sl i
© i 1 e |
I " |
i i i
| 1 |
| E 0O+—r——7T———T7T
0 2 4 6 + 8 0 5 10 15
time ¢ release duration 7

Motion during activator release = optimal pulse duration
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ll. Diffusion sensing and chemolocation

O(t) probe release pulsed probe release target selection
g e e e 1.2 == —
@ 1) el _
2075 —V=01 | — Fy=6(1) [ 104 L
< —-v=0.22 . > o] i
S 059 —y=023 g‘é ‘ far, strong [
Z ——-y=03 S 0.6 - target |
2,0.25 - T
= - L 0.4 —
i~ 02 - [
_025 T OO T T T T T

o 2 4 6 g8 10
interpulse time T

Different responses v and different interpulse periods allow taxis
toward different targets
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ll. Diffusion sensing and chemolocation

Target selection separatrices:

0.5

- separatrix, F(t) = 0(1)

F(t)=0(1)

F(t) = 0.1x6(1)

F(t) = 10xX 8(1-10i),
i=1,2,3,...

- separatrix, Y= 0 limit

1.2
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KMC simulations: variances

KlMC simulation, N=8, MI =16 K|MC simulation, N=I 8, MI =17

1 | 1 | 1 | 1 | 1 | 1 | 1 | 1
o~

(N2 (1)) — (DY

10

e Variance in metastable regime is large, although mean is accurate

e Variance at equilibrium is low when commensurate, but appreciable
when incommensurate
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