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Competition

growth of a colony of two neutral
E.Coli strains

Hallatscheck and Nelson (2007)

Thursday, January 31, 2013



Competition In the ocean

growth of a colony of two neutral plankton bloom in the Barents sea
E.Coli strains

Hallatscheck and Nelson (2007)
Tel et al. (2005)
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Coastal competition and transport

Mean Currents
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Invasion of a neutral variant of green crab along the eastern north american coast
Transport of larvae from currents (rather than fitness) determines invasion

Pringle et al. (2011)
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Phytoplankton types
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Thursday, January 31, 2013




Logistic growth

d

¢ = ac — bc? - exponential growth at small density
di - saturation at higher density (finite resources)

Interpretation: growth of a population
OR spread in a population of an advantageous mutation

750

-
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¥} 2 4 B 2] 10 12 14 16 18 20
Tima (houwrs)

from J. Maynard Smith, “Evolutionary Genetics”, 1998
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Fisher equation

Orc = DO%c + sc(1 — ¢

Spread of a population (or advantageous mutation) in space

Fisher (1937)
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Fisher equation

Orc = DO%c + sc(1 — ¢

Spread of a population (or advantageous mutation) in space

Basic result: propagating front of velocity

v=+V2Ds

Fisher (1937)

Thursday, January 31, 2013



Stochasticity and the stepping stone model

72\

diffusion

reproduction/
competition

continuum limit: stochastic Fisher equation
Orc = DO?*c + pc(l — ¢) + +/2¢(1 — ¢)/NE

c(x,t) = fraction of one of the two species
H = selective advantage

N = local population size

D = diffusion constant

where:

Kimura et al (1964)
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Two different fixation mechanisms

stochastic Fisher equation
Orc = DO?c + pc(l — ¢) + +/2¢(1 — ¢)/NE
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Fisher wave, speed = 2D tochastic fixation

time

Thursday, January 31, 2013



Overshooting the carrying capacity

forces affecting the density of individuals

> X
A surface
v other effects:
Upwelling - Downwelling - - clustering of finite-size particles
large nutrients low nutrients - Inertial effects
concentration concentration - gyrotaxis (swimming)

Oc = —0y[v(x)c] + DO%c + puc(l — ¢) + v/2¢(1 — ¢)/NE

Problem: c>1 leads to imaginary noise
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Particle model

birth events “death by competition” events

VAT AALA

AA AAB ABA )\BB

~—

. @

- Individuals are advected and diffuse in space (Lagrangian description)
- reaction are implemented like in stochastic chemical kinetics

SP, Benzi, Jensen, Nelson (2012)
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experiment simulation simulation
(on solid surface) (no turbulence) turbulence)

t (generations)
t (generations)
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Eqgs. for the densities

experiment
(on solid surface) no turbulence turbulence

equations for the densities of A
and B particles,
ca(z,t) and cp(z,t)

X

fluid transport diffusion birth/death processes = number fluctuations
atCA(CC, t) —8x[v(a:, t)CA] —+ DV2CA -+ CA(,LLA — AAACA — AABCB) -+ O‘Af(CIZ, t)

Orep(x,t) —0z|v(x,t)ca] + DVZcg + cg(pp — Apaca — Aggeg) + o€’ (x,t)
" y,

,2 pici(1+ Xaca + Nipeg)

: ~ noise is well defined also when c>1
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Example: neutral, no flow

- coarsening dynamics, fixation time is determined by diffusion

1.2
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D=210""%pu=1 oA

neutral dynamics:
Oica(x,t) = DVQCA—I—,ucA(l—cA—cB)—I—aAf(:c,t)
Owcp(x,t) = DVcg+ ucg(l —ca —cg) + ogé/(z,t)
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Selective advantage

Species A reproduces faster (by a factor s)

Orca(z,t) = DV?ca+puca(l+s—ca—cp)+oaé(x,t)
Owcg(z,t) = DVicp+ pcg(l —ca —cg) + ogéi(z,t)

stochastic Fisher equation is recovered for the relative fraction f=ca/(Ca+Cs)
- guantitative agreement in absence of flows
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SP, Benzi, Perlekar, Jensen, Toschi, Nelson (2013)
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Mutualism

- reduced competition between alleles

d
ECA = pca(l —ca — cp) + €acacp + noise

d

%CB = pcp(l —ca — cp) + epcacp + noise

mean field: exponentially long
fixation times

o [N min(e, e%g)]

2 €A+ €p

Heterozygosity
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Mutualism - 1d

xr,t) = DV?c 4 + puca(l —ca —cp) +eacacp + oa&(x,t)
Orcp(x,t) DVZcp + pep(l —ca —cg) + egcacg + op€l(x,t)

VIR

875 CA

neutral mutualism

T = Tt el U
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Mutualism - 1d

Orca(x,t) DV?c 4 + uca(l —ca —cp) +eacacp + oal(x,t)
Oicg(z,t) = DVZcp + pucg(l —ca —cp) + egecacg + o€z, t)

stable coexistence region
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Korolev and Nelson (2011)
SP, Benzi, Perlekar, Jensen, Toschi, Nelson (2013)
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Flows: linear velocity field

v(X)= -k X k=0.075,D=210"% =1

coexistence of neutral species
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Dynamics of boundaries

even number of boundaries, fast fixation odd number of boundaries, demixing
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Linear flow + reproductive advantage

Neutral Red reproduces 30% faster
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Sine wave

v(X)=k sin(x) k=102%2D=210"*pu=1

always very short fixation time (never odd number of boundaries)
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Fixation time

Theory:

u(x) = - k(x-xo)

—_— —

~C
u(x)

If boundary collapse exponentially, then:

Tr =To + c/k

k = average gradient close to the sink
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Fixation time

Theory:

u(x) = - k(x-xo)

If boundary collapse exponentially, then:
Tr =To + c/k

k = average gradient close to the sink
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Fixation 1s much faster than in
neutral theory
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2D dynamics

density of interfaces scales as:

1/v/t 1D
1/log(t) 2D

-> fixation is a very slow process
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2D - steady flow

no compressibility
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2D + compressible flow

2D “slice” of 3D Navier-Stokes.
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Diffusion determines an advantage

colony of colony of
species A Wy
species B
| )

T

-

- when two species expand into open space, advantage can be estimated by looking
at the difference of Fisher wave speeds

- what happens if they are mixed?
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neutral red diffuses 5% faster

SP and R. Benzi, in preparation
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Conclusions

- flows can radically change the outcome of competition

- relaxing the assumption of constant total density leads to interesting effects also In
the absence of flows
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