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Clouds dominate uncertainties in climate projections

SSP3-7.0 scenario (IPCC, 2022)

How much time do we have to act



More clouds, less warming

Clouds dominate uncertainties in climate projections
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SSP3-7.0 scenario (IPCC, 2022)

Schneider et al., Nat. Clim. Change 2017:  
Climate goals and computing the future of clouds




Cloud scales: 
~10-100 m

Global model: 

~10-50 km resolution

NASA MODIS:  August 2018 clouds off the west coast of North America

Clouds cannot be resolved in 
climate models

Need to represent subgrid-scale processes:  
turbulence, convection and cloud microphysics

Cloud 
microphysics 
scales: ~10-6 m

HOLIMO @ETH Zurich Field measurements with the holographic imager

~100 km



• Domain decomposed into sub-domains:  
coherent updrafts and isotropic environment 

• Coarse-grain fluid equations by conditionally averaging over sub-domains,  
leading to exact conservation laws 
 

• Closures: 

• entrainment/detrainment

• mixing length

• pressure drag, 

• microphysics,

• …
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detrainment). The evolution of a subdomain scalar mean follows:131
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where ✏̂ij represents the turbulent entrainment introduced in Cohen et al. (2020), and132

S�,i represents mean source and sink terms. Finally, the equation for the subdomain co-133

variance of two scalars � and  is given by134
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represents the (co)variance dissipation. The cloud microphysics scheme is135

a closure needed on the right-hand sides of Eqs. (5) and (6) and is one of the contrib-136

utors to S. It also provides additional diagnostic information on the precipitation inten-137

sity and cloud cover.138

In the EDMF implementation used in this work, the mean in the environment is139

solved diagnostically from the mean values over the updrafts and environment using (2).140

The domain mean (co)variance is given by combining the (co)variance in the environ-141

ment with the subdomains means using (3). The coupling between the EDMF and mi-142

crophysics follows the same logic. Microphysics source terms for the mean scalar values143

are applied in the domain mean and the updraft subdomain means and are therefore im-144

plicitly applied in the environment, when the environmental mean is backed out from145

them [TS: this sentence is hard to parse. It should like the mean microphysical source146

term is the microphysics source applied to the scalar mean, but that would only be right147

for linear sources, and is not what you are doing, right?. I’m confused.]. The domain148

mean (co)variance is influenced by microphysics source terms via their impact on up-149

draft subdomain means and the environmental (co)variance. Several challenges arise in150

this coupling and these are discussed below.151

2.2 Cloud microphysics scheme152

The cloud microphysics scheme combines our understanding of processes happen-153

ing on the scale of individual particles with assumptions about the size distribution and154

properties of particle populations that constitute clouds and precipitation. The scheme155

is based on the works of Kessler (1995), Grabowski (1998), and Kaul et al. (2015). In156

this section, we provide an overview of the basic concepts of the scheme. The full set of157

equations, along with default parameter values and final integrals, is in Appendix A.158

The particles are assumed to follow the Marshall-Palmer size distribution (Marshall
& Palmer, 1948)

n(r) = n0exp (�� r) , (7)

where n(r) is the number of particles of radius r per unit volume, n0 and � are the free
parameters, with n0 corresponding to the value of n for r = 0. Cloud and precipita-
tion particles are assumed to follow mass(radius), cross section(radius), and terminal ve-
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Lopez-Gomez et al. JAMES 2020



• Domain decomposed into sub-domains:  
coherent updrafts and isotropic environment 

• Coarse-grain fluid equations by conditionally averaging over sub-domains,  
leading to exact conservation laws 
 

• Closures: 

• entrainment/detrainment

• mixing length

• pressure drag, 

• microphysics,

• …

TurbulenceConvection.jl

Tan et al., JAMES 2018,  
Cohen et al. JAMES 2020,  
Lopez-Gomez et al. JAMES 2020

Scalar covariance
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• assumed particle size distributions 
 

• mass(size), area(size) and terminal velocity(size)  
 

• physics closures 
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Categories: cloud water and ice, rain and snow, …


Bulk properties: total mass of water in each category

CloudMicrophysics.jl
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S = ∫ ∫ f(θ, qt)P(θ, qt)dθdqt

Representing clouds in climate models
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• ~20 free parameters from SGS scheme  
 

• ~40 free parameters from the 
cloud microphysics scheme 
 

S = ∫ ∫ f(θ, qt)P(θ, qt)dθdqt

Representing clouds in climate models
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Learn the free parameters from data  
as Bayesian inverse problem

Our sub-grid scale + cloud microphysics 
model is a map from space of parameters to 
climate statistics. 


We want to learn the distribution of free 
parameters and update prior on      (- -) with 

observation y (—). 

Cleary et al. 2021; Dunbar, Garbuno-Inigo, et al. 2021.

τ
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Dycoms RF02 
Drizzling Sc trapped  

under inversion 

Rico 
Precipitating shallow trade wind convection

TRMM LBA  
Development of 

deep convection 
over Amazon

Individual test cases

Ackerman et al., Mon. Wea. Rev. 
2009: Large-Eddy Simulations of a 

Drizzling, Stratocumulus-Topped 
Marine Boundary Layer 


Van Zanten et.al., JAMES. 2011: Controls on precipitation and cloudiness 
in simulations of trade-wind cumulus as observed during RICO 


Grabowski et. Al., JQRMS 2006: 
Daytime convective development 

over land: A model 
intercomparison based on LBA 

observations 
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The log-normal SGS configuration results in more uniform precipitation profile and some432

surface precipitation. [YC: does DYCOMS RF02 has a range of LES in the original433

paper? if so it would be great to add it here in gray shading as it would show where434

our EDMF results fall with respect top a range of models (and observations if there435

are any). I believe that view compared with a range of LES our results are better then436

we make them sound.] [AJ: I’ll plot our LES against the spread from papers, so that437

we know where we fall. I did look at it before, but our LES sometimes precipitates438

more than the intercomparison. I think it would be detracting from the main story of439

the paper. For our purposes we could have just applied f(x) = Ax + B in both LES440

and EDMF and see if we get the same outcome.]441

The LWP and RWP time evolution are shown in Fig. 4. All EDMF configurations442

are able to replicate the lower bound of the LES LWP, but not its variability in both cloud443

condensate and precipitation. This is due to the deterministic nature of our EDMF scheme;444

capturing rapidly changing dynamics may likely require the implementation of stochas-445

tic terms within the model (Fleury et al., 2022). [IL: Is the LES variability mostly due446

to the anvil?]. Finally, the RWP results are noticeably improved when calibrating the447

microphysics parameters.448

Figure 3. As in Fig. 1 but for Rico. The profiles are averaged over the last 4 hours.

4.3 Deep convection449

Finally, Fig. 5 and 6 showcase the EDMF results for the deep convective case. The450

hqti profile agrees well with the LES reference for all of the EDMF SGS configurations.451

The hqli and hqii profiles show a bigger spread, and in general underestimate the amount452

of cloud condensate. Moreover, the vertical transition from liquid to ice phase is slightly453

delayed, resulting in EDMF simulations predicting more supercooled liquid and at higher454

elevations than the reference LES. The phase partitioning between cloud liquid and ice455

is diagnosed based on temperature as shown in eq. (31), and the above bias is a sign of456

updrafts being too warm when compared to LES. Nevertheless, the overall cloud con-457

–15–

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

The log-normal SGS configuration results in more uniform precipitation profile and some432

surface precipitation. [YC: does DYCOMS RF02 has a range of LES in the original433

paper? if so it would be great to add it here in gray shading as it would show where434

our EDMF results fall with respect top a range of models (and observations if there435

are any). I believe that view compared with a range of LES our results are better then436

we make them sound.] [AJ: I’ll plot our LES against the spread from papers, so that437

we know where we fall. I did look at it before, but our LES sometimes precipitates438

more than the intercomparison. I think it would be detracting from the main story of439

the paper. For our purposes we could have just applied f(x) = Ax + B in both LES440

and EDMF and see if we get the same outcome.]441

The LWP and RWP time evolution are shown in Fig. 4. All EDMF configurations442

are able to replicate the lower bound of the LES LWP, but not its variability in both cloud443

condensate and precipitation. This is due to the deterministic nature of our EDMF scheme;444

capturing rapidly changing dynamics may likely require the implementation of stochas-445

tic terms within the model (Fleury et al., 2022). [IL: Is the LES variability mostly due446

to the anvil?]. Finally, the RWP results are noticeably improved when calibrating the447

microphysics parameters.448

Figure 3. As in Fig. 1 but for Rico. The profiles are averaged over the last 4 hours.

4.3 Deep convection449

Finally, Fig. 5 and 6 showcase the EDMF results for the deep convective case. The450

hqti profile agrees well with the LES reference for all of the EDMF SGS configurations.451

The hqli and hqii profiles show a bigger spread, and in general underestimate the amount452

of cloud condensate. Moreover, the vertical transition from liquid to ice phase is slightly453

delayed, resulting in EDMF simulations predicting more supercooled liquid and at higher454

elevations than the reference LES. The phase partitioning between cloud liquid and ice455

is diagnosed based on temperature as shown in eq. (31), and the above bias is a sign of456

updrafts being too warm when compared to LES. Nevertheless, the overall cloud con-457

–15–

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 1. DYCOMS RF02 vertical profiles of hqti, hqli, and hqri averaged over the last two

hours. Top: results after calibrating dynamical parameters. Bottom: results after calibrating

dynamical and microphysical parameters. Black line shows LES results and di↵erent colors repre-

sent EDMF sensitivity to quadrature choice: Gaussian with 3 and 7 points in each dimension in

blue and purple; log-normal with 3 and 7 points in each dimension in orange and green.

Figure 2. DYCOMS RF02 timeseries of liquid water path (LWP) and rain water path

(RWP). Top: results after calibrating dynamical parameters. Bottom: results after calibrating

dynamical and microphysical parameters. Black line shows LES results and di↵erent colors repre-

sent EDMF sensitivity to quadrature choice: Gaussian with 3 and 7 points in each dimension in

blue and purple; log-normal with 3 and 7 points in each dimension in orange and green.

configurations result in di↵erent precipitation profiles. The mean and Gaussian SGS choices430

lead to more precipitation throughout the column, but no precipitation at the surface.431

–14–
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Figure 4. As in Fig. 2 but for Rico.

Figure 5. As in Fig. 2 but for TRMM LBA. Additionally the cloud ice and snow water spe-

cific humidities are shown in dashed lines. The profiles are averaged over the last two hours.

densate amount and vertical extent agree well with the LES profiles. When calibrating458
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Individual test cases

Jaruga et al. in prep.

3D LES data (observations)

Calibrated SGS model 



Shen et al., JAMES 2022: A Library of Large‐Eddy Simulations Forced by Global Climate Models

Stratocumulus

Shallow cumulus

Synthetic data generation in different seasons and climates

Libraries of cases

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021MS002631
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Figure 9: Plots of dry and wet size spectra for ten location within the simulation domain. The locations
and their labels (a–j) are overlaid on plots in Figure 8. The vertical bars at 0.5 µm and 25 µm indicate the
range of particle wet radii which is associated with cloud droplets. See section 5.4 for discussion.
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3634 A. Jaruga and H. Pawlowska: libcloudph++ 2.0

Figure 5. The liquid water volume weighted average pH from the base case (a), case1 (b), case2 (c), and case3 (d). See Tables 2 and 3 for a
definition of simulation set-ups.
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Figure 6. The size distributions of dry radii for the base case (a) and case3 (b). The initial dry radius size distribution is marked in black, the
final dry radius size distribution from grid cells with rc > 0.01 g kg�1 in green, and from grid cells with rr > 0.01 g kg�1 in red. See Tables 2
and 3 for a definition of simulation set-ups.

liquid water volume weighted average pH for case2. The av-
erage pH in case2 (Fig. 5c) is higher than in the base case
(Fig. 5a), that is, both cloud droplets and rain drops are less
acidic in case2 than in the base case. In contrast to the base
case, in the updraught (left-hand side of the plots), the pH in
case2 actually decreases with height above the cloud base.
This is because the higher initial NH3 volume fraction in-
creases its uptake and counters the low pH values caused by
the initial acidic aerosol particles, see Eq. (2). Then, as the

water drops are advected upwards, oxidation produces sulfu-
ric acid and the average pH decreases. Near the cloud top,
the NH3 is degassed back to the environment. The case2 re-
sults are in agreement with the trajectory ensemble model
simulations by Zhang et al. (1999). In their study, the ini-
tial aerosol size distribution is the same as in the base case
and case2. However, their initial trace gas volume fractions
are much higher and aim to represent a “moderately polluted
marine environment” (their base case NH3 volume fraction is

Geosci. Model Dev., 11, 3623–3645, 2018 www.geosci-model-dev.net/11/3623/2018/
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Shipway and Hill QJRMS 2012: Diagnosis of systematic differences between multiple parametrizations of warm rain microphysics using a kinematic framework
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• CLIMAParameters.jl - storage for our free parameters


• Thermodynamics.jl - thermodynamics relations, saturation adjustment


• CloudMicrophysics.jl - aerosol activation, 0 and 1 moment microphysics


• TurbulenceConvection.jl - SGS turbulence, single column simulations setup


• CalibrateEDMF.jl - pipeline for calibrating TurbulenceConvection.jl


• EnsembleKalmanProcesses.jl - UQ and optimisation algorithms


• Kinematic1D.jl - testing sandbox for microphysics


• Cloudy.jl - multi-moment cloud microphysics 
 

• PySDM - super-droplet algorithm implementation


• PySDM-examples - example PySDM simulation setups (0D, KiD-1D, KiD-2D)

https://github.com/CliMA/CLIMAParameters.jl
https://github.com/CliMA/Thermodynamics.jl
https://github.com/CliMA/CloudMicrophysics.jl
https://github.com/CliMA/TurbulenceConvection.jl
https://github.com/CliMA/CalibrateEDMF.jl
https://github.com/CliMA/EnsembleKalmanProcesses.jl
https://github.com/CliMA/Kinematic1D.jl
https://github.com/CliMA/Cloudy.jl
https://github.com/atmos-cloud-sim-uj/PySDM
https://github.com/atmos-cloud-sim-uj/PySDM-examples


Thank you for your attention!

Anna Jaruga KITP 2022


