

KITP Conference: Atmospheres, Oceans, Earths -- Unifying perspectives on geophysical and environmental multiphase flows

Rheology of sheared sediment beds: particle resolved simulations

02. November 2022 | Santa Barbara, USA | B. Vowinckel

Example: Mudslides and debris flows

Illgraben, Switzerland

- 1. Triggered by high-intensity rainfall events
- 2. Mobilisation of large amounts of sediments
- 3. Risk will increase due to climate change

(cf. flooding in the Ahr valley, Germany, 2021)

Shear thickening behavior

- \rightarrow Rheology: study of the flow and deformation of matter
- \rightarrow How does the sediment load alter the flow behavior of a river?

Classical rheometry studies

Two constitutive model frameworks exist for neutrally buoyant particles:

Volume-imposed

(a)

[Guazzelli & Pouliquen, JFM, 2018]

Classical rheometry studies

Two constitutive model frameworks exist:

Volume-imposed

Pressure-imposed with sediment transport

 p_p ...submerged granular weight

[Guazzelli & Pouliquen, JFM, 2018]

(a)

Technische Universität Braunschweig

Rheuthogyofinshieasediisedirheit strease of article or as on ressure-driven flows 23 November 20221 ||Bernhard Wowinsker|| KITP conference

Rheology of a fluid/particle mixture

Two constitutive model frameworks exist:

Volume-imposed

Effective viscosity [Stickel and Powell, 2005] $\tau = \eta_s(\phi)\eta_f \frac{\partial u}{\partial y}$ $p_p = \eta_n(\phi)\eta_f \frac{\partial u}{\partial y}$ Macroscopic friction coefficient [Boyer et al. 2011] $\tau = \mu(J)p_p$

 $\frac{\phi}{\phi} = \phi(J)$ Where

 $J = \frac{\eta_f \partial u / \partial y}{p_p}$

Pressure-imposed

 \rightarrow Non-dimensional flow curve

If we can directly measure:

 $\partial u/\partial y$, ϕ , τ , p_p

 η_s, η_n, J, μ

Then we can use the above relations to calculate

 τ ... total shear stress

- $p_p \dots$ granular pressure (weight)
- η_s ... shear viscosity
- $\eta_n \dots$ normal viscosity
- $\frac{\partial u}{\partial y}$... fluid shear rate
- ϕ ... particle volume fraction
- J... non-dimensional shear-rate
- μ ... macroscopic friction

Euler-Lagrange particle flows

Basic Fluid Solver

$$\frac{\partial \mathbf{u}}{\partial t} + \nabla \cdot (\mathbf{u}\mathbf{u}) + \frac{1}{\rho}\nabla p = \nu \nabla^2 \mathbf{u} + \mathbf{f}_{drag}$$

Fully-resolved [Uhlmann, 2005]

 \rightarrow Particle larger than grid cell size

Lagrangian mesh (red markers) and Eulerian mesh (black lines)

Immersed Boundary Method (IBM)

$$m_p \frac{\mathrm{d}\mathbf{u}_p}{\mathrm{d}t} = \mathbf{F}_h + (\rho_p - \rho_f) V_p \mathbf{g} + \mathbf{F}_c$$

Hydrodynamic forces buoyancy Collision/

contact

Euler-Lagrange particle flows

Basic Fluid Solver

$$\frac{\partial \mathbf{u}}{\partial t} + \nabla \cdot (\mathbf{u}\mathbf{u}) + \frac{1}{\rho}\nabla p = \nu \nabla^2 \mathbf{u} + \mathbf{f}_{drag}$$

Fully-resolved [Uhlmann, 2005]

 \rightarrow Particle larger than grid cell size

Lagrangian mesh (red markers) and Eulerian mesh (black lines)

Immersed Boundary Method (IBM)

$$m_p \frac{\mathrm{d}\mathbf{u}_p}{\mathrm{d}t} = \mathbf{F}_h + (\rho_p - \rho_f) V_p \mathbf{g} + \mathbf{F}_c$$

Hydrodynamic forces buoyancy Collision/

contact

Technische Universität Braunschweig

Rheology of sheared sediment beds: particle resolved simulations 2. November 2022 | Bernhard Vowinckel | KITP conference

Collision model for non-cohesive sediment [Biegert, Vowinckel & Meiburg, JCP, 2017]

 \rightarrow Excellent agreement with experiments

8

Simulation setup

Number of particles:	4339
Galileo number $Ga = v_f^{-1} \sqrt{\rho' g D_p^3}$:	0.85
ρ_p / ρ_f :	2.1
$D_p/\Delta x$:	25.6
Initial h_f/D_p :	10

Boundary conditions: → periodic (x); no-slip (y); periodic (z)

Similar to experimental setup of Aussillous et al. [*JFM* 2013]

Experiments by Aussillous et al. (JFM, 2013)

Brinkman equation:

$$\frac{\partial p^f}{\partial x} - \frac{\partial \tau^f}{\partial z} + \frac{\eta}{K}(U - u^p) = 0$$

Momentum equation for the mixture

$$\tau^{p}(z) + \tau^{f}(z) = \tau^{f}(h_{p}) - \frac{\partial p^{f}}{\partial x}(h_{p} - z)$$

where

$$\tau^f = \eta_e \left(\frac{dU}{dz}\right)$$

$$\tau^p = \mu p^p$$

Technische Universität Braunschweig

Rheology of mobile sediment beds

 $\mu(J)$ -rheology: macroscopic friction $\mu = \tau/p_p$

- Shear-thickening of the suspension
- Good agreement with experimental results

Rheology of mobile sediment beds

$J = \eta_f \dot{\gamma} / p_p$

- Shear-thickening of the suspension
- Good agreement with experimental results

Rheology of mobile sediment beds

- Shear-thickening of the suspension
- Good agreement with experimental results

Effective viscosities

• Difficulty to extrapolate to sediment transport layer (large J and low ϕ)

Relative stress contributions

Two different regimes

- dense regime (contact) versus dilute (hydrodynamics) \rightarrow transition at ϕ =0.3
- dense regime \rightarrow classical empirical correlations for rheometry hold

Technische Universität Braunschweig

Relative stress contributions

Dilute regime:

- hydrodynamic interactions are screened by the porous medium
- scaling with the Einstein relation

Rheology of sediment beds

- Coupled Lattice-Boltzmann (LB)-Discrete-Element-Method (DEM)
- \rightarrow What is the role of polydispersity?
- \rightarrow What happens at very low shear rates?
- Analogy to sediment beds in rivers and soils on a hillslope

[Rettinger,...,Vowinckel, JFM, 2022]

Experiments of Houssais et al. (PRE, 2016)

- Annular cell
- Couette flow
- Monodisperse sediment \rightarrow pressure imposed rheometry

Technische Universität Braunschweig

Comparison case Mono

Effects of polydispersity: particle volume fraction

$$\phi(J) = \frac{\phi_m}{1 + \sqrt{K_n J}}$$

Idea:

- Infer ϕ_m from the data
- Fit Boyer model to rheology data to determine parameter K_n
- Express K_n as a function of ϕ_m
- $\rightarrow \phi_m$ increases with polydispersity
- → Very good agreement of the calibrated models

Effects of polydispersity: macroscopic friction

$$\mu(J) = \mu_1 + \frac{\mu_2 - \mu_1}{1 + J_f / J} + \underbrace{a_\mu J^{1/2} + b_\mu J}_{\text{hydrodynamics}}$$

Idea:

- Fit Boyer model to rheology data to determine parameters μ_1, μ_2, J_f
- Express μ_1 , μ_2 as a function of ϕ_m
- J_f constant
- → Very good agreement for $J > 10^{-5}$

Extension to creep

Work in progress: rheometer simulations

• Setup according to Tapia et al. (2022)

- Particle volume fraction $\phi = 0.52$
- Stokes number

$$St = \frac{\rho_p D^2 \dot{\gamma}}{\mu_f} = 0.9$$

Summary and conclusions

Shear thickening behavior

- $\phi > 0.3$: Dense regime \rightarrow contact stresses dominate \rightarrow empirical correlation
- $\phi < 0.3$: Dilute regime \rightarrow hydrodynamic stresses dominate \rightarrow Einstein relation
- Dilute regime differs from rheometry \rightarrow screening of porous medium

Effects of creep and polydispersity

- Coefficients of empirical correlations scale with $\phi_m \rightarrow$ measure for polydispersity
- Creeping deformation at low shear rates \rightarrow decrease of macroscopic friction
- Creeping deformation unaffected by polydispersity

Thank you

Acknowledgements

Pascale Aussillous, Edward Biegert, Élisabeth Guazzelli, Alireza Khodabakhshi, Sudarshan Konidena, Eckart Meiburg, Christoph Rettinger, Ulrich Rüde

