On the Diversity of Multiphase Processes in Volcanic Systems

George W Bergantz
Alex Carrara
University of Washington

Alain Burgisser
CNRS, Chambéry

My favorite (French) Lagrangian particle...Stokes number = ?

Volcanic/magmatic systems have a DUAL NATURE

Explosive eruptions can have volumes of up to $10^{3} \mathrm{~km}^{3}$

Many penetrate the tropopause
Rise time of days

Magma bodies up to $5 \times 10^{5} \mathrm{~km}^{3}$
Persist for 10^{6} years
Factory for crust building

- Discrete phases
- Ash, crystals, $\rho \sim 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$, $1-100 \mathrm{~mm}$ size
- Bubbles
-Continuous (carrier) phases
- Air, volcanic gas, $\rho \sim 1 \mathrm{~kg} / \mathrm{m}^{3}$, $\eta \sim 1$ Pa s
- Silicate melt, $\rho \sim 10^{3} \mathrm{~kg} / \mathrm{m}^{3}, \eta$
$\sim 1-10^{8} \mathrm{~Pa} \mathrm{~s}$

Volcanic/magmatic systems have a DUAL NATURE

Re \# up to $\sim 10^{7}$, St \# variable
Entrainment, buoyancy reversals
Sedimentation in both atmosphere and gravity currents

Re \# < 10^{2}, St \# < 1
Double-diffusion, sedimentation, "compaction", particle R-T instabilities

Crystal-rich "mush"

fluid, collisional \qquad

22 DEM-CFD simulations with 14,000 particles

Particle shapes used a superquadratic template
Fluid is unresolved and solved with FVM, DEM with C \& S

Mt Gerbier de Jonc
Size and aspect ratio distributions based on measurements from Monika Rùsiecka and Laurent Arbaret (ISTO) Orléans

Experiment: Shearing (simple shear)
Melt: $\rho=2500 \mathrm{~kg} / \mathrm{m}^{3} ; \eta=10$ Pa s
Crystals: $\rho=2700 \mathrm{~kg} / \mathrm{m}^{3}$
Sample: $/=2 \mathrm{~cm} ; w=2 \mathrm{~cm} ; h \approx 2 \mathrm{~cm}$
Strain: $y=1 ; V=0.02 \mathrm{~m} / \mathrm{s} ; P=1000 \mathrm{~Pa}$

Time: 0.00 s

Ordering quantified using the order parameter \boldsymbol{S} :
S = largest eigenvalue of order tensor Q
(Guo et al., 2013)

$$
Q=\frac{3}{2 N} \sum_{n=1}^{N}\left[\boldsymbol{l} \otimes \boldsymbol{l}-\frac{1}{3} \delta_{i j}\right]
$$

$N=$ number of particles
$I=$ orientation vector
$\delta=$ unit tensor

Red shading is size distributed, black shading one size

Caveats:

Strong localization and fluctuations even after local coarse-grain averaging (nonaffine)

What triggers localized vs distributed deformation?

Clusters?

