# On the Diversity of Multiphase Processes in Volcanic Systems



George W Bergantz Alex Carrara University of Washington

> Alain Burgisser CNRS, Chambéry

### My favorite (French) Lagrangian particle...Stokes number = ?







### Volcanic/magmatic systems have a DUAL NATURE



Explosive eruptions can have volumes of up to10<sup>3</sup> km<sup>3</sup>

Many penetrate the tropopause

### Rise time of days

Magma bodies up to 5x10<sup>5</sup> km<sup>3</sup> Persist for 10<sup>6</sup> years

Factory for crust building





### Discrete phases

Ash, crystals, ρ ~10<sup>3</sup> kg/m<sup>3</sup>,
 1-100mm size

Bubbles

## Continuous (carrier) phases

Air, volcanic gas,  $\rho \sim 1 \text{ kg/m}^3$ ,  $\eta \sim 1 \text{Pa s}$ 

Silicate melt,  $\rho \sim 10^3$  kg/m<sup>3</sup>,  $\eta \sim 1 - 10^8$  Pa s

### Volcanic/magmatic systems have a DUAL NATURE



*Re* # up to ~10<sup>7</sup>, *St* # variable

Entrainment, buoyancy reversals

Sedimentation in both atmosphere and gravity currents

*Re* # < 10<sup>2</sup>, *St* # < 1

Double-diffusion, sedimentation, "compaction", particle R-T instabilities

Crystal-rich "mush"



# Crystal-rich "mush" Crystal shape, size vary Strong crystal fabric Localized and distributed deformation



### 22 DEM-CFD simulations with 14,000 particles

Particle shapes used a superquadratic template

Fluid is unresolved and solved with FVM, DEM with C & S



#### Mt Gerbier de Jonc

Size and aspect ratio distributions based on measurements from Monika Rùsiecka and Laurent Arbaret (ISTO) Orléans







0.3

Time (s)

0.4

0.5

0.6

0.7

0.1

0.2

### Time: 0.00 s





Ordering quantified using the order parameter **S**:

**S** = largest eigenvalue of order tensor Q (Guo et al., 2013)

 $Q = \frac{3}{2N} \sum_{n=1}^{N} \left[ \boldsymbol{l} \otimes \boldsymbol{l} - \frac{1}{3} \delta_{ij} \right]$ 

N = number of particles I = orientation vector  $\delta$  = unit tensor









Red shading is size distributed, black shading one size



### Caveats:

Strong localization and fluctuations even after local coarse-grain averaging (nonaffine)

What triggers localized vs distributed deformation?

Clusters?





### Experiment – Example