Particle-based methods for cloud microphysics:

towards learning climate model parameterizations from libraries of particle simulations.

Anna Jaruga KITP 2022

Clouds dominate uncertainties in climate projections

How much time do we have to act

2100

Clouds dominate uncertainties in climate projections

More clouds, less warming

Schneider et al., *Nat. Clim. Change* 2017: Climate goals and computing the future of clouds

Clouds cannot be resolved in climate models

Need to represent subgrid-scale processes: turbulence, convection and cloud microphysics

<image>

Global model: ~10-50 km resolution

> Cloud scales: ~10-100 m

> > Cloud microphysics scales: ~10⁻⁶ m

NASA MODIS: August 2018 clouds off the west coast of North America

HOLIMO @ETH Zurich Field measurements with the holographic imager

TurbulenceConvection.jl

- Domain decomposed into sub-domains: coherent updrafts and isotropic environment
- Coarse-grain fluid equations by conditionally averaging over sub-domains, leading to exact conservation laws

Closures:

•

- entrainment/detrainment
- mixing length
- pressure drag,
- microphysics,

Tan et al., JAMES 2018, Cohen et al. JAMES 2020, Lopez-Gomez et al. JAMES 2020

Continuity $\frac{\partial(\rho a_i)}{\partial t} + \frac{\partial(\rho a_i \overline{w}_i)}{\partial z} + \nabla_h \cdot (\rho a_i \langle \mathbf{u}_h \rangle) = \rho a_i \overline{w}_i \left(\sum_i \epsilon_{ij} - \delta_i\right)$ Scalar mean $\frac{\partial(\rho a_i \phi_i)}{\partial t} + \nabla_h \cdot (\rho a_i \langle \mathbf{u}_h \rangle \bar{\phi}_i) + \frac{\partial(\rho a_i \bar{w}_i \phi_i)}{\partial z}$ $\rho a_i \bar{w}_i \sum_{j \neq i} \left((\epsilon_{ij} + \hat{\epsilon}_{ij}) \bar{\phi}_j - (\delta_{ij} + \hat{\epsilon}_{ij}) \bar{\phi}_i \right) - \frac{\partial (\rho a_i w'_i \bar{\phi}'_i)}{\partial z}$

TurbulenceConvection.jl

- Domain decomposed into sub-domains: coherent updrafts and isotropic environment
- Coarse-grain fluid equations by conditionally averaging over sub-domains, leading to exact conservation laws

Closures:

. . .

- entrainment/detrainment
- mixing length
- pressure drag,
- microphysics,

Tan et al., JAMES 2018, Cohen et al. JAMES 2020, Lopez-Gomez et al. JAMES 2020

 $\frac{\partial(\rho a_i \overline{w'_i \phi'_i \psi'_i})}{\partial z} - \rho a_i (\overline{w'_i \phi_i})$

Scalar covariance

$$\frac{\partial(\rho a_i \overline{\phi'_i \psi'_i})}{\partial t} + \nabla_h \cdot (\rho a_i \langle \mathbf{u}_h \rangle \overline{\phi'_i \psi'_i}) + \frac{\partial(\rho a_i \overline{w}_i \overline{\phi'_i \psi'_i})}{\partial z}$$

$$\rho a_i \overline{w}_i \sum_{j \neq i} \left(\epsilon_{ij} (\overline{\psi}_i - \overline{\psi}_j) (\overline{\phi}_i - \overline{\phi}_j) - \delta_{ij} \overline{\phi'_i \psi} \right)$$

$$\rho a_i \overline{w}_i \sum_{j \neq i} \left(\hat{\epsilon}_{ij} (\overline{\phi}^*_i (\overline{\psi}_i - \overline{\psi}_j) + \overline{\psi}^*_i (\overline{\phi}_i - \overline{\phi}_j)) - \hat{\epsilon}_{ij} \overline{\phi'_i \psi} \right)$$

$$\overline{\phi'_i} \frac{\partial \overline{\psi}_i}{\partial z} + \overline{w'_i \psi'_i} \frac{\partial \overline{\phi}_i}{\partial z} + \rho a_i (\overline{\mathcal{S}'_{\phi,i} \psi'_i} + \overline{\mathcal{S}'_{\psi,i} \phi'_i}) - \rho a_i \overline{D_q}$$

CloudMicrophysics.jl

assumed particle size distributions

mass(size), area(size) and terminal

physics closures

Categories: cloud water and ice, rain and snow, ...

Bulk properties: total mass of water in each category

$$n(r) = n_0 exp\left(-\lambda r\right)$$

velocity(size)
$$m(r) = \chi_m m_0 \left(\frac{r}{r_0}\right)^{m_e}$$

 $= -\int_0^\infty n_p(r) a^p(r) v_{term}(r) E_{cp} q_c dr$ $\frac{d q_c}{dt}\Big|_{accr}$

 $+\Delta_m$

 $\mathbf{\Omega}_1$ q_t q_t θ $S = \int f(\theta, q_t) P(\theta, q_t) d\theta dq_t$

Representing clouds in climate models $\frac{\partial(\rho a_i \bar{\phi_i})}{\partial t} + \nabla_h \cdot (\rho a_i \langle \mathbf{u}_h \rangle \bar{\phi_i}) + \frac{\partial(\rho a_i \bar{w_i} \bar{\phi_i})}{\partial z} =$ $\rho a_i \bar{w}_i \sum \left((\epsilon_{ij} + \hat{\epsilon}_{ij}) \bar{\phi}_j - (\delta_{ij} + \hat{\epsilon}_{ij}) \bar{\phi}_i \right) - \frac{\partial (\rho a_i \overline{w'_i \phi'_i})}{\partial z} + \rho a_i \overline{\mathcal{S}_{\phi,i}},$

Representing clouds in climate models

$$\frac{\partial(\rho a_i \bar{\phi_i})}{\partial t} + \nabla_h \cdot (\rho a_i)$$

$$\rho a_i \bar{w}_i \sum_{j \neq i} \left((\epsilon_{ij} + \hat{\epsilon}_{ij}) \bar{\phi}_j - (\delta_{ij} + \hat{\epsilon}_{ij}) \bar{\phi}_i \right)$$

CLIMATE MODELING ALLIANCE

~20 free parameters from SGS scheme

• ~40 free parameters from the cloud microphysics scheme

Learn the free parameters from data as Bayesian inverse problem

Our sub-grid scale + cloud microphysics model is a map from space of parameters to climate statistics.

We want to learn the distribution of free parameters and update prior on τ (- -) with observation *y* (-).

Cleary et al. 2021; Dunbar, Garbuno-Inigo, et al. 2021.

Individual test cases

Rico Precipitating shallow trade wind convection

Van Zanten et.al., JAMES. 2011: Controls on precipitation and cloudiness in simulations of trade-wind cumulus as observed during RICO

Grabowski et. Al., JQRMS 2006: Daytime convective development over land: A model intercomparison based on LBA observations

Dycoms RF02 Drizzling Sc trapped under inversion

Ackerman et al., Mon. Wea. Rev. 2009: Large-Eddy Simulations of a Drizzling, Stratocumulus-Topped Marine Boundary Layer

TRMM LBA Development of deep convection over Amazon

Shen et al., JAMES 2022: A Library of Large-Eddy Simulations Forced by Global Climate Models

Generate data computationally, to machine learn

Generate data computationally, to machine learn unknown closure functions in coarse-grained model

distribution size

Targeted data acquisition

of cloud microphysics

Particle-based (Lagrangian) microphysics and aqueous chemistry

Shima et. al., *QJRMS* 2009: The super-droplet method for the numerical simulation of clouds and precipitation: A particle-based and probabilistic microphysics model coupled with a non-hydrostatic model Arabas et. al., *GMD* 2015: libcloudph++ 1.0: a single-moment bulk, double-moment bulk, and particle-based warm-rain microphysics library in C++ Jaruga and Pawlowska, *GMD* 2018: libcloudph++ 2.0: aqueous-phase chemistry extension of the particle-based cloud microphysics scheme Shima et. al., *GMD* 2020: Predicting the morphology of ice particles in deep convection using the super-droplet method: development and evaluation of SCALE-SDM 0.2.5-2.2.0/2.2.1

- location (x,y,z)
- wet and dry radius (r_w, r_d)
- higroscopicity (kappa)
- multiplicity (n)
- mass of dissolved chemical compounds

Particle-based (Lagrangian) microphysics and aqueous chemistry

Shima et. al., *QJRMS* 2009: The super-droplet method for the numerical simulation of clouds and precipitation: A particle-based and probabilistic microphysics model coupled with a non-hydrostatic model Arabas et. al., *GMD* 2015: libcloudph++ 1.0: a single-moment bulk, double-moment bulk, and particle-based warm-rain microphysics library in C++ Jaruga and Pawlowska, *GMD* 2018: libcloudph++ 2.0: aqueous-phase chemistry extension of the particle-based cloud microphysics scheme Shima et. al., *GMD* 2020: Predicting the morphology of ice particles in deep convection using the super-droplet method: development and evaluation of SCALE-SDM 0.2.5-2.2.0/2.2.1

COLUME ALIANCE

- location (x,y,z)
- wet and dry radius (r_w, r_d)
- higroscopicity (kappa)
- multiplicity (n)
- mass of dissolved chemical compounds

Particle-based (Lagrangian) microphysics and aqueous chemistry

(a)

Particle radius [um]

Shima et. al., *QJRMS* 2009: The super-droplet method for the numerical simulation of clouds and precipitation: A particle-based and probabilistic microphysics model coupled with a non-hydrostatic model Arabas et. al., *GMD* 2015: libcloudph++ 1.0: a single-moment bulk, double-moment bulk, and particle-based warm-rain microphysics library in C++ Jaruga and Pawlowska, *GMD* 2018: libcloudph++ 2.0: aqueous-phase chemistry extension of the particle-based cloud microphysics scheme Shima et. al., *GMD* 2020: Predicting the morphology of ice particles in deep convection using the super-droplet method: development and evaluation of SCALE-SDM 0.2.5-2.2.0/2.2.1

- location (x,y,z)
- wet and dry radius (r_w, r_d)
- higroscopicity (kappa)
- multiplicity (n)
- mass of dissolved chemical compounds

Machine learning for cloud microphysics

- 1D rain shaft with prescribed updraft speed and fixed temperature profile
- A library of rainshaft particle-based simulations with varying updraft speed and droplet concentration

CLIMATE MODELING ALLIANCE

Bartman et al JOSS 2021: PySDM v1 particle-based cloud modeling package for warm-rain microphysics and aqueous chemistry Shipway and Hill QJRMS 2012: Diagnosis of systematic differences between multiple parametrizations of warm rain microphysics using a kinematic framework

Machine learning for cloud microphysics

- 1D rain shaft with prescribed updraft speed and fixed temperature profile
- A library of rainshaft particle-based simulations with varying updraft speed and droplet concentration
- Working on calibrations of 1M and 2M schemes \bullet

Bartman et al JOSS 2021: PySDM v1 particle-based cloud modeling package for warm-rain microphysics and aqueous chemistry Shipway and Hill QJRMS 2012: Diagnosis of systematic differences between multiple parametrizations of warm rain microphysics using a kinematic framework

- **<u>CLIMAParameters.jl</u>** storage for our free parameters
- **Thermodynamics.jl** thermodynamics relations, saturation adjustment
- **<u>CloudMicrophysics.jl</u>** aerosol activation, 0 and 1 moment microphysics
- **TurbulenceConvection.jl** SGS turbulence, single column simulations setup
- **<u>CalibrateEDMF.jl</u>** pipeline for calibrating TurbulenceConvection.jl \bullet
- **EnsembleKalmanProcesses.jl** UQ and optimisation algorithms \bullet
- **Kinematic1D.jl** testing sandbox for microphysics \bullet
- **<u>Cloudy.jl</u>** multi-moment cloud microphysics \bullet

- **PySDM** super-droplet algorithm implementation
- **<u>PySDM-examples</u>** example PySDM simulation setups (0D, KiD-1D, KiD-2D)

Thank you for your attention!

Anna Jaruga KITP 2022

