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Coastal competition and transport

Pringle et al.  (2011)

Halifax Harbor. For several decades, ephemeral populations
were witnessed northeast of Halifax, Nova Scotia, but they did
not persist. In the 1990s, the crab displayed what appeared to
be a rapid range expansion throughout the Canadian Maritimes
(17). Genetic analyses revealed that these new populations of
Carcinus were genetically distinct from downstream populations,
suggesting a recent, novel introduction to northern Nova Scotia
in the late 1980s or early 1990s, likely originating from northern
populations in the green crab’s native European range (18). The
repeated introductions of Carcinus therefore provide an excel-
lent natural experiment to test theories of population genetics
and asymmetric dispersal.
In an 8-y study of the mitochondrial haplotype distribution of

Carcinus in the Gulf of Maine and along the Scotian Shelf of
northeast North America, we examined the evolution of a cline
that has formed between the population established in the 19th
century and the newly introduced lineages that have been
established for less than 20 y. We tracked the spatial evolution of
a cline between two invasion fronts and uncovered two important
patterns: (i) The downstream movement of the cline increases
the frequency of the newly introduced upstream haplotypes and
makes the composition of downstream regions more like that of
the upstream edge of the species’ range, and (ii) the downstream
progress of this cline and the increase in the frequency of the
upstream haplotypes are broadly consistent with the circulation
in this region and the assumed neutrality of our molecular
marker. In the course of this analysis, we develop a prediction for
the future evolution of the cline that is robust to errors in our
knowledge of larval dispersal and the demographic parameters
of Carcinus.

Results
To test the hypotheses that the lineages introduced at the
northeast edge of Carcinus’ range will spread downstream
(southwestward) and increase their frequency in the population,
we analyzed changes in haplotype frequencies across three gen-
erations of Carcinus along the Scotian Shelf and the Gulf of
Maine. Young of the year from 2002 and 2007 were collected,
sequenced, and compared with a baseline collection from 1999
to 2000 (18) (Fig. 2). The haplotypes are presented in two major
classes in our analysis, one for the preexisting 19th-century lin-
eages (southern haplotypes), and a second for the recently in-
troduced haplotypes (northern haplotypes). Details on these
groupings can be found in ref. 18 and Materials and Methods.
Over our 8-y timeframe, there has been a widespread increase

in the recently introduced lineages. The spatial averaged fre-
quency of the northern haplotypes between Louisbourg, Nova
Scotia, and Cape Cod increased by 25% from 1999 to 2000 to
2007 (P < 0.01, Table 1). This average is not equivalent to the
change of the haplotype frequency in the population because it
fails to account for spatial variation in population density
(Materials and Methods). However, the northern haplotype fre-
quency increases from 1999 to 2007 at nearly all sampling loca-
tions except for those at the extreme northern edge of the range
(Fig. 2), suggesting that the haplotype frequency in the entire
population is also increasing.
Coincident with the overall increase in the frequency of the

northern genotypes, the haplotype frequencies across the sam-
pling area have become more similar to those at the upstream
edge of the domain. A comparison of the level of population
differentiation (Fst) value from Louisbourg, at the upstream edge
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Fig. 1. Map of the New England and Canadian Maritime coastline with
locations mentioned in the text. (Upper) The dates are the years that C.
maenas was first observed at various locations along the coast. (Lower)
Arrows mark the mean currents in this region (data from refs. 25, 26, and 35).

Fig. 2. The frequency of the northern (black) and southern (white) haplo-
type classes for C. maenas for the years 1999–2000 (A), 2002 (B), and 2007 (C).

Pringle et al. PNAS | September 13, 2011 | vol. 108 | no. 37 | 15289

G
EN

ET
IC
S

EN
VI
RO

N
M
EN

TA
L

SC
IE
N
CE

S

Invasion of a neutral variant of green crab along the  eastern north american coast
Transport of larvae from currents (rather than fitness) determines invasion

Halifax Harbor. For several decades, ephemeral populations
were witnessed northeast of Halifax, Nova Scotia, but they did
not persist. In the 1990s, the crab displayed what appeared to
be a rapid range expansion throughout the Canadian Maritimes
(17). Genetic analyses revealed that these new populations of
Carcinus were genetically distinct from downstream populations,
suggesting a recent, novel introduction to northern Nova Scotia
in the late 1980s or early 1990s, likely originating from northern
populations in the green crab’s native European range (18). The
repeated introductions of Carcinus therefore provide an excel-
lent natural experiment to test theories of population genetics
and asymmetric dispersal.
In an 8-y study of the mitochondrial haplotype distribution of

Carcinus in the Gulf of Maine and along the Scotian Shelf of
northeast North America, we examined the evolution of a cline
that has formed between the population established in the 19th
century and the newly introduced lineages that have been
established for less than 20 y. We tracked the spatial evolution of
a cline between two invasion fronts and uncovered two important
patterns: (i) The downstream movement of the cline increases
the frequency of the newly introduced upstream haplotypes and
makes the composition of downstream regions more like that of
the upstream edge of the species’ range, and (ii) the downstream
progress of this cline and the increase in the frequency of the
upstream haplotypes are broadly consistent with the circulation
in this region and the assumed neutrality of our molecular
marker. In the course of this analysis, we develop a prediction for
the future evolution of the cline that is robust to errors in our
knowledge of larval dispersal and the demographic parameters
of Carcinus.

Results
To test the hypotheses that the lineages introduced at the
northeast edge of Carcinus’ range will spread downstream
(southwestward) and increase their frequency in the population,
we analyzed changes in haplotype frequencies across three gen-
erations of Carcinus along the Scotian Shelf and the Gulf of
Maine. Young of the year from 2002 and 2007 were collected,
sequenced, and compared with a baseline collection from 1999
to 2000 (18) (Fig. 2). The haplotypes are presented in two major
classes in our analysis, one for the preexisting 19th-century lin-
eages (southern haplotypes), and a second for the recently in-
troduced haplotypes (northern haplotypes). Details on these
groupings can be found in ref. 18 and Materials and Methods.
Over our 8-y timeframe, there has been a widespread increase

in the recently introduced lineages. The spatial averaged fre-
quency of the northern haplotypes between Louisbourg, Nova
Scotia, and Cape Cod increased by 25% from 1999 to 2000 to
2007 (P < 0.01, Table 1). This average is not equivalent to the
change of the haplotype frequency in the population because it
fails to account for spatial variation in population density
(Materials and Methods). However, the northern haplotype fre-
quency increases from 1999 to 2007 at nearly all sampling loca-
tions except for those at the extreme northern edge of the range
(Fig. 2), suggesting that the haplotype frequency in the entire
population is also increasing.
Coincident with the overall increase in the frequency of the

northern genotypes, the haplotype frequencies across the sam-
pling area have become more similar to those at the upstream
edge of the domain. A comparison of the level of population
differentiation (Fst) value from Louisbourg, at the upstream edge
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locations mentioned in the text. (Upper) The dates are the years that C.
maenas was first observed at various locations along the coast. (Lower)
Arrows mark the mean currents in this region (data from refs. 25, 26, and 35).

Fig. 2. The frequency of the northern (black) and southern (white) haplo-
type classes for C. maenas for the years 1999–2000 (A), 2002 (B), and 2007 (C).
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of the crab’s range, to all downstream sampling points shows
a decrease in pairwise differentiation from 1999 to 2000 to 2007
for all but one of the sampling locations (Fig. 3) (the change
from 1999 to 2000 to 2002 is not significant).
To examine whether the observed pattern can reasonably be

ascribed to larval dispersal driven by coastal circulation under the

assumption of neutral genetic markers, we created a numerical
model of the evolution of haplotype frequencies based on our
estimates of the green crab’s demographic parameters. The
model uses the observed haplotype frequency in 1999–2000, 2002,
and 2007 to estimate dispersal, produce optimally smoothed
estimates of haplotype frequency in 2002 and 2007, and predict
haplotype frequency in the years after 2007 (Materials and
Methods). The estimates of larval dispersal are then compared in
the discussion to estimates derived from the observed regional
ocean circulation to determine whether the evolution of the
haplotype frequency is consistent with circulation-driven asym-
metric dispersal. Assuming allelic neutrality, the model estimates
that the mean distance the larvae transported downstream before
recruiting, Ladv, is 67 ± 17 km, whereas the SD of the larval
transport distance, Ldiff, is 234 ± 19 km. Ldiff is greater than Ladv,
suggesting significant upstream transport of larvae even as most
move downstream. Interannual variability does not influence
these estimates greatly, for we get similar estimates of Ladv and
Ldiff if the model is fit to only the data from 2002 or 2007 (Table
2). These estimates are robust to errors in the demographic
parameters; changing the lifespan by 2 y or changing the age/fe-
cundity relation biases the estimates of Ladv by w20% (Table 3;
the origin of the sensitivity is described inMaterials and Methods).
We have no evidence of a selective advantage for the new line-
ages—all observed substitutions in these lineages are silent and in
the third-codon position, and both haplotype classes are in-
creasing in frequency at the locations where they have recently
arrived. Regardless, selection of 0.1 for or against the northern
haplotype relative to the southern haplotype biases estimates of
Ladv by w30% (Table 2 and Materials and Methods). This de-
pendence on demographic parameters and selection is not strong
enough to change the conclusions presented below.
The observed cline between the northern and southern hap-

lotype assemblages shifts downstream (to the southwest) and
broadens with time (Figs. 2 and 3). The modeling predicts that
this evolution will continue after 2007, with the frequency of the
southern haplotype continuing to decrease in the south (Fig. 3)
and increasing slightly in northern populations. The location of
the midpoint of the cline should shift south by w300 km from
1999 to 2000 to 2021. This prediction is robust to errors in the
demographic parameters and selection; the model compensates
for any error in these parameters by biasing its estimates of larval
dispersal parameters Ladv and Ldiff to maintain the fit to the
observations. The model’s robustness is quantified by the error of
the fit between model and data (the sum of the squared differ-
ence between the modeled and observed haplotype frequencies;
“Error” in Tables 2 and 3). This error only changes slightly, and
the predictions of the future cline positions through 2021 do not
change, when we include moderate selection (s w ±0.1) or when
we change demographic parameters (Materials and Methods). In
the long run, however, a favored southern haplotype would begin
to grow in frequency again if, as observed, it is present at the
upstream edge of the species’ range.

Discussion of the Carcinus System
In our 8-y investigation, we observed several noteworthy pat-
terns that illuminate the effects of asymmetric dispersal on ge-
netic diversity patterns in advective systems: (i) We discovered
a downstream shift in the position of the center of the genetic
cline between established haplotypes and those introduced
within the past several decades, (ii) we observed an increase in
the overall frequencies of the newly introduced haplotypes
throughout the crab’s range, and (iii) we witnessed a decrease in
pairwise differentiation (Fst) between sites across the crab’s
range. Along with our estimates of mean dispersal given above,
these patterns are consistent with recent theories of genotype
spread and clinal evolution in advective coastal ocean systems
(10). The mean downstream transport of larvae, Ladv, drives the

Table 1. The along-shore distance-weighted mean allele
frequency of the northern type allele calculated from Cape Cod
(Barnstable, MA) to Louisbourg, Nova Scotia, along with the SE
of the estimate

Year Frequency Note

1999–2000 0.36 ± 0.014 Mixed ages
2002 0.39 ± 0.012 Young of the year
2007 0.45 ± 0.017 Young of the year

The difference in frequency between 1999–2000 and 2002 is not signifi-
cant (P < 0.10), but the differences between 2007 and 2002 and 2000 are
(P < 0.01).

Fig. 3. (A) Pairwise Fst values calculated between the northernmost sample
site (Louisbourg, Nova Scotia) and all other sites for the years 1999–2000,
2002, and 2007. Higher values of pairwise Fst indicate greater differentiation
of haplotype frequencies between Louisburg and downstream populations
(*P > 0.05). (B) The frequency of the southern haplotype class. Markers
represent observed frequencies of the southern haplotype class in 1999–2000
(black circles), 2002 (blue triangles), and 2007 (red squares). Colored lines are
the model’s best estimate of haplotype frequency for these years for the age
classes observed; the model and data match in 1999–2000 because this data
are used to initialize the model. The two gray dashed lines represent the
model’s predictions of haplotype frequencies in 2014 and 2021.

15290 | www.pnas.org/cgi/doi/10.1073/pnas.1100473108 Pringle et al.
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Phytoplankton types

beginning of the bloom (end of August), 3 mo ahead of the days
previously analyzed. At this initial date, PHYSAT-reprocessed
satellite images show no pattern of prevalence, the whole region
being dominated by picophytoplankton and nanoeukariotes
(Fig. 2A). We labeled with different colors three regions of sub-
polar and one of subtropical origin, as displayed in Fig. 2B, and
we advected forward in time for 3 mo the points within these cir-
cles (Fig. 2D). We estimated the initial position of these patches
by a back-trajectory analysis (Fig. S8). The comparison of Fig. 2D
and F shows a striking similarity between the ecological landscape
from PHYSAT analysis (Fig. 2F) and the physical landscape of
passive tracers numerically advected with altimetry-derived velo-
cities (Fig. 2D). Water patches sustaining the same dominant
type, even if spread far apart in the basin late in November,
appear to have the same origin and advection history. Therefore,
patches associated to the same type share their climatological
prebloom characteristics. They also come in contact with the
same environmental conditions (like nutrient enrichment at the
shelf break; ref. 22) along their common pathway. These obser-
vations indicate horizontal stirring as a viable mechanism for
structuring the ocean surface in fluid dynamical niches, i.e., in
water patches of contrasted physicochemical characteristics, cap-
able of sustaining the emergence of different dominant types.

The role of the mesoscale surface turbulence can be pin-
pointed by repeating the advection experiment with only the
large-scale component of the geostrophic currents, obtained by

averaging the geostrophic velocities in space and time (respec-
tively, 200 km and 3 mo) (Fig. 2C). In this case, the lack of
mesoscale turbulence removed systematically interpatch intru-
sion filaments, reducing for each patch the extent and number
of contacts between planktonic types.

The position and boundaries of the patches of dominant types
evolve in the course of time. A direct observation of the temporal
evolution of individual patches from PHYSAT data is not possi-
ble due to cloud episodes. Models have shown that planktonic
fronts can be controlled by both physical forcing (23) and by
the ecological dynamics of invasion/substitution processes (24).
In our analysis, the borders of the observed patches compared
well to the fronts generated by the horizontal stirring and separ-
ating water masses of different origin.

In order to analyze the temporal evolution of the plankton
patches, we turned to the dynamics associated to the stirring
process. In general, stirring creates filaments that are stretched
in progressively thinner structures and are eventually dispersed
by small-scale turbulence. Stirring intensity and the location of
filaments it induces can be estimated by computing the largest
finite-size Lyapunov exponent (FSLE) from the geostrophic
velocities. An FSLE map (Fig. 2E) is obtained by measuring
the backward-in-time divergence of particle trajectories initia-
lized nearby. Highest FSLE values are found along the bound-
aries that separate water masses coming from regions far apart
and match remarkably well the ecological boundaries of domi-

Fig. 1. Ecological and physical (sub-)mesoscale structure from satellite data. (A) Total chlorophyll distribution (μg∕L). (B) Dominant types identified from 8-d
SeaWiFS composite by the PHYSATalgorithm during the spring bloom (November 24–December 1, 2001). Colors in B indicate diatoms (green), Prochlorococcus
(red), Synechococcus (dark blue), nanoeukaryotes (yellow), Phaeocystis (magenta), and coccolithophorids (cyan). Boundaries among dominant types do
not separate necessarily chlorophyll patches of different concentration, but may appear in regions of relatively homogeneous total Chl values (see Fig. S2).
(C) Mean circulation. (D) Sea surface height (contours indicate millimeters of height above the reference geoid).

d’Ovidio et al. PNAS ∣ October 26, 2010 ∣ vol. 107 ∣ no. 43 ∣ 18367
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Logistic growth

d

dt
c = ac− bc2 - exponential growth at small density

- saturation at higher density (finite resources)

Page 18

Figure 2.2
A comparison of the growth of yeast in a culture with logistic growth (from Allee et al.  1949).

It is now easy to see that, if K1 and K2 are different, one kind will eliminate the other. Thus suppose that
K1 > K2. Then x will increase until x + y = K1. At this point, x + y > K2, and hence dy/dt is negative. Thus
y will decrease: in fact, y decreases to zero, so that x selectively eliminates y.

The essential point, then, is that natural selection will cause the replacement of one type by another if,
and only if, the two are competing for resources, or, more generally, are limited by the same factors. In
ecological terms, they must be controlled by the same negative density-dependent factors. In the in vitro
experiments, this is certainly the case: all RNA molecules are competing for the same replicase enzymes,
and the same nucleotides.

There is one feature of the conclusion from Equation 2.7 that is misleading. Since x wins if K1 > K2, and
y wins if K2 > K1, it might seem that only a difference in carrying capacity, K, and not in intrinsic rate of
increase, r, could lead to selective replacement: in ecological language, it suggests that only traits that
affect resistance to density-dependent factors are subject to natural selection. This is an unfortunate
feature of the logistic equation: it is shown in Box 2.1 that selective replacement occurs between forms
that differ only in intrinsic rate of increase.

In comparing Equations 2.6 and 2.7, we compared a model in which the two types had no limiting factor
in common, and one in which the limiting factors were

from J. Maynard Smith, “Evolutionary Genetics”, 1998

interpretation: growth of a population 
OR spread in a population of an advantageous mutation
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Spread of a population (or advantageous mutation) in space

∂tc = D∂2
xc + sc(1− c)

Fisher (1937)

Fisher equation
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∂tc = D∂2
xc + sc(1− c)

Basic result: propagating front of velocity

v =
√

2Ds

Fisher (1937)

Fisher equation

Spread of a population (or advantageous mutation) in space
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Stochasticity and the stepping stone model

x

continuum limit: stochastic Fisher equation

∂tc = D∂2
xc + µc(1− c) +

�
2c(1− c)/Nξ

c(x,t) = fraction of one of the two species
   = selective advantage
N = local population size
D = diffusion constant

where:

Kimura et al (1964)

diffusion

reproduction/
competition

µ
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stochastic Fisher equation

∂tc = D∂2
xc + µc(1− c) +

�
2c(1− c)/Nξ

2004 R. Benzi, D.R. Nelson / Physica D 238 (2009) 2003–2015

Fig. 1. Numerical simulation of Eq. (1) with µ = 1, D = 0.005 and with periodic

boundary conditions. The initial conditions are c(x, t) = 0 everywhere, except for

a few grid points near L/2 = 0.5, where c = 1. The horizontal axis represents

time while the vertical axis is space. The colors display different contour levels of

c(x, t).(For interpretation of the references to colour in this figure legend, the reader

is referred to the web version of this article.)

Fig. 2. Same parameters and initial condition as in Fig. 1 for Eq. (3) with a ‘‘strong

turbulent’’ flow u advecting c(x, t).(For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)

relatively ‘‘strong’’ turbulent flow, where the average convection

velocity vanishes and ‘‘strong turbulence’’ means high Reynolds

number (a more precise definition of the Reynolds number and

specification of the velocity field is given in the following sections).

From the figure we see no trace of a propagating front: instead, a

well-localized pattern of c(x, t) forms and stays more or less in a

stationary position.

For us, Fig. 2 shows a counter intuitive result. One naive expec-

tationmight be that turbulence enhancesmixing. Themixing effect

due to turbulence is usually parameterized in the literature [11] by

assuming an effective (eddy) diffusion coefficient Deff � D. As a

consequence, one naive guess for Eq. (3) is that the spreading of

an initial population is qualitatively similar to the traveling Fisher

wave with a more diffuse interface of width
�
Deff /µ, see also the

discussion in [12]. As we have seen, this naive prediction is wrong

for strong enough turbulence: the solution of Eq. (3) shows remark-

able localized features which are preserved on time scales longer

than the characteristic growth time 1/µ or even the Fisher wave

propagation time L/vF . An important consequence of the localiza-

tion effect is that the global ‘‘mass’’ (of growing microorganisms,

say), Z ≡
�
dxc(x, t), behaves differently with and without turbu-

lence. In Fig. 3, we show Z(t): the curve with red circles refers to

the conditions shown in Fig. 1, while the curvewith green triangles

to those in Fig. 2.

The behavior of Z for the Fisher equation without turbulence

is a familiar S-shaped curve that reaches the maximum Z = 1 on

a time scale L/vF . On the other hand, the effect of turbulence (be-

cause of localization) on the Fisher equation dynamics significantly

reduces Z almost by one order of magnitude.

Fig. 3. The behavior in time of the total ‘‘mass’’ Z(t) ≡
�
dxc(x, t). The red circles

show the function Z for the case of Fig. 1, i.e. a Fisher wave with no turbulence.

The green triangles show Z for the case of Fig. 2 when a strong turbulent flow is

advecting c(x, t).

With biological applications in mind, it is important to deter-

mine conditions such that the spatial distribution of microbial or-

ganisms and the carrying capacity of the medium are significantly

altered by convective turbulence. Within the framework of the

Fisher equation, the localization effect has been studied for a con-

stant convection velocity and quenched time-independent spatial

dependence in the growth rate µ [6,7,13,14]. In our case, localiza-

tion, when it happens, is a time-dependent feature and depends

on the statistical properties of the compressible turbulent flows.

As discussed in detail below, a better term for the phenomenon

we study here might be ‘‘quasilocalization’’, in the sense that (1)

spatial localization of the growing population sometimes occurs

at more than one location; (2) these spatial locations drift slowly

about and (3) localization is intermittent in time, as localized popu-

lations collapse and then reform elsewhere. For these reasons, the

quasilocalization studied here is not quite the same phenomena

as the Anderson localization of electrons in a disordered poten-

tial studied in [15]. Nevertheless, the similarities are sufficiently

strong that we shall use the terms ‘‘quasilocalization’’ and ‘‘lo-

calization’’ interchangeably in this paper. It is worth noting that

the localized ‘‘boom and bust’’ population cycles studied here may

significantly effect ‘‘gene surfing’’ [16] at the edge of a growing

population, i.e. by changing the probability of gene mutation and

fixation in the population.

For the case of bacterial populations subject to both turbulence

and convection due to, say, an external force such as sedimentation

under the action of gravity, wemay think that the turbulent veloc-

ity can be decomposed into a constant ‘‘wind’’ u0 and a turbulent

fluctuation u(x, t) with zero mean value, U(x, t) = u0 + u(x, t).
We find that the localization shown in Fig. 2 can be significantly

changed for large enough background convection u0.

We would like to understand why and how u0 �= 0 can change

the statistical properties of c(x, t) in the presence of a random

convecting velocity field. We wish to understand, in particular,

whether c(x, t) spreads or localizes as a function of parameters

such as the turbulence intensity and the mean ‘‘wind’’ speed u0.

Our results are based on a number of numerical simulations

of Eq. (3) performed using a particular model for the fluctuating

velocity field u(x, t). In Section 1 we introduce the model and we

describe some details of the numerical simulations. In Section 2

we develop a simple ‘‘phenomenological’’ theory of the physics

of Eq. (3) based on our present understanding of turbulent

dynamics. In Section 3 we analyze the numerical results when the

sedimentation velocity u0 = 0, while in Section 4 we describe our

findings for u0 > 0. Conclusions follow in Section 5.

Fisher wave, speed =  

Two different fixation mechanisms

Stochastic fixation
�
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Overshooting the carrying capacity

∂tc = −∂x[v(x)c] + D∂2
xc + µc(1− c) +

�
2c(1− c)/Nξ

Problem: c>1 leads to imaginary noise

upwelling
large nutrients P(x)

concentrions

surface
x

downwelling
small nutrients P(x) 

concentrions

u(x) = u0sin(2πx)

∂tC + div(u(x)C) = D∂xxC + µCP − C2∂tP + div([−u]P ) = D∂xxP

competition between nutrients and flow

Upwelling - 
large nutrients 
concentration

Downwelling - 
low nutrients 
concentration

   other effects:
- clustering of finite-size particles
- inertial effects
- gyrotaxis (swimming)

forces affecting the density of individuals
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SP, Benzi, Jensen, Nelson (2012)

- individuals are advected and diffuse in space (Lagrangian description)
- reaction are implemented like in stochastic chemical kinetics

Particle model

birth events “death by competition” events

µA µB λ̃AA λ̃AB λ̃BA λ̃BBrates
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Eqs. for the densities

∂tcA(x, t) = −∂x[v(x, t)cA] +D∇2cA + cA(µA − λAAcA − λABcB) + σAξ(x, t)

∂tcB(x, t) = −∂x[v(x, t)cA] +D∇2cB + cB(µB − λBAcA − λBBcB) + σBξ
�(x, t)

no turbulence turbulence
experiment 

(on solid surface)

cA(x, t) cB(x, t)

equations for the densities of A 
and B particles, 
              and

fluid transport diffusion birth/death processes number fluctuations

noise is well defined also when c>1σ2
i =

µici(1 + λiAcA + λiBcB)

N

Thursday, January 31, 2013



Example: neutral, no flow

- coarsening dynamics, fixation time is determined by diffusion

D = 2 10−4, µ = 1

∂tcA(x, t) = D∇2cA + µcA(1− cA − cB) + σAξ(x, t)

∂tcB(x, t) = D∇2cB + µcB(1− cA − cB) + σBξ
�(x, t)

76 S. Pigolotti et al. / Theoretical Population Biology 84 (2013) 72–86

Fig. 3. Neutral dynamics in the well-mixed case. (a) Example of a trajectory in the (cA, cB) plane with N = 500. The initial condition is nA = nB = 20, i.e. a small fraction

of a typical long time carrying capacity. (b) Decay of the average heterozygosity �H(t)� for different values of N . Curves are obtained from simulations of the particle model;

each curve is an average over 10
4
realizations and the error bars are smaller than the size of the lines. (Inset) Same curves plotted as a function of t/N . Note the data collapse.

which exceeds 1 along the outwardly bowed incoming trajectories

in Fig. 2(a), and is less than 1 for the outgoing inwardly curved tra-

jectory in Fig. 2(b). However, we do have the approximate equality,

c∗
A + c∗

B ≈ 1, provided |�A + �B| � |�A�B| in Eq. (8). In this limit,

a combination of numerical and analytic arguments presented in

this paper show that formulas recently derived for mutualistic and

competitive exclusion stepping stonemodels (Korolev and Nelson,

2011) apply to the current model with demographic fluctuations

as well, again provided that the overall population size N is suffi-

ciently large.

What happens if µA and µB are unequal, but �A and �B remain

small? In this case, the population proportions will certainly

change as an initially small population like that in Fig. 3(a) grows

to approach the line cA+cB ≈ 1. However, once this line is reached,

the subsequent time evolution should again be given by stepping

stone model results.

3. Well-mixed case with number fluctuations

In this section, we present the results in the simple well-mixed

(or ‘‘zero-dimensional’’) version of the model. Thus, we keep the

number fluctuations in Eq. (3), but neglect spatial variations in the

allele concentrations.

3.1. Neutral theory

As previously discussed, it is useful to describe the dynamics

of the neutral version of the model in the cA vs. cB plane, as

depicted in Fig. 3(left). Starting from a dilute initial condition, the

system evolves rapidly towards to the intrinsic overall carrying

capacity given by cA + cB = 1. The dynamics is then localized near

this line (with fluctuations), until one of the two species goes

extinct. This behavior contrasts with the Moran process in which

the dynamics is rigidly confined to the cA + cB = 1 line, since no

fluctuations of the total density are allowed. To determine when

these fluctuations are small, first note from Eq. (3) that in the

neutral case the total concentration cT = cA + cB obeys a closed

equation:

d
dt

cT = µcT (1 − cT ) +
�

µcT (1 + cT )
N

ξc, (9)

decoupled from the fraction of species A, f = cA/(cA + cB), where

the noise term ξc satisfies �ξc(t)ξc(t �)� = δ(t − t �). When N is

large, the stationary solution, beside the solution P(c) = δ(c)

corresponding to global extinction thatwill eventually be reached
2

on long times of order exp(N), is approximately a Gaussian with

average �cT � = 1 and variance �c2T � − �cT �2 = N−1
, which is small

when N is large.

We now describe the dynamics of the relative fraction f of

individuals carrying allele A, f = cA/(cA + cB). The equation for

f (t), derived in Appendix B, reads

d
dt

f =
�

µf (1 − f )
1 + cT
NcT

ξf (10)

where ξf (t) also satisfies �ξf (t)ξf (t �)� = δ(t − t �), and further we

have �ξf (t)ξc(t �)� = 0. The above equation allows us to analyze the

global heterozygosity, which quantifies the loss of diversity as time

evolves and is defined as the probability H(t) = 2�f (1 − f )� that
two randomly chosen individuals in the population carry different

alleles.

As mentioned above, the equation for cT is independent of f
in the neutral case studied here. As a result, one can factorize the

average over cT and f in the equation for H(t):

d
dt

H(t) = −µ

N

�
f (1 − f )

1 + cT
cT

�

= −µ

N
�f (1 − f )�

�
1 + cT
cT

�

= −2µ

N
H(t) + O

�
1

N2

�
. (11)

Neglecting the correction of order N−2
, we recover for our

model with density fluctuations the closed equation for H(t) for

Fisher–Wright and Moran-type models with a fixed population

size derived by Kimura, which states that the total heterozygosity

decays exponentially in well mixed neutral systems (Crow and

Kimura, 1970):

�H(t)� = H(0) exp(−2µt/N). (12)

Fig. 3(b) confirms this exponential behavior in simulations of

the model.

2
Notice that, as in the particle model for simplicity death is implemented only

via binary reactions (see Eq. (2)), the state of global extinction is not accessible in the

particle model. Such a discrepancy with the macroscopic equation could be easily

removed by allowing for death even in absence of competition, i.e. the reaction

Xi → ∅.

neutral dynamics:
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Selective advantage

Species A reproduces faster (by a factor s)

pfix = 1− exp
�
−sN

�
dx f(x, t = 0)

�
Fixation probability

(indipendent of spatial diffusion)

SP,  Benzi, Perlekar, Jensen, Toschi, Nelson (2013)

∂tcA(x, t) = D∇2cA + µcA(1 + s− cA − cB) + σAξ(x, t)

∂tcB(x, t) = D∇2cB + µcB(1− cA − cB) + σBξ
�(x, t)

80 S. Pigolotti et al. / Theoretical Population Biology 84 (2013) 72–86

Fig. 8. Heterozygosity in the 1d and 2d neutral case. Behavior of heterozygosity correlation function for the neutral off-lattice model of growth and competition. (a) 1D
simulations at low diffusivity, D = 10−5 and (b) high diffusivity, D = 0.1. In the top case, the system size is L = 1 while in the bottom case the system size is L = 100. In
both cases we find excellent agreement with the prediction of formula (19). (c) Neutral heterozygosity in 2d, compared with a numerical integration of Eq. (18). (d) Behavior
of the local heterozygosity H(x = 0, t) as a function of time in 2D, showing the logarithmic decay H(x = 0, t) ∼ 1/ ln(t).

Fig. 9. Probabilities of fixation in the presence of a reproductive advantage. The two panels show (a) one spatial dimension and (b) two dimensions, as a function of the
selective advantage s, for different values of the diffusion constant D. Our 1d results are compared with the results with the prediction of Doering et al. (2003). In 1d,
parameters are N = 500 and the initial fraction of species A is f0 = 0.01, randomly distributed on the unit interval. The 2d simulations were conducted on a square domain
of unit area and the parameters N = 16 384 and the initial fraction of species A is f0 = 0.01 were kept fixed. The solid line is our conjectured generalization of Eq. (20) to
two dimensions.

(�A, �B) parameter space in which (in limit of an infinite system
size, L → ∞) fixation never occurs, as sketched in Fig. 10, panel
(a). This behavior differs dramatically from the well-mixed zero
dimensional case, for which fixation is inevitable, with a fixation
time t

∗(�A, �B,N) given approximately by Eq. (15).
We fix parameters as µ = 1,D = 0.02 and N = 30. To explore

the behavior of our model, we performed simulations along the
paths shown as dashed lines in panel (a) of Fig. 10. Panel (b) shows
the time evolution of the local heterozygosityH(0, t) along the line
�A = �B. For small values of �A = �B > 0, the heterozygosity
decays in a similar fashion

�
roughly as 1/

√
t

�
as in the neutral

case �A = �B = 0. For higher values, the local heterozygosity
eventually levels off at a nonzero value, implying that fixation will
never occur.

The presence of amutualistic regimewhere the system remains
mixed forever is even more evident in Fig. 10, panel (c), where we
plot along the cuts at constant �A + �B the long-time average of the

fraction of the first allele �f � as a function of the difference �A − �B.
Along the cuts that do not cross themutualistic region, �f � is either
0 or 1 as one of the two alleles always fixes. A special case arises
for �A = �B, where each of the two alleles has a chance of being
fixated equal to its relative abundance in the initial condition, so
that �f � = f0. Conversely, �f � has a non-trivial behavior along the
line �A + �B = 0.4. Upon varying the parameter ρ = �A − �B, we
find a whole range of values in which fixation does not occur. As
discussed in Korolev and Nelson (2011), the two lines of critical
points shown in (a) are in the directed percolation universality
class. The behavior of the density close to this critical point is
described by a universal exponent, cA ∼ (�A − �c)

β , where the
expected exponent is β ≈ 0.2765 and �c is the value of �A at the
critical point (see e.g. Odor, 2004). Fig. 10, panel (d) confirms the
power law behavior close to one of the critical points on the cut
�A + �B = 0.4. Finally, in panels (e) and (f) we show simulations
on the two dimensional mutualistic model. Mutualism in 2d is

stochastic Fisher equation is recovered for the relative fraction  f=cA/(cA+cB)  
- quantitative agreement in absence of flows 
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Mutualism - 1d

∂tcA(x, t) = D∇2cA + µcA(1− cA − cB) + �AcAcB + σAξ(x, t)

∂tcB(x, t) = D∇2cB + µcB(1− cA − cB) + �BcAcB + σBξ
�(x, t)

S. Pigolotti et al. / Theoretical Population Biology 84 (2013) 72–86 75

Fig. 1. Three illustrative parameters choices in the one dimensional version of the model. In all panels D = 10−4 and N = 100. The left panel corresponds to the neutral
choice in which all rates are set to one and initially the two species are randomly distributed with equal concentrations. In the center panel, all parameters are set to one
except the reproduction rate of allele A (in red) which reproduces at a rate (1 + s) with a large selective advantage s = 0.3; in this case, the initial fraction of A is 0.1. In
the right panel, competition among species is reduced by taking �A = �B = 0.7 to enhance mutualism; in this case the two species are randomly distributed with equal
concentrations in the initial condition. In this case, mutualism insures that the species (or alleles) remain spatially inhomogeneous up to very long times. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Deterministic dynamics of the mutualistic model in zero dimensions without number fluctuations. In (a), the interactions �A > 0 and �B > 0 favor cooperation, and
there is a stable fixed point (c∗

A , c
∗
B ) with both densities nonzero. In (b), the organisms secrete toxins that impede each others growth, so �A < 0 and �B < 0 and the fixed

point (c∗
A , c

∗
B ) is unstable.

and (3) the effect of cooperation or competitive exclusion is con-
tained exclusively in the cross-interactions, λ̃AB ≡ λ̃AA(1− �A) and
λBA ≡ λ̃BB(1− �B). With this choice, and rescaling the time unit by
a factor µ−1, the equations for the concentrations cA = nA/NA and
cB = nB/nB corresponding to system (4) read
d
dt

cA = cA [1 − cA − cB + �AcB]

d
dt

cB = cB [1 − cA − cB + �BcA] . (5)

The remaining two parameters �A and �B control the competi-
tion under ‘‘crowded conditions’’, such that the populations have
grown up to satisfy cA + cB ≈ 1. If the two variants are nearly
identical, it is reasonable to assume |�A|, |�B| � 1. As illustrated
in Fig. 2, the deterministic system (5) always has fixed points at
(0, 0), (0, 1), and (1, 0). Depending on the parameters, there can
also be a fourth fixed point (Smith, 1998) located at

(c∗
A , c

∗
B ) = (�A, �B)

�A + �B − �A�B
. (6)

When cooperation is favored (�A, �B > 0, Fig. 2(a)) this fixed point
is stable, and leads to a steady state population fraction f ∗ of A
individuals, 0 < f ∗ < 1, with

f ∗ ≡ c∗
A

c∗
A + c∗

B
= �A

�A + �B
. (7)

When competitive exclusion (Frey, 2010) is favored (�A, �B < 0,
Fig. 2(b)) this fixed point is unstable to the attracting fixed points

(1, 0) or (0, 1), depending on the initial conditions. Genetic demix-
ing, present in strictly neutral systems only due to stochastic num-
ber fluctuations, is enhanced in this case. Finally, when �A and �B
have opposite signs, the fixed point (6) lies outside the biologically
relevant domain, and one of the two fixed points (1, 0) or (0, 1) be-
comes globally stable, corresponding to a competitive advantage
for one species or the other when the population is dense.

Suppose we now introduce spatial migration and number fluc-
tuations, to recover the full model defined by Eq. (3). When might
we expect fixation probabilities, the global heterozygosity, corre-
lation functions etc. to reduce to the familiar results for conven-
tional spatial stepping stone-type models with strictly conserved
population sizes in every deme? A particularly simple case,
corresponding to the selectively neutral limit �A = �B = 0, is il-
lustrated for a well-mixed system in Fig. 3(a) below: the popula-
tion grows up and eventually wanders along the line cA + cB = 1,
until it reaches the absorbing states at (1, 0) or (0, 1). A more gen-
eral situation is �A + �B = 0, in which case one variant typically
has a simple selective advantage along an invariant subspace given
by the line cA + cB = 1. If the fluctuations transverse to this line
are small (corresponding to a large population size), then the usual
formulas for fixation probabilities hold, as we show later in this
paper. In more general situations, however, it is no longer exactly
true that the population localizes at long times near the straight
line cA + cB = 1. Indeed, we have from Eq. (6) that

c∗
A + c∗

B = �A + �B

�A + �B − �A�B
, (8)
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Fig. 1. Three illustrative parameters choices in the one dimensional version of the model. In all panels D = 10−4 and N = 100. The left panel corresponds to the neutral
choice in which all rates are set to one and initially the two species are randomly distributed with equal concentrations. In the center panel, all parameters are set to one
except the reproduction rate of allele A (in red) which reproduces at a rate (1 + s) with a large selective advantage s = 0.3; in this case, the initial fraction of A is 0.1. In
the right panel, competition among species is reduced by taking �A = �B = 0.7 to enhance mutualism; in this case the two species are randomly distributed with equal
concentrations in the initial condition. In this case, mutualism insures that the species (or alleles) remain spatially inhomogeneous up to very long times. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Deterministic dynamics of the mutualistic model in zero dimensions without number fluctuations. In (a), the interactions �A > 0 and �B > 0 favor cooperation, and
there is a stable fixed point (c∗

A , c
∗
B ) with both densities nonzero. In (b), the organisms secrete toxins that impede each others growth, so �A < 0 and �B < 0 and the fixed

point (c∗
A , c

∗
B ) is unstable.

and (3) the effect of cooperation or competitive exclusion is con-
tained exclusively in the cross-interactions, λ̃AB ≡ λ̃AA(1− �A) and
λBA ≡ λ̃BB(1− �B). With this choice, and rescaling the time unit by
a factor µ−1, the equations for the concentrations cA = nA/NA and
cB = nB/nB corresponding to system (4) read
d
dt

cA = cA [1 − cA − cB + �AcB]

d
dt

cB = cB [1 − cA − cB + �BcA] . (5)

The remaining two parameters �A and �B control the competi-
tion under ‘‘crowded conditions’’, such that the populations have
grown up to satisfy cA + cB ≈ 1. If the two variants are nearly
identical, it is reasonable to assume |�A|, |�B| � 1. As illustrated
in Fig. 2, the deterministic system (5) always has fixed points at
(0, 0), (0, 1), and (1, 0). Depending on the parameters, there can
also be a fourth fixed point (Smith, 1998) located at

(c∗
A , c

∗
B ) = (�A, �B)

�A + �B − �A�B
. (6)

When cooperation is favored (�A, �B > 0, Fig. 2(a)) this fixed point
is stable, and leads to a steady state population fraction f ∗ of A
individuals, 0 < f ∗ < 1, with

f ∗ ≡ c∗
A

c∗
A + c∗

B
= �A

�A + �B
. (7)

When competitive exclusion (Frey, 2010) is favored (�A, �B < 0,
Fig. 2(b)) this fixed point is unstable to the attracting fixed points

(1, 0) or (0, 1), depending on the initial conditions. Genetic demix-
ing, present in strictly neutral systems only due to stochastic num-
ber fluctuations, is enhanced in this case. Finally, when �A and �B
have opposite signs, the fixed point (6) lies outside the biologically
relevant domain, and one of the two fixed points (1, 0) or (0, 1) be-
comes globally stable, corresponding to a competitive advantage
for one species or the other when the population is dense.

Suppose we now introduce spatial migration and number fluc-
tuations, to recover the full model defined by Eq. (3). When might
we expect fixation probabilities, the global heterozygosity, corre-
lation functions etc. to reduce to the familiar results for conven-
tional spatial stepping stone-type models with strictly conserved
population sizes in every deme? A particularly simple case,
corresponding to the selectively neutral limit �A = �B = 0, is il-
lustrated for a well-mixed system in Fig. 3(a) below: the popula-
tion grows up and eventually wanders along the line cA + cB = 1,
until it reaches the absorbing states at (1, 0) or (0, 1). A more gen-
eral situation is �A + �B = 0, in which case one variant typically
has a simple selective advantage along an invariant subspace given
by the line cA + cB = 1. If the fluctuations transverse to this line
are small (corresponding to a large population size), then the usual
formulas for fixation probabilities hold, as we show later in this
paper. In more general situations, however, it is no longer exactly
true that the population localizes at long times near the straight
line cA + cB = 1. Indeed, we have from Eq. (6) that

c∗
A + c∗

B = �A + �B

�A + �B − �A�B
, (8)

�A = �B = 0.7
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Fig. 10. Mutualism in 1d and 2d. (a) Phase diagram of themutualistic model in 1d. Themutualistic region, where global fixation never occurs in an infinite system, is colored

in red. Dashed lines denote the cuts relevant to data in the other panels. (b) Behavior of the local heterozygosityH(0, t) along the cut �A = �B . A nonzero long time asymptote

implies that fixation never occurs. (c) Average concentration of allele A, �cA�, along three cuts such that �A + �B = const. When �A + �B is sufficiently large and positive, �f �
varies smoothly between 0 and 1 when traversing the red region in (a). For both �A + �B = 0 and �A + �B negative, there is an abrupt jump in �f � from 0 to 1 when �A = �B . In
this sense, the dashed diagonal line below the cusp in (a) is like a first order phase transition. In all figures, parameters are: µ = 1,D = 0.02,N = 30 and L = 2000 so that

on average there are 6 · 104
individuals in the system. (d) Logarithmic plot of the density of A close to the critical point. A power law with the expected directed percolation

exponent, f (x) ∝ x
β , β ≈ 0.2765 is shown for comparison. (e) Behavior of the local heterozygosity H(0, t) in 2d along the line �A = �B . A phenomenology similar to the 1d

case of panel (b) is observed. (f) Transition along the diagonal cut �A + �B = 0.4 in 2d, again showing a similar behavior to the 1d case shown in panel (c). (For interpretation

of the references to colour in this figure legend, the reader is referred to the web version of this article.)

computationally challenging and, to the best of our knowledge,

has not been studied systematically in the literature. Although we

did not obtain the full phase diagram, our simulations suggest a

scenario similar to the 1d case. In particular, the heterozygosity

H(x = 0, t) along the cut �A = �B displays a transition from a

regime in which it seems to decay logarithmically (as in the 2d

neutral version of the model) to a regime in which fixation does

not occur. Furthermore, the cut at �A + �B = 0.4 shown in panel (f)

reveals a directed-percolation-like transition, qualitatively similar

to that in panel (c).

5. Population genetics in two-dimensional compressible tur-
bulence

A systematic exploration of the effect of hydrodynamic flows

on the off-lattice models of population genetics introduced here

would take us far beyond the scope of this already lengthy pa-

per. However, to illustrate the interesting effects that arise, we

now extend our analysis to the two cases where the competition

between populations takes place under the influence of compress-

ible fluid advection in two-dimensions. Aswewill show, compress-
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computationally challenging and, to the best of our knowledge,

has not been studied systematically in the literature. Although we

did not obtain the full phase diagram, our simulations suggest a

scenario similar to the 1d case. In particular, the heterozygosity

H(x = 0, t) along the cut �A = �B displays a transition from a

regime in which it seems to decay logarithmically (as in the 2d

neutral version of the model) to a regime in which fixation does

not occur. Furthermore, the cut at �A + �B = 0.4 shown in panel (f)

reveals a directed-percolation-like transition, qualitatively similar

to that in panel (c).

5. Population genetics in two-dimensional compressible tur-
bulence

A systematic exploration of the effect of hydrodynamic flows

on the off-lattice models of population genetics introduced here

would take us far beyond the scope of this already lengthy pa-

per. However, to illustrate the interesting effects that arise, we

now extend our analysis to the two cases where the competition

between populations takes place under the influence of compress-

ible fluid advection in two-dimensions. Aswewill show, compress-

stable coexistence region

∂tcA(x, t) = D∇2cA + µcA(1− cA − cB) + �AcAcB + σAξ(x, t)

∂tcB(x, t) = D∇2cB + µcB(1− cA − cB) + �BcAcB + σBξ
�(x, t)

Korolev and Nelson (2011)
SP,  Benzi, Perlekar, Jensen, Toschi, Nelson (2013)

Mutualism - 1d
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Flows: linear velocity field

v(x)= -k x k = 0.075, D = 2 10−4, µ = 1

coexistence of neutral species
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Dynamics of boundaries

odd number of boundaries, demixingeven number of boundaries, fast fixation
3
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Linear flow + reproductive advantage

flowflow

Neutral Red reproduces 30% faster

balance between flow and Fisher wave δx = k−1
√

2Ds
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Sine wave

v(x)=k sin(x)

always very short fixation time (never odd number of boundaries)

k = 10−2, D = 2 10−4, µ = 1
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Fixation time

if boundary collapse exponentially, then:

k = average gradient close to the sink

A phenomenological approach for computing the global fixation time 

u(x)
x0

u(x) = - k(x-x0)

The fixation time is determined by the time 
needed for the boundaries to reach the 
center of a sink and annihilate. 

Time needed to reach x0 ≈ 1/Γ ≈ 1/F

Because periodic boundary conditions are 
imposed, the number of boundaries is necessarily 
even, so all of them annihilate pairwise. 

Something new can happen if we remove periodic 
boundary conditions. If only one boundary 
survives the fixation time can be extremely long.

τf = τ0 + c/k

Theory:
A phenomenological approach for computing the global fixation time 

u(x)
x0

u(x) = - k(x-x0)

The fixation time is determined by the time 
needed for the boundaries to reach the 
center of a sink and annihilate. 

Time needed to reach x0 ≈ 1/Γ ≈ 1/F

Because periodic boundary conditions are 
imposed, the number of boundaries is necessarily 
even, so all of them annihilate pairwise. 

Something new can happen if we remove periodic 
boundary conditions. If only one boundary 
survives the fixation time can be extremely long.

τf = τ0 + c/k
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Turbulence V(x) ~ sin(x)

if boundary collapse exponentially, then:

k = average gradient close to the sink

A phenomenological approach for computing the global fixation time 

u(x)
x0

u(x) = - k(x-x0)

The fixation time is determined by the time 
needed for the boundaries to reach the 
center of a sink and annihilate. 

Time needed to reach x0 ≈ 1/Γ ≈ 1/F

Because periodic boundary conditions are 
imposed, the number of boundaries is necessarily 
even, so all of them annihilate pairwise. 

Something new can happen if we remove periodic 
boundary conditions. If only one boundary 
survives the fixation time can be extremely long.

τf = τ0 + c/k

A phenomenological approach for computing the global fixation time 

u(x)
x0

u(x) = - k(x-x0)

The fixation time is determined by the time 
needed for the boundaries to reach the 
center of a sink and annihilate. 

Time needed to reach x0 ≈ 1/Γ ≈ 1/F

Because periodic boundary conditions are 
imposed, the number of boundaries is necessarily 
even, so all of them annihilate pairwise. 

Something new can happen if we remove periodic 
boundary conditions. If only one boundary 
survives the fixation time can be extremely long.

τf = τ0 + c/k
Fixation is much faster than in 

neutral theory

Fixation time

Theory:
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2D dynamics

density of interfaces scales as:

-> fixation is a very slow process

1/
√

t 1D

1/ log(t) 2D
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2D - steady flow
82 S. Pigolotti et al. / Theoretical Population Biology 84 (2013) 72–86

Fig. 11. (Left) A representative snapshot of the time-dependent compressible surface flow (CSF) field used for advecting species in our two-dimensional simulations. (Right)
Vector field visualization of the steady flow (SF) used for advecting species in our simulations of a simple time-independent steady flow with κ = 0.0027.

Fig. 12. Competition between two neutral species (shown in red and green) in a turbulent compressible flow with κ = 1 and F = 1. At time t = 0 (left) approximately
10000 organisms are randomly distributed over the entire domain at the steady state carrying capacity in the absence of flow. Both species are then collapsed by advection
onto filamentous structures leading to (time-dependent) sinks and saddle points, dynamics which compactifies the population into regions where competition takes place.
This collapse is highlighted in the middle plot which is chosen at a later time t = 1 (middle). At much later times t = 25 (right) fixation occurs and only one of the species
survive. The populations size has stabilized at 6 organisms, a reduction from the initial carrying capacity by a factor 103. Although the reduction in the population size is
most extreme for κ = 1, significant reductions occur for even small values of κ (Perlekar et al., 2012). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

ible fluid flows can dramatically change the carrying capacities and
fixation times. For all the simulations in this section we choose a
square simulation domain of size [0, L] × [0, L], the spatial diffu-
sivityD = 10−4. For simplicity, the two competing populations are
neutral with µA = µB = λAA = λAB = λBA = λBB = 1.

The two flows that we choose are:

1. Compressible surface flow (CSF):
This chaotic, time-dependent flow is generated from a

two-dimensional slice of a three-dimensional, homogeneous,
isotropic flow (see Perlekar et al., 2010, 2012). A snapshot of
the advecting velocity field is shown on the left side of Fig. 11.
Using the projection method described in Perlekar et al. (2012)
we choose the compressibility of the flow κ = 1 where, κ ≡
�(∇ · u)2�/�(∇u)2�,u ≡ (ux, uy) is the velocity field, and �(·)�
indicate the spatio-temporal averaging. Setting κ to its maxi-
mum value of unity maximizes the reduction in carrying ca-
pacity caused by locally compressing the populations to high
density, so that the middle terms on the right side of Eq. (3)
are negative (Pigolotti et al., 2012; Perlekar et al., 2012). The
strength of the flow is varied by scaling the velocity field by a
forcing amplitude F . For all the simulations with this flow we
choose L = 2π .

2. Steady flow (SF):
This time-independent velocity field is chosen to be ux(x, y)

= F [α sin(2πx/L) + (1 − α) sin(2πy/L)], uy(x, y) = F [α sin
(2πy/L) − (1 − α) sin(2πx/L)] (see Fig. 11 right panel). The

strength of the flow is controlled by again changing F and the
compressibility κ = α2/[α2 + (1 − α2)] is modified by chang-
ingα and hence κ ∈ [0, 1]. For all the simulationswith this flow
we choose L = 1. The two species are advected by the flow to-
wards the sink which is located at the center (−L/2, L/2) of the
simulation domain.

Similar analysis for one-dimensional flows was conducted in
Pigolotti et al. (2012). The compressible flow on the left of Fig. 11
models photosynthetic organisms that control their buoyancy to
remain near the surface of a turbulent ocean. The flow on the right
is designed to determine the consequences for population genetics
of fluid sink at the center, with fluid injection at the four corners.
Note the nonzero vorticity in this case.

The competition between species for the two flow conditions
described above is shown in Figs. 12 and 13. Initially the popula-
tions are well-mixed at the steady state carrying capacity as they
would be with ordinary diffusion, birth, and competitive death in
absence of advection. Advectionmoves the population towards the
localized sinks of the flow and enhances the competitive death em-
bodied in the λij couplings. Indeed, the middle frames of Figs. 12
and 13 show explicitly the compression that leads to enhanced
inter-species and intra-species competition. Eventually at later
times, only one species survives (right hand frames of Figs. 12 and
13). Although the extreme (103-fold!) reduction in population size
shown in Fig. 13 results from the use of a maximally compressible

dramatic reduction in number of 
particles (effective carrying 
capacity) and fixation times also 
with small compressibility

compressibility k=0.0027

no compressibility
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2D + compressible flow

2D “slice” of 3D Navier-Stokes. 
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Diffusion determines an advantage

v =
�
2DBµv =

�
2DAµ

- when two species expand into open space, advantage can be estimated by looking 
at the difference of Fisher wave speeds

- what happens if they are mixed?

colony of 
species A colony of 

species B
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neutral red diffuses 5% faster

SP and R. Benzi , in preparation
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Theory

equation for the relative fraction  f=cA/(cA+cB) 

∂tf = ∇2f + δD(1− f)∇2f +

�
2µf(1− f)

N
ξ

3

the continuos limit, i.e. eq. (1) are defined only by intro-
ducing a space cutoff a ∼ 1/N which corresponds to one
particle for deme using the language of the stepping stone
model. Consequently, one must introduce a time cutoff ε
by assuming that for time scale of order ε nothing should
happen. Since the µ is the reaction rate underlying eq.s
(1), we can conjecture that ε ∼ 1/µ. In other words, for
time scale 1/µ we conjecture that nothing happens in the
system. For ε ∼ 1/µ we get εf = 1/(µtf) which gives

dF (t)

dt
=

δD
√
µ

4D
√
πtf

g(t/tf ) (12)
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Using the expression (12) , we can write

F (t)

F (0)
− 1 =

δD

4
√
πD

√

µtfS(t/tf ) (13)

where S(x) is the integral of g(x) defined in (11). Let us
remark that eq. (13) provides an estimate of the spatial
average of F , while the flucutaion of F due to the number
fluctuations can be estimated as in the neutral case for
δD = 0. Hereafter, we shall assume ε ∼ 1. Eq. (13) has
an important physical meaning: upon rescaling the time
by tf ≡ 2N2D and dividing by N , the relative growth of
F (t) is independent of N . Therefore our theory predicts
that all the results shown in the insert of figure (2) can be
collapsed onto a single curve upon the rescaling defined
in (13). This is actually the case as shown in the main
part of the same figure, which clearly demonstrates the
validity of our approach.
It is interesting to remark that (12) allows us

to define the scale l∗ using the expression l2
∗

=
4
√
πD

√

tf/µ/g(t/tf). In other words we can estimate
the r.h.s. of (4) to be order 1/l2

∗
. It follows that the

term δD∆f in (3) can also be estimated to be δDf/l2
∗
.

This allows us to introduce an effective time dependent
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selective advantage given by:

seff (t) ∼
δD

D

g(t/tf )

4
√
π
√

tf/µ
(14)

For t → ∞, eq. (11) tells us that seff = 0. It follows
that, for infinite domain as considered in (HKPRL), one
cannot reach a statistically constant Fisher’ wave veloc-
ity. For finite domain, however, global fixation can oc-
curs on time scale TG = L2/D (in one dimension). By
averaging (14) over TG and noting that g(x) ∼ 2/

√
x for

large x, we get 〈seff 〉 ∼ δD
√
µ/

√
DL2. It follows that

for δDN
√
µ/

√
DL2 ∼ 1, the allele with stronger diffu-

sivity has an effective advantage to reach fixation. It is
therefore interesting to check the above argument by us-
ing numerical simulations to compute the probability of
fixation , Pfix, for the population with larger diffusivity.
In figure (3) we show Pfix as a function of δD/D for
N = 104 and D = 10−4, µ = 1 and L = 1. The black
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Conclusions

- flows can radically change the outcome of competition

- relaxing the assumption of constant total density leads to interesting effects also in 
the absence of flows
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