An Introduction to the Price Equation with Application to the Evolution of Multicellularity

Deborah Shelton
University of Arizona
Department of Ecology and Evolutionary Biology
Michod Lab

February 20, 2013

A little background

- George Price (1922-1975)
- American, moved to London in 1967. Galton Laboratory
- Collaborated with W.D. Hamilton and J. Maynard Smith
- 1970. Selection and Covariance. Nature 277: 520-521.
- 1972. Extension of covariance selection mathematics. Ann. Hum. Genet. Lond. 35:485-490.

\bullet
\square

i	z_{i}	q_{i}	
1	1	$1 / 3$	\bullet
2	0.5	$1 / 3$	0
3	0	$1 / 3$	0
$\bar{z}=\sum_{i=1}^{N} q_{i} z_{i}$			

z_{i}	Trait value for i-type individuals in ancestor population
z_{i}^{\prime}	Average trait value in descendants of i-type individuals
q_{i}	Frequency of i-type individuals in ancestor population
q_{i}^{\prime}	Frequency of descendants of i - type individuals in descendant population
Δq_{i}	$q_{i}^{\prime}-q_{i}$
Δz_{i}	$z_{i}^{\prime}-z_{i}$

$$
\begin{aligned}
\Delta \bar{z} & =\bar{z}^{\prime}-\bar{z} \\
& =\sum_{i=1}^{N} q_{i}^{\prime} z_{i}^{\prime}-\sum_{i=1}^{N} q_{i} z_{i}
\end{aligned}
$$

z_{i}	Trait value for i-type individuals in ancestor population
z_{i}^{\prime}	Average trait value in descendants of i-type individuals
q_{i}	Frequency of i-type individuals in ancestor population
q_{i}^{\prime}	Frequency of descendants of i - type individuals in descendant population
Δq_{i}	$q_{i}^{\prime}-q_{i}$
Δz_{i}	$z_{i}^{\prime}-z_{i}$

$$
\begin{aligned}
\Delta \bar{z} & =\bar{z}^{\prime}-\bar{z} \\
& =\sum_{i=1}^{N} q_{i}^{\prime} z_{i}^{\prime}-\sum_{i=1}^{N} q_{i} z_{i} \\
& =\sum_{i=1}^{N} q_{i}^{\prime} z_{i}^{\prime}-\sum_{i=1}^{N} q_{i}^{\prime} z_{i}+\sum_{i=1}^{N} q_{i}^{\prime} z_{i}-\sum_{i=1}^{N} q_{i} z_{i}
\end{aligned}
$$

$Z_{i} \quad$ in ancestor population
$z^{\prime} \quad$ Average trait value in descendants of i-type individuals Frequency of i-type individuals in ancestor population
Frequency of descendants of i type individuals in descendant population
$\Delta q_{i} \quad q_{i}^{\prime}-q_{i}$
$\Delta z_{i} \quad z_{i}-z_{i}$

$$
\begin{aligned}
\Delta \bar{z} & =\bar{z}^{\prime}-\bar{z} \\
& =\sum_{i=1}^{N} q_{i}^{\prime} z_{i}^{\prime}-\sum_{i=1}^{N} q_{i} z_{i} \\
& =\sum_{i=1}^{N} q_{i}^{\prime} z_{i}^{\prime}-\sum_{i=1}^{N} q_{i}^{\prime} z_{i}+\sum_{i=1}^{N} q_{i}^{\prime} z_{i}-\sum_{i=1}^{N} q_{i} z_{i} \\
& =\sum_{i=1}^{N} q_{i}^{\prime}\left(z_{i}^{\prime}-z_{i}\right)+\sum_{i=1}^{N} z_{i}\left(q_{i}^{\prime}-q_{i}\right)
\end{aligned}
$$

Trait value for i-type individuals in ancestor population
$z_{i}^{\prime} \quad$ Average trait value in descendants of i-type individuals Frequency of i-type individuals in ancestor population

Frequency of descendants of i type individuals in descendant population
$\Delta q_{i} \quad q_{i}^{\prime}-q_{i}$
$\Delta z_{i} \quad z_{i}-z_{i}$

$$
\begin{aligned}
\Delta \bar{z} & =\bar{z}^{\prime}-\bar{z} \\
& =\sum_{i=1}^{N} q_{i}^{\prime} z_{i}^{\prime}-\sum_{i=1}^{N} q_{i} z_{i} \\
& =\sum_{i=1}^{N} q_{i}^{\prime} z_{i}^{\prime}-\sum_{i=1}^{N} q_{i}^{\prime} z_{i}+\sum_{i=1}^{N} q_{i}^{\prime} z_{i}-\sum_{i=1}^{N} q_{i} z_{i} \\
& =\sum_{i=1}^{N} q_{i}^{\prime}\left(z_{i}^{\prime}-z_{i}\right)+\sum_{i=1}^{N} z_{i}\left(q_{i}^{\prime}-q_{i}\right) \\
& =\sum_{i=1}^{N} q_{i}^{\prime}\left(\Delta z_{i}\right)+\sum_{i=1}^{N}\left(\Delta q_{i}\right) z_{i}
\end{aligned}
$$

$Z_{i} \quad$ in ancestor population
$z_{i}^{\prime} \quad$ Average trait value in descendants of i-type individuals Frequency of i-type individuals in ancestor population Frequency of descendants of i -
$q_{i}^{\prime} \quad$ type individuals in descendant population
$\Delta q_{i} \quad q_{i}^{\prime}-q_{i}$
$\Delta z_{i} \quad z_{i}-z_{i}$

$$
\begin{aligned}
\Delta \bar{z} & =\bar{z}^{\prime}-\bar{z} \\
& =\sum_{i=1}^{N} q_{i}^{\prime} z_{i}^{\prime}-\sum_{i=1}^{N} q_{i} z_{i} \\
& =\sum_{i=1}^{N} q_{i}^{\prime} z_{i}^{\prime}-\sum_{i=1}^{N} q_{i}^{\prime} z_{i}+\sum_{i=1}^{N} q_{i}^{\prime} z_{i}-\sum_{i=1}^{N} q_{i} z_{i} \\
& =\sum_{i=1}^{N} q_{i}^{\prime}\left(z_{i}^{\prime}-z_{i}\right)+\sum_{i=1}^{N} z_{i}\left(q_{i}^{\prime}-q_{i}\right) \\
& =\sum_{i=1}^{N} q_{i}^{\prime}\left(\Delta z_{i}\right)+\sum_{i=1}^{N}\left(\Delta q_{i}\right) z_{i} \\
\Delta \bar{z} & =\sum_{i=1}^{N}\left(\Delta q_{i}\right) z_{i}+\sum_{i=1}^{N} q_{i}^{\prime}\left(\Delta z_{i}\right)
\end{aligned}
$$

$Z_{i} \quad$ in ancestor population
$z_{i}^{\prime} \quad$ Average trait value in descendants of i-type individuals Frequency of i-type individuals in ancestor population
Frequency of descendants of i -
$q_{i}^{\prime} \quad$ type individuals in descendant population
$\Delta q_{i} \quad q_{i}^{\prime}-q_{i}$
$\Delta z_{i} \quad z_{i}-z_{i}$

	z_{i}	q_{i}	w_{i}	$\bullet \longrightarrow$	Average		
i						i	z_{i}^{\prime}
1	1	1/3	125			1	1
2	0.5	1/3	25	$\mathrm{O} \longrightarrow$	Average	2	0.2
3	0	1/3	5	$\mathrm{O} \longrightarrow$	Average O	3	0

$$
\begin{aligned}
& q_{i}^{\prime}=\frac{m_{i} w_{i}}{\sum_{i=1}^{N} m_{i} w_{i}} \\
& q_{i}^{\prime}=\frac{\frac{m_{i}}{M} w_{i}}{\sum_{i=1}^{N} \frac{m_{i}}{M} w_{i}} \\
& q_{i}^{\prime}=\frac{q_{i} w_{i}}{\sum_{i=1}^{N} q_{i} w_{i}} \\
& q_{i}^{\prime}=q_{i}\left(\frac{w_{i}}{\bar{w}}\right)
\end{aligned}
$$

$m_{i} \quad$ Number of i-type individuals in ancestor population
The total number of individuals in
M the ancestor population $\left(\sum_{i=1}^{N} m_{i}\right)$
Total number of types in ancestor population
$w_{i} \quad$ Number of offspring (absolute fitness) of the i-type
Average number of offspring
$\bar{w} \quad$ produced by ancestral population (average fitness)
Frequency of i-type individuals in ancestor population
Frequency of descendants of i type individuals in descendant population

$$
\Delta \bar{z}=\sum_{i=1}^{N}\left(\Delta q_{i}\right) z_{i}+\sum_{i=1}^{N} q_{i}^{\prime}\left(\Delta z_{i}\right)
$$

$$
\overline{q_{i}^{\prime}}=q_{i}\left(\frac{w_{i}}{\bar{w}}\right)
$$

For the first term:

$$
\begin{aligned}
\sum_{i=1}^{N}\left(\Delta q_{i}\right) z_{i} & =\sum_{i=1}^{N}\left(q_{i}^{\prime}-q_{i}\right) z_{i} \\
& =\sum_{i=1}^{N}\left(q_{i}\left(\frac{w_{i}}{\bar{w}}\right)-q_{i}\right) z_{i} \\
& =\sum_{i=1}^{N} q_{i} z_{i}\left(\frac{w_{i}}{\bar{w}}\right)-q_{i} z_{i} \\
& =\frac{1}{\bar{w}}\left(\sum_{i=1}^{N} q_{i} z_{i} w_{i}-\sum_{i=1}^{N} q_{i} z_{i} \bar{w}\right) \\
& =\frac{1}{\bar{w}}(\mathrm{E}(z w)-\mathrm{E}(z) \mathrm{E}(w))
\end{aligned}
$$

$$
\Delta \bar{z}=\sum_{i=1}^{N}\left(\Delta q_{i}\right) z_{i}+\sum_{i=1}^{N} q_{i}^{\prime}\left(\Delta z_{i}\right)
$$

$$
q_{i}^{\prime}=q_{i}\left(\frac{w_{i}}{\bar{w}}\right)
$$

$$
=\frac{\operatorname{Cov}\left(z_{i}, w_{i}\right)}{\bar{w}}
$$

$$
\operatorname{Cov}\left(z_{i}, w_{i}\right)=\mathrm{E}[(z-\mathrm{E}(z))(w-\mathrm{E}(w))]
$$

For the second term:

$$
\begin{aligned}
\sum_{i=1}^{N} q_{i}^{\prime}\left(\Delta z_{i}\right) & =\sum_{i=1}^{N} q_{i}\left(\frac{w_{i}}{\bar{w}}\right) \Delta z_{i} \\
& =\frac{\sum_{i=1}^{N} q_{i} w_{i} \Delta z_{i}}{\bar{w}} \\
& =\frac{\mathrm{E}(w \Delta z)}{\bar{w}}
\end{aligned}
$$

$$
\Delta \bar{z}=\sum_{i=1}^{N}\left(\Delta q_{i}\right) z_{i}+\sum_{i=1}^{N} q_{i}^{\prime}\left(\Delta z_{i}\right) \quad q_{i}^{\prime}=q_{i}\left(\frac{w_{i}}{\bar{w}}\right)
$$

$$
\Delta \bar{z}=\frac{\operatorname{Cov}\left(z_{i}, w_{i}\right)}{\bar{w}}+\frac{\mathrm{E}(w \Delta z)}{\bar{w}}
$$

$$
\begin{gathered}
\begin{array}{l}
\begin{array}{l}
\text { Change due } \\
\text { to natural } \\
\text { selection }
\end{array}
\end{array} \begin{array}{l}
\text { Change due to } \\
\text { transmission } \\
\text { bias }
\end{array} \\
\Delta \bar{z}=\frac{\operatorname{Cov}\left(z_{i}, w_{i}\right)}{\bar{w}}+\frac{\mathrm{E}(w \Delta z)}{\bar{w}} \\
\Delta \bar{z}=0.387-0.048=0.339
\end{gathered}
$$

$$
\Delta z_{2}=0.2-0.5=-0.3
$$

$0 \longrightarrow 000000000$
00000000000
00000

OOOOOOOOOO OOOOOOOOOO OOOOO

@ の@ (1) (ف) (@囚

@ L C O999@9@90
 (®@(®
$0 \mathrm{OLOO-00000000000000}$ 00000000000000000000 0000000000

@ L C O9@9@9@90
 (®@(®
$0 \mathrm{O} \longrightarrow 0 \cdot 00000000000000000$ 00000000000000000000 ००००००००००

$$
\Delta \bar{z}=\frac{\operatorname{Cov}\left(z_{i}, w_{i}\right)}{\bar{w}}+\frac{\mathrm{E}(w \Delta z)}{\bar{w}}
$$

- Price equation is general and exactly true
- Can aid in specifying what is meant by "change due to natural selection"
- Shows how natural selection at a lower level can look like "transmission bias" at a higher level

Levels of selection during a transition from unicellularity to multicellularity

Levels of selection and multicellularity

- Before multicellularity, all (or most) of natural selection occurs at the cell level.
- After multicellularity, all (or most) of natural selection occurs at the cell-group level.
- The issue of quantifying a transition to multicellularity corresponds to the issue of separating and quantifying the effect of lowerand higher-level selection.

Mathematical vs. causal decomposition

- All of the
decompositions shown at right are mathematically true
- However, there is a lack

$$
\Delta \bar{z}=\left\{\begin{array}{c}
\frac{\operatorname{Cov}\left(z_{i}, w_{i}\right)}{\bar{w}}+\frac{\mathrm{E}(w \Delta z)}{\bar{w}} \\
\frac{\operatorname{Cov}\left(z_{i}, w_{i}\right)}{\bar{w}}+\frac{\operatorname{Cov}\left(\Delta z_{i}, w_{i}\right)}{\bar{w}}+\mathrm{E}(\Delta z) \\
\frac{\operatorname{Cov}\left(z_{i}^{\prime}, w_{i}\right)}{\bar{w}}+\mathrm{E}(\Delta z)
\end{array}\right.
$$

of consensus on the
correct decomposition of trait change due to separate causes (e.g. individual and group selection)

Problem with the traditional causal interpretation of the Price Equation

$$
\begin{array}{ll}
\begin{array}{l}
\text { Change due } \\
\text { to natural } \\
\text { selection }
\end{array} & \begin{array}{l}
\text { Change due to } \\
\text { transmission } \\
\text { bias }
\end{array} \\
\Delta \bar{z}=\frac{\operatorname{Cov}\left(z_{i}, w_{i}\right)}{\bar{w}}+\frac{\mathrm{E}(w \Delta z)}{\bar{w}}
\end{array}
$$

Problem with the traditional causal interpretation of the Price Equation

$$
\begin{array}{ll}
\begin{array}{l}
\text { Change due } \\
\text { to natural } \\
\text { selection }
\end{array} & \begin{array}{l}
\text { Change due to } \\
\text { transmission } \\
\text { bias }
\end{array} \\
\Delta \bar{z}=\frac{\operatorname{Cov}\left(z_{i}, w_{i}\right)}{\bar{w}}+\frac{\mathrm{E}(w \Delta z)}{\bar{w}}
\end{array}
$$

- Assume z is not correlated with a different fitness-affecting trait

Problem with the traditional causal interpretation of the Price Equation

Change due to natural selection	Change due to transmission bias
$\Delta \bar{z}=$	$\frac{\operatorname{Cov}\left(z_{i}, w_{i}\right)}{\bar{w}}+\frac{\mathrm{E}(w \Delta z)}{\bar{w}}$

- Assume z is not correlated with a different fitness-affecting trait
- Further, assume the second term is zero

Problem with the traditional causal interpretation of the Price Equation

$$
\begin{array}{ll}
\begin{array}{l}
\text { Change due } \\
\text { to natural } \\
\text { selection }
\end{array} & \begin{array}{l}
\text { Change due to } \\
\text { transmission } \\
\text { bias }
\end{array} \\
\Delta \bar{z}=\frac{\operatorname{Cov}\left(z_{i}, w_{i}\right)}{\bar{w}}+\frac{\mathrm{E}(w \Delta z)}{\bar{w}}
\end{array}
$$

- Assume z is not correlated with a different fitness-affecting trait
- Further, assume the second term is zero
- In that case, can we safely say that the change in z is due to natural selection for z ?

"Fleet deer" problem

- G. C. Williams (1966) Adaptation and Natural Selection A Critique of Some Current Evolutionary Thought. Princeton University Press, Princeton.
- z is average speed of a herd
- w is fitness of a herd
- Average herd speed would appear to change due to herd-level natural selection

$$
\Delta \bar{z}=\frac{\operatorname{Cov}\left(z_{i}, w_{i}\right)}{\bar{w}}
$$

- Volvocine species are living, real-world examples that span the unicellular-tomulticellular divide.

Hallmann (2011) Sex Plant Reprod, 24: 97-112.

- Did group selection or individual selection cause one strain to out-compete the other?
- Groups are all homogenous so there definitely was no within-group individual selection
- Did group selection or individual selection cause one strain to out-compete the other?
- Groups are all homogenous so there definitely was no within-group individual selection
- But the "fleet deer" idea indicates that there can be individual selection even when all the traitfitness covariance is between groups

$$
\Delta \bar{z}=\frac{\operatorname{Cov}\left(z_{i}, w_{i}\right)}{\bar{w}}+\frac{\mathrm{E}\left(w_{i} \Delta z_{i}\right)}{\bar{w}}
$$

Change due to groupspecific selection

Change due to global individual selection

Zero

Change due to within-group individual selection

$$
w_{i}=\beta_{w z} z_{i}+\beta_{w \omega} \omega_{i}+\varepsilon
$$

$$
\Delta \bar{z}=\frac{\operatorname{Cov}\left(z_{i}, w_{i}\right)}{\bar{w}}+\frac{\mathrm{E}\left(w_{i} \Delta z_{i}\right)}{\bar{w}}
$$

Change due to groupspecific selection
$\frac{\beta_{w z} \operatorname{Var}(z)}{\bar{w}}$

Change due to global individual selection
$\underline{\beta_{w \omega} \operatorname{Cov}(\omega, z)}$
\bar{w}

Zero

Change due to within-group individual selection

$$
w_{i}=\beta_{w z} z_{i}+\beta_{w \omega} \omega_{i}+\varepsilon
$$

$$
\Delta \bar{z}=\frac{\operatorname{Cov}\left(z_{i}, w_{i}\right)}{\bar{w}}+\frac{\mathrm{E}\left(w_{i} \Delta z_{i}\right)}{\bar{w}}
$$

Change due to groupspecific selection
$\frac{\beta_{w z} \operatorname{Var}(z)}{\bar{w}}$

Change due to global individual selection

$$
\frac{\beta_{w \omega} \operatorname{Cov}(\omega, z)}{\bar{w}}
$$

Zero

Change due to within-group individual selection

- Two hierarchical levels \rightarrow three categories of natural selection

Summary

$$
\Delta \bar{z}=\frac{\operatorname{Cov}\left(z_{i}, w_{i}\right)}{\bar{w}}+\frac{\mathrm{E}\left(w_{i} \Delta z_{i}\right)}{\bar{w}}
$$

Acknowledgements

- Rick Michod
- Michod Lab: Patrick Ferris, Erik Hanschen, Zach Grochau-Wright
- Martin Leslie

