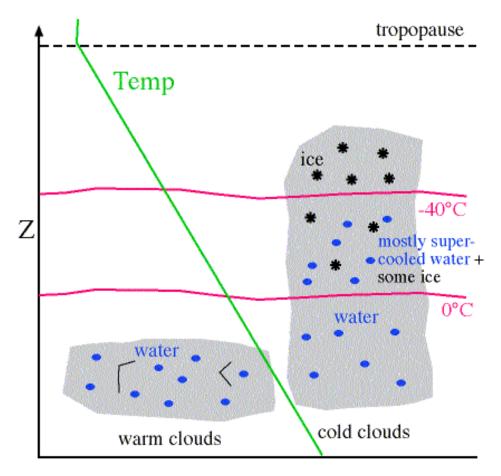
Settling and collision of ice crystals in turbulent clouds

Alain Pumir

Laboratoire de Physique, ENS Lyon, France

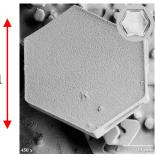
and

Max-Planck for Dynamics and Self-Organization, Göttingen, Germany

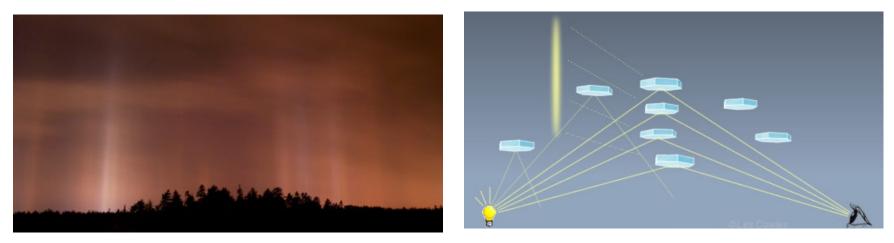

Joint work with:

Md. Zubair Sheikh (ENS Lyon, now at University of Lahore, Pakistan) Aurore Naso and Emmanuel Leveque (Ecole Centrale de Lyon, Lyon) Bernhard Mehlig and Kristian Gustavsson (Gothenburg, Sweden) Earlier contribution: Jennifer Jucha, now in Jülich, Germany.

Cold clouds



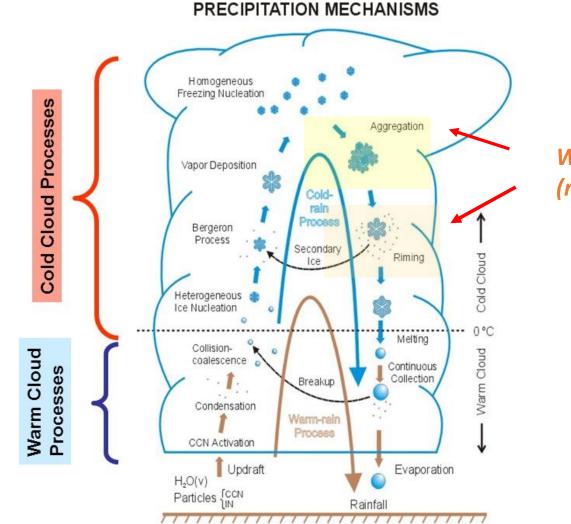
- Cold clouds (top < 0°C) contain ice particles, of various shapes; possibly coexisting with water drops (T > -40C).
- Existence of platelets in the range of temperature


$$-20\,^{\circ}\mathrm{C} \lesssim T \lesssim -10\,^{\circ}\mathrm{C}$$

~300 µm

Orientation of ice crystals in cold clouds

• Observation: a crystal settling in still fluid settles with an orientation that maximizes drag. In a calm environment (no fluid motion), ice crystals orient themselves horizontally, giving rise to 'Light Pillars'.


Multicolored pillars from low level ice crystals reflecting artificial lights. Nova Scotia, Dec. 02. (https://www.atoptics.co.uk/halo/lpil.htm)

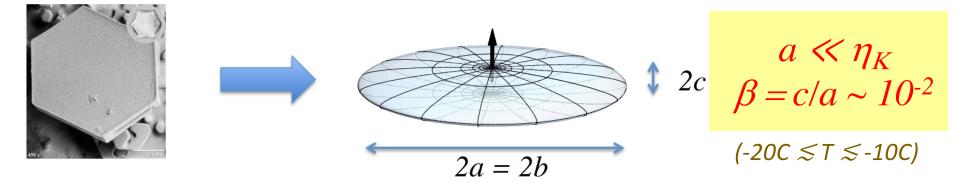
See also Sassen, J Meteor. Soc Japan, 1980.

• *But !* Turbulence tends to randomize the orientation of anisotropic particles.

Q1: How much orientation is there in the presence of turbulence ? ...Implications: reflection properties of clouds (albedo, etc)... 3

Clouds: a story of water droplets and ice crystals

What this talk is (mostly) about .


Courtesy: Steve Platnick, NASA

Simplifying approximations

Simplifying approximations.

Simplified flow: Homogeneous Isotropic Turbulence

Simplified crystal shape:

Small particle Reynolds number

Particle velocity: v; velocity of the fluid: u.

• Reynolds number of a particle of characteristic size *a*:

 $Re_p = l(u-v)l a/v$

Observe that Re_p is typically small $\lesssim 1 =>$

Use Stokes equations w/ first order corrections to the equations of motion due to fluid inertia (systematic expansion in Re_p)

(Dabade et al, 2016, Jiang et al, 2021, Gustavsson et al, 2021, Cabrera et al, 2022)

Motion of crystals in the flow: rotational degrees of freedom

Angular momentum equation:

 $I d\boldsymbol{\Omega}/dt = \boldsymbol{T}_{St} + \left[(I_y - I_z) \,\Omega_y \Omega_z, (I_z - I_x) \,\Omega_z \Omega_x, (I_x - I_y) \,\Omega_x \Omega_y \right] + \boldsymbol{T}_I$

 Ω = rotation vector of the particle <u>in the frame of the particle</u>. Evolution of Ω under the action of:

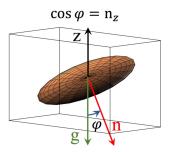
- the torque exerted by the fluid (T_{St}) .
- non-galilean effects (think of the Euler top...)

Expression for an ellipsoid of axes a, b and c (Jeffery, 1922):

 $T_{St,x} = \rho_f \, v \, 16/3 \, \pi \, abc \, (b^2 + c^2)/(b^2 \beta_0 + c^2 \, \gamma_0) \times \\ [\, (b^2 - c^2)/(b^2 + c^2) \, \mathbf{S}_{yz} + (\mathbf{1/2} \, \boldsymbol{\omega}_x - \boldsymbol{\Omega}_x) \,]$

 ω is vorticity, *S* the rate of strain matrix expressed in the ellipsoid eigen-frame; β_0 and γ_0 are known constants, depending on the shape of the ellipsoid.

 T_{St} depends only on velocity gradients, not on the velocity itself !


Effect of T₁

Expression of the torque (oblate spheroids)

 $T_I \propto -\rho_f W_s^2 a^3 \sin(2 \varphi)$

 $[W_s = settling velocity]$

Elementary analysis:

For a particle *settling in quiescent fluid*, the equations of motion with the torque T_I have two fixed point:

- 1. A fixed point corresponding to particles settling with its broad side first, which is **stable**.
- 2. A fixed point corresponding to particles settling with its narrow side first, which is **unstable**.
- ✓ Without T_1 , keeping only the Jeffery torque (" $Re_p \sim 0$ "), any orientation is marginally stable.
- ✓ T_I is necessary to explain the tendency of crystals to align horizontally in the absence of fluid motion (light pillars).

Estimate the ratio $|\mathbf{T}_{St}|/|\mathbf{T}_{I}|$

Define: $\mathscr{R} \equiv |\hat{\mathbf{T}}_I| / |\hat{\mathbf{T}}_{St}|$

One "could expect $\mathscr{R} \sim Re_p$ ", where $Re_p \sim |u_p - u_f| a/v$, (weak, $\sim Re_p$)

In fact,
$$\mathscr{R} \sim W_s^2 / (v \partial u)$$

<u>At large flow Reynolds numbers</u> : $Re_f \gg 1$.

In a turbulent flow, estimate the velocity gradient as $: \partial u \sim (U_0/L) \times Re_f^{1/2}$.

$$\mathscr{R} \sim \Big(\frac{W_s}{U_0}\Big)^2 R e_f^{1/2}$$

the contribution of fluid-inertia to the torque can be neglected
(R can be small) only if W_s/U₀ is small, in which case:
the orientation distribution is nearly uniform (weak symmetry breaking).

- The Stokes contribution is subdominant ($\mathscr{R} \gg 1$) when the ratio W_s/U_0 is large \rightarrow biased "horizontal" distribution
- No other possibility of bias (biased "vertical" distribution) at large W_s/U_0 !!!

Sheikh, Gustavsson, Lopez, Lévêque, Mehlig, Pumir & Naso, JFM 2020

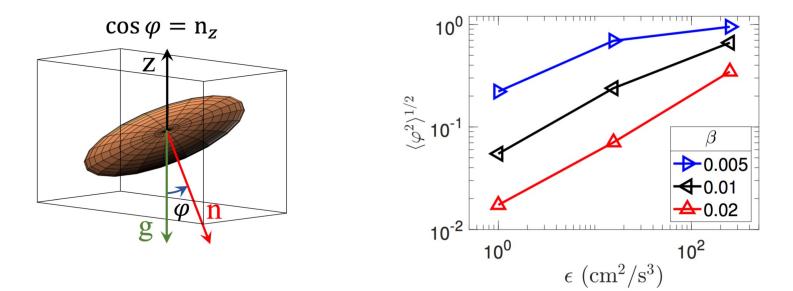
Numerical work

• Flow simulated in a periodic box, L ~ 25cm.

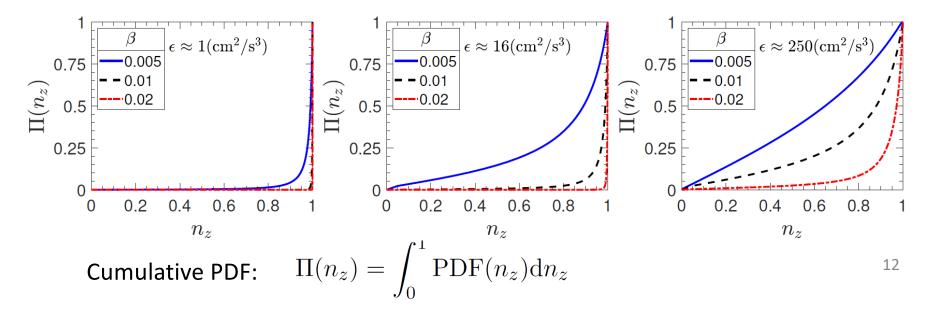
Resolution	Dissipation, ε (cm ² /s ³)	ղ (cm)	Reynolds number, R_{λ}	Flow time scales $\tau_{\eta}(s) = T_{L}(s)$
384 ³	0.976	0.197	55.8	0.341 1.96
768 ³	15.6	0.0980	94.6	0.085 0.696
1536 ³	246.4	0.0492	151.2	0.021 0.265

• Solve the equations for the particles

$$\frac{dx}{dt} = v, \quad m\frac{dv}{dt} = f_h + mg, \qquad \qquad \frac{d\hat{n}}{dt} = \omega \wedge \hat{n}, \quad m\frac{d}{dt} \Big[\mathbb{I}(\hat{n})\omega \Big] = \tau_h.$$

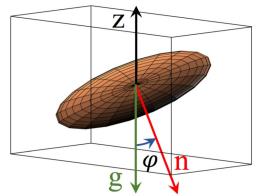

 $(a = 300 \ \mu m, \beta = 0.005, 0.01, 0.02 \text{ and } 0.05).$

[nb: one-way coupling -- the suspensions are very dilute]


- Also follow the motion of droplets (radius: 5, 10, 15 and 20µm)
- Detect collisions (Siewert et al, 2014, Jucha et al, 2018)

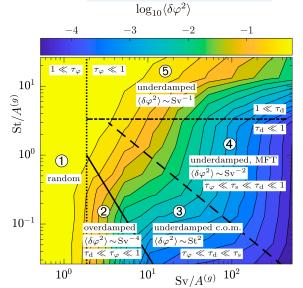
Orientation statistics of ice crystals

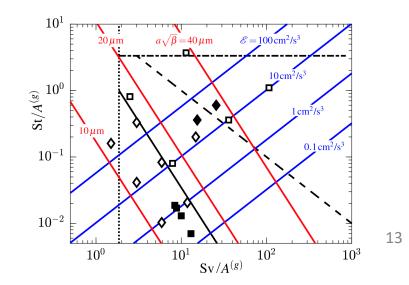
Settling orientation of ice crystals



Increase of the particle size (β) and/or decrease of the turbulence intensity (ϵ) favors the horizontal settling orientation.

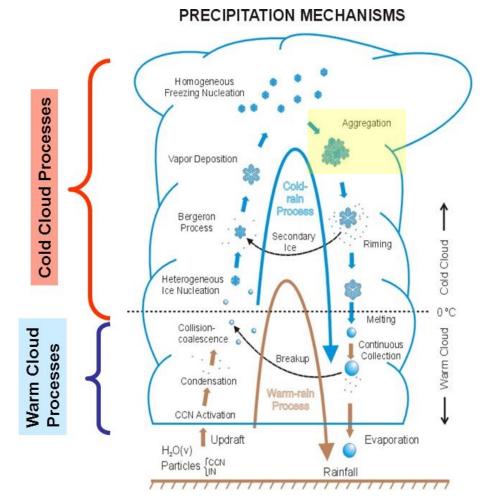
Settling orientation of ice crystals $\cos \varphi = n_{\pi}$

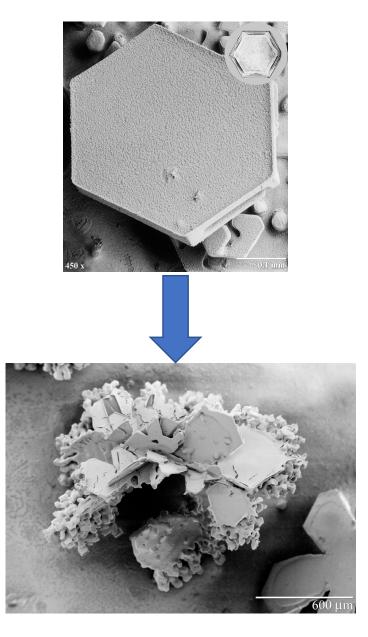

Preferential alignment of spheroids with their broad faces down ($\varphi \sim 0$).



Explicit solution of the simplified model (Gustavsson et al, J. Atmos. Sci 2021):

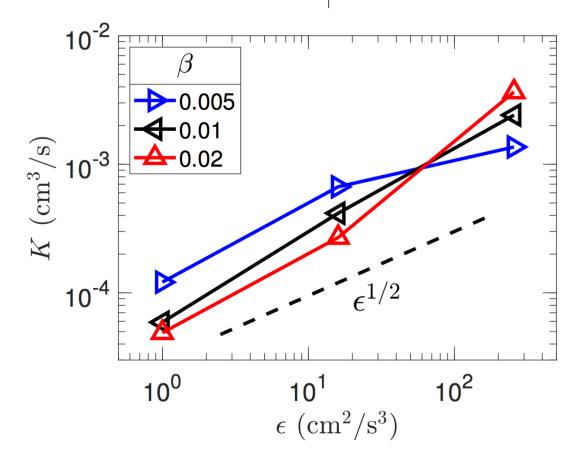
the orientation, characterized by $\langle \varphi^2 \rangle^{1/2}$, depends on two parameters:


- The Stokes #: $St = \tau_p / \tau_K$; τ_p = particle relaxation time, and τ_K = Kolmogorov time.
- The settling #: $Sv = g\tau_p / (v \tau_K)^{1/2}$.


Collision between ice crystals

Clouds: a story of water droplets and ice crystals

Courtesy: Steve Platnick, NASA


Electron and confocal microscopy laboratory, US Agriculture Research Center

Collision kernel

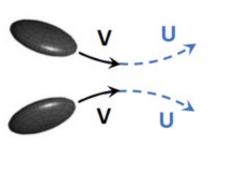
$$N_c = \frac{1}{2}K \times \frac{N^2}{V} \times T$$

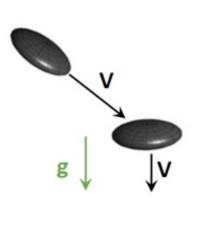
 N_c : number of collisions. K: collision kernel. N: number of particles. V: volume of the domain.T: simulation time.

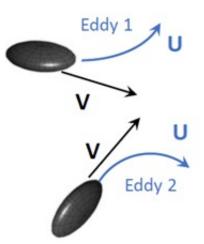
The collision rate increases with turbulence intensity nb: $\varepsilon^{1/2}$ dependence: prediction of Saffman and Turner (1956) 16

Collision mechanisms

Turbulence¹

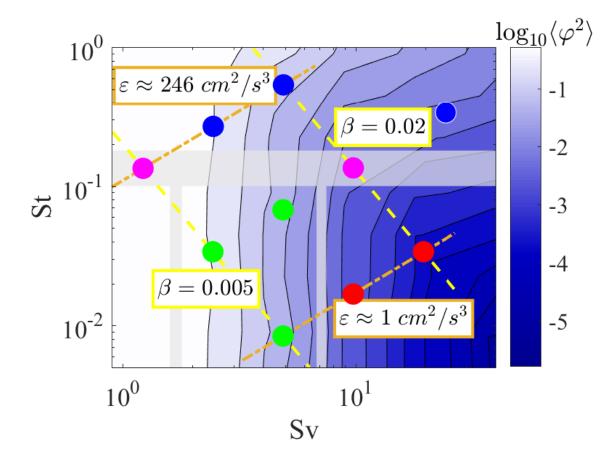

Tracer crystals are brought together by turbulence velocity gradients.


Differential settling²

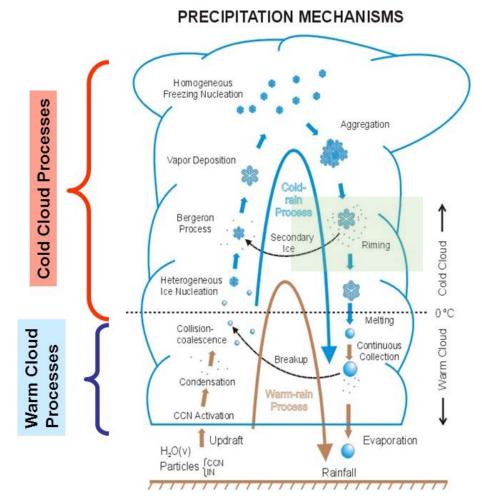

Faster settling crystals fall on slower settling crystals.

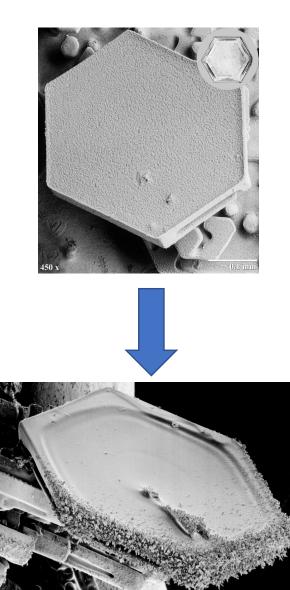
Particle inertia^{3,4}

Particles from different parts of flow collide due to particle inertia, referred as **Caustics** or **Sling effect**



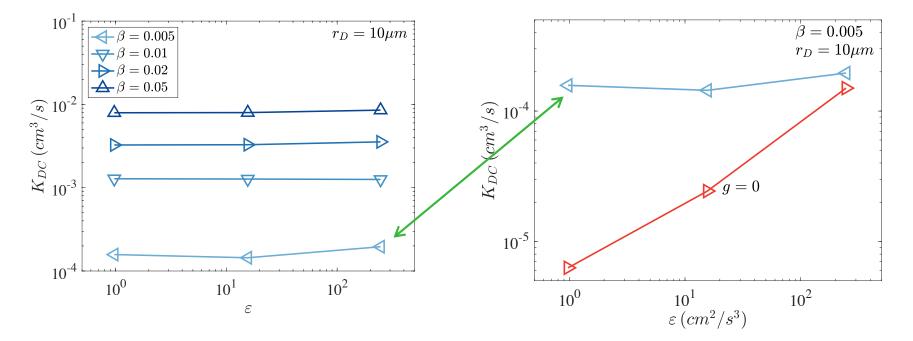
- 1. Saffman, P. G. F., & Turner, J. S. (1956). On the collision of drops in turbulent clouds. *Journal of Fluid Mechanics*, 1(1), 16-30.
- 2. Siewert et al, JFM 2014; Jucha, J., Naso, A., Lévêque, E., & Pumir, A. (2018). Settling and collision between small ice crystals in turbulent flows. *Physical Review Fluids*, *3*(1), 014604.
- 3. Falkovich, G., & Pumir, A. (2007). Sling effect in collisions of water droplets in turbulent clouds. *Journal of the Atmospheric Sciences*, *64*(12), 4497-4505
- 4. Wilkinson, M., & Mehlig, B. (2005). Caustics in turbulent aerosols, Europhysics Letters, 71 (2), 186


Collision mechanisms as a function of the parameters of the problem.


Red points: the Saffman-Turner effect dominates Green points: differential settling dominates Blue points: particle inertia ("sling effect") dominates. Magenta points (and grey-ish bands): transition regimes.

Collision between crystals and water droplets

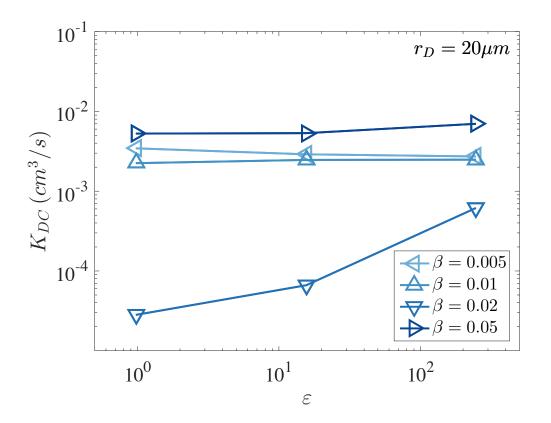
Clouds: a story of water droplets and ice crystals



Courtesy: Steve Platnick, NASA

Role of turbulence ?

Here: $r_D = 10 \ \mu m$ + vary ε , at several values of β .



When the settling velocities of droplets and crystals are sufficiently different, little effect of turbulence

Qualitatively agrees with experiments of Jost et al, J Atmos Sci, 2019

For $\beta = 0.005$; $r_D = 10 \mu m$, the collision rate in the absence of settling becomes comparable with K_{DC} in the presence of gravity.

Role of turbulence ?

Settling velocities of droplets with $r_d = 20 \ \mu m$ and crystals with $\beta = 0.02$ are very close => strong effect of turbulence.

• Fluid inertia tends to orient settling ice crystals with their maximum size facing down

consequence for the radiation reflection of ice (cirrus) clouds ?

See e.g. Noel and Chepfer, J. Geophys. Res. 2010.

- Competition between **3 main different physical mechanisms** determines the collision kernel.
- Contribution of this work: determine which is the prevalent mechanism leading to collision depending on the *Stokes number*, *St* and the settling number, *Sv*.
- Turbulence seems to be playing a weak effect for collision between particles with very different settling velocities as it (often) happens for "riming".

Thank you for your attention.

Questions ?

References:

Gustavsson et al., New J. Phys. **21**, 083008 (2019) Sheikh et al., JFM **886**, A9 (2020). Gustavsson et al., J. Atmos. Sci. **78**, 2573–2587 (2021) Jiang et al., Phys. Rev. Fluids **6**, 024302 (2021) Sheikh et al., J. Atmos. Sci., under review (2022) Cabrera et al., Phys. Rev. Fluids **7**, 024301 (2022)