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Alluvial river

Kaidu river, Tian-Shan, China

transport

flow morphology



Bedforms

Ripples, Urumqi river 
(chinese Tian-Shan)

Alternate bars, Ornain, Bar le Duc



Channel shape

What selects the shape and the size of an alluvial channel?

100 m

© google Earth
Kaidu river, Tian-Shan, China



Lacey’s law
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from the clear waterway in order t o  arrive at  the effective width of 
water.  The  effective  width of waterway on modern Indian railway- 
bridges over sandy rivers  should  therefore check the new formula 
with  tolerable  accuracy if the railway-bridge engineer has achieved 
his purpose. I n  Appendix p are  details of four modern railway- 
bridges with the Author's  calculations for effective widths of water, 
and  in Pig. 13 the results are  plotted. The expression fits the 
points  with curious accuracy.  The  points for the Alexandra 
bridge across the Chenab, read with the  dates,  are illuminating. 
When the bridge was constructed in 1876 i t  was given no  less 
than sixty-four  spans of 132 feet clear, the old bridging principle 
being that of bridging very nearly everything that presented the 

J 
1-0 

appearance of a  river-bed. The other points represent successively 
the engineers' tentative efforts to confine the river to one stable 
waterway. In  1917 it  was realized that  this river when in flood 
had never made effective use of more than seventeen spans, and  to 
that number of spans the bridge was accordingly cut down as  a 
final measure of control.' The point lies exactly  on the curve 
derived for the wetted  perimeters of canals transporting  silt. The 
bridge across the  Ravi  at Dera  Baba Xanak has  recently been 
completed, and  the  site is of interest  as it is 50 miles downstream 
of the Madhopur headworks of the Upper Bari Doab  canal on which 
Mr. Kennedy  performed his classic experiments. 

The bridge-engineer might  regard the new formula as a useful 

Procerdings  Punjab Engineering Congresa, \d. viii (1920), p. 3 .  
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“ Stable Channels in Alluvium.” 
By GERALD LACEY, B.Sc., Assoc. M .  Inst. C.E. 

THE laws governing stable silt-transporting rivers and canals in 
erodible material are  admittedly so complex that it is with some 
diffidence that  the Author puts forward a new general theory of 
silt-transportation. The subject is, however, of such importance 
t.hat  little apology is required for a renewed attack on a problem 
that of late years has demanded increased attention. It is not 
proposed t o  recapitulate the various theories dealing with the 
precise manner in which a  canal or river transports  its  silt;  the 
Author collates reliable data of stable channels now available 
from a variety of sources, and proceeds thereafter to deduce new 
general formulas which will fit with reasonable accuracy a very 
extensive range of hydraulic observations. 

Fig. 1 represents a longitudinal section of a stable  channel, trans- 

Fig.  1. 
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SiIted Bed 

porting and flowing in its own silt. The  velocity a t  which equi- 
librium or stability is maintained depends on the  depth of water 
and  the  type of silt. Or, if 8, denotes the regime or critical velocity, 
D the vertical depth of water, and f a silt factor, 

This traditional figure applies  properly only to a stream of uniform 
depth  and unlimited bed-width. It is necessary to  poict  out  this 
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Lacey’s law

Amazon river, at Obidos

width = 2.3 km

discharge = 2.2 105 m3/s

grain size < 100 microns

sand stream in Florida 

width = 10 cm

discharge = 2 L/s

grain size = 450 microns 



Threshold theory
Glover and Florey [1951] & Henderson [1961]

erosion

force > threshold

aggradation

force < threshold

→ river builds its bed at the threshold of entrainment. 

drag force
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Threshold theory

width and depth  ∝ ds

S

grain size 

river slope ~ 10-5-10-2

→ channel size ≫ grain size

Glover and Florey [1951], Henderson 
[1961], Seizilles et al. [2013] 
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friction coef. slope

∼ ds

Shallow-water theory -> channel shape independent 
of the nature of the flow. 

Threshold theory

Glover and Florey [1951], Henderson 
[1961], Seizilles et al. [2013] 



190 cm

90 cm

Laboratory laminar river

plastic sand

size～0.83 mm

glycerol

Re～10

Seizilles et al. [2013]

constant flow discharge



1 image every 5 minutes

duration ~ 20 hours

flow

Laboratory laminar river
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Laminar channel : shape



Seizilles et al. [2013]

Laminar channel : shape

(no tuning parameter)



Width vs discharge?

discharge :  Qw = ∫
+W/2

−W/2
U D dy

depth-averaged velocity

depth

y
z

D(y)

W

lubrication theory :  U = gSD2

3ν

slope

viscosity
depth-averaged velocity
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FIG. 5. (Color online) Width of laboratory rivers as a function
of discharge (blue dots). The red line corresponds to the threshold
theory, without any fitted parameter [Eq. (13)]. Each data point is the
average of two or three cross sections measured on the same river
(for the fifth run only, width and depth were measured with a ruler).
The width varies by less than 30% along the river (vertical error
bars). During an experiment, the water discharge varies by less than
0.1 ! min−1 (horizontal error bars).

the fluid friction at the bottom of the channel balances gravity.
The resulting Poiseuille flow satisfies

3νU

D
= gSD, (10)

where U is the vertically averaged water velocity. Finally, the
discharge reads

Qw =
∫

channel
UDdy. (11)

In combination with the momentum balance (10) and the
threshold cross section (9), the water mass balance yields two
scaling laws:

S =
[
θt (ρs − ρf )ds

ρf

]4/3( 4g

9µνQw

)1/3

, (12)

W = πL

S
= π

µ2/3

[
9νρf Qw

4gθt (ρs − ρf )ds

]1/3

. (13)

Equation (13) is the equivalent of Lacey’s law for a laminar
river, where the cubic root of the water discharge takes the
place of the classical square-root dependence.

Our experimental data gather around this prediction (Fig. 5).
Its significant dispersion results from the actual variability of
the river width, rather than from measurement uncertainties.
Indeed, the widest cross section of a river can be 30% wider
than the narrowest one, whereas the measurement uncertainty
is of the order of the capillary length only (a few millimeters).

With our experimental setup, discharges smaller than
0.5 ! min−1 or larger than 2.5 ! min−1 are impracticable. As a
consequence, the data do not constrain strongly the exponent
of the width-discharge relation. However, the threshold theory
correctly predicts both its order of magnitude and its trend,
without any fitted parameter. We thus believe that the balance
between shear stress and fluid friction embodied by Eq. (7)
sets the size of our laboratory rivers.

Assuming this is correct, we use Eqs. (8) and (12) to rescale
the measured cross section according to the water discharge.
Doing so for each run, we then compute the mean cross

FIG. 6. (Color online) Average cross section of laboratory rivers
(blue solid line). For each water discharge, the cross section is rescaled
with L/S [Eqs. (8) and (12)]. The average is computed in polar
coordinates relative to the center of the cross section. The shaded
area indicates the variance of the cross-sections sample. Red dashed
line: cosine cross section predicted by Eq. (9).

section for all of our experiments (Fig. 6). The resulting shape
resembles a cosine, with a more rounded base. This slight
disagreement might result from the flow two-dimensionality,
which we have neglected in order to derive the cosine cross
section.

According to Eq. (12), the discharge of a river not only sets
its size, but also imposes its slope. Unfortunately, assessing
this prediction experimentally is difficult. In our experiments,
we expect a slope of about 10−3; over the entire river, this
corresponds to a change of about a millimeter in bed elevation.
We have not reached this accuracy, despite an attempt with
a moiré technique [33]. However, before each experiment,
we set the slope of the initial flat bed close to its theoretical
value. If the initial bed is too steep, the river incises deeply
into the sediment layer near the water inlet. Conversely, too
small a slope generates an alluvial fan near the inlet, indicating
deposition. These observations suggest that the river tends
towards an equilibrium slope.

IV. DISCUSSION AND CONCLUSION

The characteristic size and shape of laminar laboratory
channels accord closely with the threshold theory of alluvial
rivers. This need not have been the case, for two reasons at
least. First, the shallow-water hypothesis is a rather severe
approximation, especially since we expect the slope to reach
the avalanche angle at the bank. Second, the cosine solution
to the equilibrium equation (7) is not unique. Indeed, as
Henderson pointed out, a flat section at threshold enclosed
with two half cosines is also a solution [12]. To understand
why the narrowest solution is selected, we need to consider the
path towards equilibrium. To take this history into account, we
must add sediment transport to the theory.

The threshold theory has been compared with reasonable
success to field data [14,15], suggesting that the force balance
which it is based on sets the shape of alluvial streams. However,
the aspect ratio of most rivers is significantly larger than the
theoretical value. Since alluvial rivers generally transport a
nonvanishing load of sediments, the threshold theory appears
as a limit case that explains the orders of magnitudes, but still
lacks an ingredient.

Assuming that the bed is slightly above threshold in the
framework proposed here leads to a paradox: moving particles
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laminar flow

Laminar channel : width vs discharge

width

characteristic length : ℓ = Δρ
ρ

ds

discharge

friction coef.threshold Shields stress kinematic viscosity



100 m

What of the field ?

river near Bayin-Buluk, chinese Tian-Shan

turbulent flow  → U = ( gSD
Cf )

1/2
slope depth

turbulent friction coefficientdepth-averaged velocity
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100 m

What of the field ?
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Limits of the threshold theory

The threshold theory accounts for the width of rivers

but not for their shape.

→ effect of sediment transport ?



Rivers transport sediments

Sacramento river 

© Ethan Mora

How does sediment transport influence the shape of rivers?
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How does sediment transport influence 
the shape of rivers?
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Active laboratory river

• constant flow discharge

• constant sediment discharge



Active laboratory river

ABRAMIAN, DEVAUCHELLE, AND LAJEUNESSE PHYSICAL REVIEW E 102, 053101 (2020)

surprisingly, its downstream slope. This statistical equilibrium
takes the form of a Boltzmann distribution, according to which
the sediment flux qs decreases exponentially with the bed
elevation h [30]:

qs

〈q〉g
= exp

(
−h − 〈h〉a

λB

)
, (3)

where 〈·〉a and 〈·〉g are the arithmetic and geometric means,
respectively, and λB is the length that measures the relative
importance of diffusion and gravity. To our knowledge, the
latter was measured only once experimentally, for plastic
grains entrained by a viscous fluid flowing in a flume (λB =
0.12 ± 0.02 ds, where ds is the grain size) [30].

The same mechanism likely occurs in laboratory rivers
which, unlike confined flumes, can adjust their width. If so,
then it should account for the entire shape, too. To test this
hypothesis, we generate single-thread rivers of which we vary
the sediment discharge (Sec. II). We then measure the bed
elevation and the cross-stream profile of the sediment flux
by tracking individual grains (Secs. III and IV). Finally, we
observe that this distribution selects the width of a river, which
increases with sediment discharge (Sec. VI).

II. EXPERIMENTAL SETUP

To generate our laboratory rivers, we use an inclined plane
(90 × 190 cm), covered with a 5-cm-thick layer of plastic
grains [30] (Fig. 1). All grains have the same density and
size (density ρs = 1490 g/l; median diameter ds = 0.82 ±
0.19 mm), but they come in a variety of colors. We will use the
latter to track the traveling grains and measure the sediment
flux (Sec. IV).

At the beginning of an experiment, we level the sediment
bed with a rake and carve a straight channel into it, from the
inlet to the outlet. The initial slope of the sediment bed is about
10−3, but we cannot accurately fix this value. We then inject
a mixture of glycerol and water (density ρ f = 1160 ± 5 g/l,
viscosity ν = 10 cP). A tank placed above the experimental
setup delivers a constant discharge Qw in the range 0.1–3
l/min. We measure the density of the fluid every hour and
infer its viscosity from this measurement. During a run, we
regularly add water to the mixture to compensate for its evap-
oration. The Reynolds number of the river remains close to
10; the flow is therefore laminar.

We also feed the river with sediment using an industrial
feeder (Gericke GLD 87), the screw of which pushes grains
into the funnel that guides them toward the inlet. The rotation
speed of the screw controls the sediment discharge in the
range 0.2–20 g/min. Grains then settle down and concentrate
near the bed, as they begin their travel downstream.

During the first hour of a run, the flow spreads over the
entire bed, and forms an almost uniform sheet of fluid. Over
the next few hours, though, the flow carves a channel, usually
along the one we have incised initially. During this transient,
the river continuously entrains more grains than it deposits
and thus erodes its bed. As a result, the sediment discharge
in the channel is larger than the one we impose at the inlet
(Fig. 2). Gradually, the sediment flux returns to steady state,
until it eventually matches the input Qs.

FIG. 1. Experimental setup. (a) Laboratory river, with a top-view
camera and inclined laser sheet. Qw and Qs denote the flow and the
sediment discharges, respectively. (b) Close view on the river bed.
White dashed lines materialize banks. A few grain trajectories are
plotted in pink.

FIG. 2. Evolution of the sediment discharge in a laboratory river.
Blue dots: Sediment discharge measured with particle tracking (10-
min average). Dashed line: Exponential relaxation with 45-min time
constant (fitted to data). Sediment supply is 0.6 ± 0.1 g/min.
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surprisingly, its downstream slope. This statistical equilibrium
takes the form of a Boltzmann distribution, according to which
the sediment flux qs decreases exponentially with the bed
elevation h [30]:

qs

〈q〉g
= exp

(
−h − 〈h〉a

λB

)
, (3)

where 〈·〉a and 〈·〉g are the arithmetic and geometric means,
respectively, and λB is the length that measures the relative
importance of diffusion and gravity. To our knowledge, the
latter was measured only once experimentally, for plastic
grains entrained by a viscous fluid flowing in a flume (λB =
0.12 ± 0.02 ds, where ds is the grain size) [30].

The same mechanism likely occurs in laboratory rivers
which, unlike confined flumes, can adjust their width. If so,
then it should account for the entire shape, too. To test this
hypothesis, we generate single-thread rivers of which we vary
the sediment discharge (Sec. II). We then measure the bed
elevation and the cross-stream profile of the sediment flux
by tracking individual grains (Secs. III and IV). Finally, we
observe that this distribution selects the width of a river, which
increases with sediment discharge (Sec. VI).

II. EXPERIMENTAL SETUP

To generate our laboratory rivers, we use an inclined plane
(90 × 190 cm), covered with a 5-cm-thick layer of plastic
grains [30] (Fig. 1). All grains have the same density and
size (density ρs = 1490 g/l; median diameter ds = 0.82 ±
0.19 mm), but they come in a variety of colors. We will use the
latter to track the traveling grains and measure the sediment
flux (Sec. IV).

At the beginning of an experiment, we level the sediment
bed with a rake and carve a straight channel into it, from the
inlet to the outlet. The initial slope of the sediment bed is about
10−3, but we cannot accurately fix this value. We then inject
a mixture of glycerol and water (density ρ f = 1160 ± 5 g/l,
viscosity ν = 10 cP). A tank placed above the experimental
setup delivers a constant discharge Qw in the range 0.1–3
l/min. We measure the density of the fluid every hour and
infer its viscosity from this measurement. During a run, we
regularly add water to the mixture to compensate for its evap-
oration. The Reynolds number of the river remains close to
10; the flow is therefore laminar.

We also feed the river with sediment using an industrial
feeder (Gericke GLD 87), the screw of which pushes grains
into the funnel that guides them toward the inlet. The rotation
speed of the screw controls the sediment discharge in the
range 0.2–20 g/min. Grains then settle down and concentrate
near the bed, as they begin their travel downstream.

During the first hour of a run, the flow spreads over the
entire bed, and forms an almost uniform sheet of fluid. Over
the next few hours, though, the flow carves a channel, usually
along the one we have incised initially. During this transient,
the river continuously entrains more grains than it deposits
and thus erodes its bed. As a result, the sediment discharge
in the channel is larger than the one we impose at the inlet
(Fig. 2). Gradually, the sediment flux returns to steady state,
until it eventually matches the input Qs.

FIG. 1. Experimental setup. (a) Laboratory river, with a top-view
camera and inclined laser sheet. Qw and Qs denote the flow and the
sediment discharges, respectively. (b) Close view on the river bed.
White dashed lines materialize banks. A few grain trajectories are
plotted in pink.

FIG. 2. Evolution of the sediment discharge in a laboratory river.
Blue dots: Sediment discharge measured with particle tracking (10-
min average). Dashed line: Exponential relaxation with 45-min time
constant (fitted to data). Sediment supply is 0.6 ± 0.1 g/min.
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Influence of sediment transport

Abramian et al. [2020]

profile of sediment flux

channel cross-section 

flow discharge = 0.97 L/min



Seizilles et al. (2014), Abramian et al. (2019) 

Bedload transport in a laboratory Flume

• plastic grains (ds～0.830mm)

• water-glycerol mixture (Re～10)

• constant flow and sediment discharges



Bedload transport
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FIG. 2. Imposed bedload flux qx as a function of the measured Shields parameter θ (dots, blue). The line (red) corresponds
to a fit of the data by the transport law (14) (qx = αVs θt (θ − θt )/d2

s with α = 0.025 and θ t = 0.125). The particle tracking
experiments are limited to the shaded area.

The flow is only a few millimeters deep, thus maintaining the Reynolds number Re = Qw/(W ν)
between 500 and 1400 (where ν is the viscosity of water). The flow aspect ratio remains larger than
10. The particle Reynolds number Res = u ds/ν is about 25 (u is the flow velocity at the grain scale).
Injecting dye in the channel indicates that the flow is laminar. Assuming a Hagen-Poiseuille velocity
profile, the shear stress τ reads29, 30

τ = ρ (S g)2/3
(

3 Qw ν

W

)1/3

, (3)

where ρ, S, and g are the density of water, the bed slope, and the gravity acceleration, respectively.
The slope varies between S = 0.008 and S = 0.0016. It is measured with respect to a plumb

line on pictures with a 0.3 mm/pixel resolution. Using Eq. (3), we evaluate the shear stress with an
accuracy of about 10%.

B. Erosion and deposition

If the flow-induced stress is strong enough to overcome the weight of a bed particle, the latter
gets entrained as bedload. This is usually expressed in terms of the Shields parameter θ , that is, the
ratio of the shear stress to the weight of a grain:4

θ = τ

(ρs − ρ) g ds
. (4)

Bedload transport starts when the Shields parameter crosses the threshold θ t, and further increases
with shear stress (Figure 2). According to Eq. (1), this increase results either from faster particles,
from a more concentrated bedload layer, or from any combination of the two.

To identify what primarily controls bedload near the threshold of motion, we now reinterpret
the erosion-deposition model in the neighborhood of the critical Shields parameter.

Let us first consider the entrainment of a particle initially at rest. The flow applies a viscous
drag fν on the particle, while the bed friction opposes the drag. When the particle gets entrained, the
viscous drag is proportional to the fluid velocity u with respect to the particle velocity Ve:

fν ∼ ρ ν d2
s (u − Ve). (5)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
194.254.220.140 On: Fri, 10 Jan 2014 14:20:18

Seizilles et al. (2014)



Streamwise bedload flux

S

D

S
y

z

x

shear stress

Ft

Fn
= ( μt

θt cos ϕ
τ

Δρgds )
2

+ D′ 2

• River channel

drag force gravity
gravitydrag force

013302-3 Seizilles et al. Phys. Fluids 26, 013302 (2014)

FIG. 2. Imposed bedload flux qx as a function of the measured Shields parameter θ (dots, blue). The line (red) corresponds
to a fit of the data by the transport law (14) (qx = αVs θt (θ − θt )/d2

s with α = 0.025 and θ t = 0.125). The particle tracking
experiments are limited to the shaded area.

The flow is only a few millimeters deep, thus maintaining the Reynolds number Re = Qw/(W ν)
between 500 and 1400 (where ν is the viscosity of water). The flow aspect ratio remains larger than
10. The particle Reynolds number Res = u ds/ν is about 25 (u is the flow velocity at the grain scale).
Injecting dye in the channel indicates that the flow is laminar. Assuming a Hagen-Poiseuille velocity
profile, the shear stress τ reads29, 30

τ = ρ (S g)2/3
(

3 Qw ν

W

)1/3

, (3)

where ρ, S, and g are the density of water, the bed slope, and the gravity acceleration, respectively.
The slope varies between S = 0.008 and S = 0.0016. It is measured with respect to a plumb

line on pictures with a 0.3 mm/pixel resolution. Using Eq. (3), we evaluate the shear stress with an
accuracy of about 10%.

B. Erosion and deposition

If the flow-induced stress is strong enough to overcome the weight of a bed particle, the latter
gets entrained as bedload. This is usually expressed in terms of the Shields parameter θ , that is, the
ratio of the shear stress to the weight of a grain:4

θ = τ

(ρs − ρ) g ds
. (4)

Bedload transport starts when the Shields parameter crosses the threshold θ t, and further increases
with shear stress (Figure 2). According to Eq. (1), this increase results either from faster particles,
from a more concentrated bedload layer, or from any combination of the two.

To identify what primarily controls bedload near the threshold of motion, we now reinterpret
the erosion-deposition model in the neighborhood of the critical Shields parameter.

Let us first consider the entrainment of a particle initially at rest. The flow applies a viscous
drag fν on the particle, while the bed friction opposes the drag. When the particle gets entrained, the
viscous drag is proportional to the fluid velocity u with respect to the particle velocity Ve:

fν ∼ ρ ν d2
s (u − Ve). (5)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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Cross-stream bedload diffusion

qd

qd

qs

cross-stream diffusive flux :  qd = − ℓd

gradient of streamwise flux

diffusion length  ≈ 0.03 ds

∂qs

∂y

Seizilles et al. [2014]



Cross-stream gravity flux

cross-stream gravity flux :  qg = α qs
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Equilibrium condition in an active channel
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At equilibrium : qs ∝ eD/λ
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correction is insignificant where sediment transport is mea-
surable. Accordingly, we content ourselves with the
approximate expression of Eq. (4).
Plotting the intensity of the sediment flux as a function of

the force driving it, in the form of the Shields parameter θ,
shows a well-defined threshold [Fig. 4(a)]: no grain moves
when the fluid-induced stress is too weak to overcome its
weight, but the sediment flux increases steeply past this
threshold. This emblematic behavior, apparent in a single
experimental run, is confirmed by the superimposition of our
five experimental runs [Fig. 4(a)]. Indeed, within the vari-
ability of themeasurements, the five corresponding transport
lawsgather around a common relation,whichwemay treat as
linear above the threshold Shields stress θt [26]:

qs ¼ q0ðθ − θtÞ; ð5Þ

where q0 is a constant of order ðρ − ρsÞg=η. Fitting
this transport law to our complete dataset, we get q0 ¼
544$ 48 grains s−1 cm−1 and θt ¼ 0.167$ 0.003, where

the uncertainty is the standard deviation over individual runs.
These values correspond to a typical transport law in a
laminar flow [2,26].
The local intensity of the flow-induced stress controls the

local flux of sediment—just as expected. More surprisingly,
perhaps, the sediment bed needs to adjust its shape so that,
in total, the flume conveys the sediment discharge that we
impose at the inlet. We suggest that it does so by balancing
the Fickian flux qd, which pushes the traveling grains away
from the flume’s center, with the gravity-induced flux qg,
which pulls them towards the lowest point of the bed’s
surface. As a first approximation, we may assume that the
latter is proportional (i) to the cross-stream slope of the bed
and (ii) to the local intensity of the downstream flux of
sediment qs. Mathematically,

qg ¼ −αqs
∂h
∂y ; ð6Þ

where α is a dimensionless constant. Although conducted
in air, the experiments of Chen et al. [21] suggest that it
should be of order unity or less.
At equilibrium, the gravity-induced flux qg needs to

match the Fickian flux qd. Adding Eqs. (6) and (1) yields
the Boltzmann equation, which we readily integrate into an
exponential distribution:

qsðyÞ ¼ q0 exp
!
−
hðyÞ
λB

"
; ð7Þ

where q0 is an integration constant, and λB ¼ ld=α is the
characteristic length of the distribution. Distinctively, this
distribution relates two quantities (qs and h) that depend on
the space coordinate y, but the latter does not explicitly
appear in its expression. This, however, does not make it a
local relationship: unlike the transport law of Eq. (5), it
features an integration constant which depends on the sedi-
ment and water discharges of each experiment. These
properties, typical of a Boltzmann distribution, appear when
plotting the bed elevation as a function of the sediment
discharge [Fig. 4(b), inset]. For each experiment, the data
points trace twice the same line in the semilogarithmic space,
as they go from one side of the channel to the other, but the
position of this line depends on the experimental run.
To bring all our experiments into the same space, we now

divide Eq. (7) by its geometrical mean. This rids us of
the integration constant q0, and turns the distribution of
sediment transport into

qsðyÞ
hqsig

¼ exp
#
−
hðyÞ − hhia

λB

$
; ð8Þ

where h·ig and h·ia are the geometric and arithmetic means,
respectively. Within the variability of our observations, the
data points from all experimental runs gather around a

(a)

(b)

FIG. 4. (a) Local sediment transport law. Marker types indicate
individual experimental runs. Solid line: Experimental run no. 1.
Dashed black line: Equation (5) with q0 ¼ 544 grains s−1 m−1

and θt ¼ 0.17. (b) Distribution of sediment flux with respect to
bed elevation. Colors and markers similar to (a). Dashed black
line: Bolztmann distribution [Eq. (8)] with λB ¼ 0.10 mm.
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Boltzmann equilibrium

damping length  λ ∼ 0.12 dS

Abramian et al. [2020]

At equilibrium : qs ∝ eD/λ



Gravity vs diffusion
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Cross-stream diffusion of momentum

u = 0

∂yu = 0z
y

u(y, z)

∂yyu + ∂zzu = − gS
ν

Stokes equation : 

velocity slope

viscosity

orientation of 

the bed surfaceweight of 


water column

(shallow water)

cross-stream 
diffusion of 
momentum

D(y) ϕ

for large aspect ratios  → τ = ρgS (D + 1
3 (D3)′ ′ ) cos ϕ

Devauchelle et al. [2021], Popovic et al. [2021]
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W, over the entire length of the tank, L ∼ 2 m, by exchanging
sediment at a rate Qs ∼ 100 grains s−1 with the bed. A simple
scaling analysis yields T ∼ L2WS/(d3

s Qs) ∼ 5 h, consistent with
typical transients in the experiments. The exact duration of the
transient depends on the initial setup of the experiment and can
be shortened by, for example, setting the initial inclination of the
tank close to the steady-state slope of the river. After reaching
steady state, the river transports as much sediment along its
bed as is delivered by the sediment feeder. Sediment travels as
bedload—grains roll, slip, and bounce on the sediment bed. The
river channel typically appears to be roughly straight with only
minor sinuosity, and, once formed, it does not move significantly.
Moreover, the steady-state river is insensitive to the initial setup
of the experiment—it selects its own width, W, depth, Dmax, and
downstream slope, S, regardless of the initial conditions. Beyond
a certain value of sediment discharge (about Qs ≈ 90 grains s−1),
the channel destabilizes into intertwined threads that form a
braided river. The range of Qs explored in these experiments
covered the entire range of sediment discharge for which a stable
single-thread river can form.

To characterize the shape of these experimental rivers,
Abramian et al. (19) measured the sediment bed elevation along
a cross-section with a laser sheet. They constantly monitored
the river using an overhead camera and tracked the trajectories
of moving colored grains, which allowed them to measure the
profile of sediment flux, qs , across the river (to avoid possible
confusion, we emphasize here that the sediment discharge,
Qs , is the integral of the sediment flux, qs , over the cross-
section of the river). We show two rivers and their sediment
flux profiles in Fig. 2; profiles for the other runs are shown
in SI Appendix, Fig. S1 and their properties are summarized
in SI Appendix, Table S2. Most sediment concentrates near the
channel center over a well-defined bed section of width WT . We
define this transport width, WT , as the width that relates the
sediment discharge and the mean sediment flux, Qs = WT 〈qs〉.
To make WT a robust quantity resistant to experimental noise,
we define 〈qs〉 to be the average sediment flux over a probability
density function qs/Qs , so that

〈qs〉 ≡
1
Qs

∫ W/2

−W/2

q2
s (y)dy . [1]

Fig. 3 and SI Appendix, Fig. S2 illustrate how the characteris-
tics of laboratory rivers change as the sediment discharge, Qs ,
increases: The rivers become wider, shallower, and steeper and
transport sediment more intensely.

The Mechanisms That Shape a River
Keeping in mind the rivers of Abramian et al. (19), the goal of
the present paper is to understand how an active laminar river
adapts its own depth and sediment flux profiles, D(y) and qs(y),
to the fluid and sediment discharges, Qw and Qs , it carries. In this
section, we start by reviewing the equations that govern the flow
and the transport of sediment in such a river. Throughout this
paper, x represents the downstream, y the cross-stream, and z the
vertical coordinate, measured with respect to the surface of the
river (Fig. 2A). We restrict our attention to a straight river that is
uniform in the x direction. Accordingly, we need to consider its
cross-section only in the (y , z ) plane.

Stokes Flow. In a straight river, the flow is forced by gravity that
pushes the fluid down a slope, S. This slope is usually very small
[for the experiments of Abramian et al. (19), S ∼ 0.01]. The
laminar flow in such a river obeys the Stokes equation

ν∆u = −gS , [2]

where u is the downstream component of the velocity, g =
9.81 m s−2 is the gravitational acceleration, S is the slope in the
downstream (x) direction, and ∆≡ ∂2

∂y2 + ∂2

∂z2 is the Laplacian
operator in the (y , z ) plane. The boundary conditions are that
the velocity vanishes on the bed (u = 0 when z = −D) and that
there is no shear stress on the free surface (∂u/∂z = 0 when
z = 0).

The term gS in Eq. 2 is the force driving the fluid flow. In the
experiments, the slope is not prescribed a priori. Instead, the river
selects it while forming its own bed. It depends on the river’s

A

C

B

D

Fig. 2. (A and B) River cross-sections from the experiments of Abramian et al. (19) (brown line) and the present model (blue lines). Aspect ratio is preserved.
(C and D) Corresponding sediment !ux pro"les, qs(y), for the experiments (red lines) and our model (blue lines). A and C correspond to an inert river (no
sediment discharge, Qs = 0), while B and D correspond to an active one (sediment discharge Qs ≈ 44 grains s−1). The transport width, WT = Qs/〈qs〉, with
〈qs〉 given by Eq. 1, and the maximum sediment !ux, qs,max, are marked with arrows in D. The downstream slope, S, could not be measured accurately, but
it is approximately S ≈ 0.005 for the inert river and S ≈ 0.01 for the active one.

Popović et al.
Sediment load determines the shape of rivers

PNAS 3 of 11
https://doi.org/10.1073/pnas.2111215118
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A B

C D

Fig. 3. River properties as a function of the sediment discharge, Qs, normalized by the characteristic discharge, Q∗
s ≈ 74 grains s−1, given by Eq. 23.

Red dots represent the experiments (error bars estimated in SI Appendix, section S1). Blue lines represent the numerical solutions to Eq. 13 using the
experimental parameters (SI Appendix, Table S1). Light blue shading corresponds to the uncertainty in the parameter estimates (SI Appendix, Table S1).
The numerical solutions transition from the weak transport regime (black dotted line) to the Parker regime (black dashed line) when Qs ∼ Qs,t ≈
8.6 grains s−1 (Eq. 29). (A) River aspect ratio, W/Dmax. The weak transport regime assumes a !xed bed shape so the aspect ratio is constant. (B)
Downstream slope, S. The slope is too small for direct measurement. As in A, the !xed bed shape in the weak transport regime leads to a constant
slope, while the Parker regime follows from Eq. 24. (C) Normalized maximum sediment "ux, qs,max/qµ, where qµ is the prefactor of the sediment
transport law (Eq. 7). The weak transport regime corresponds to Eq. 27 while the Parker regime corresponds to Eq. 19. (D) Transport width, WT ≡
Qs/〈qs〉, normalized by the total width, W. The weak transport regime corresponds to Eq. 28, while the Parker regime follows from Eqs. 19, 20,
and 24.

discharges and we cannot prescribe it arbitrarily. Importantly,
the Stokes flow is scale invariant—the flow in two channels of
a different size but the same shape looks the same, and one
can find one from the other by simple rescaling of lengths and
velocity.

If we can find the velocity in the channel by using Eq. 2, we
can also get the stress, τ , shearing the bed surface. This stress is
proportional to the gradient of u in the direction normal to the
bed surface, with the dynamic viscosity, ρf ν, acting as a constant
of proportionality. To get an idea of how the stress depends on the
channel shape, we integrate Stokes law, Eq. 2, along the vertical
direction and find an equation for τ :

τ =
(
ρf gSD + ρf ν(ūD)′′

)
cosφ, [3]

ū ≡ 1
D

∫ 0

−D

udz , [4]

where primes denote y-derivatives, ū is the vertically averaged
flow velocity, and φ is the angle between the vector normal to the
bed’s surface and the vertical (see SI Appendix, section S2.1 for a
detailed derivation). Eq. 3 follows without approximation from
the Stokes equation. The first term of Eq. 3, ρf gSD , is simply

proportional to the weight of the water column. It corresponds
to the stress that the fluid would exert on a perfectly flat surface.
It ignores the transfer of momentum across stream and we call
it the “shallow-water component,” in reference to the celebrated
shallow-water approximation. The second term, ρf ν(ūD)′′, ac-
counts for the viscous transfer of momentum across the stream
(along y), and we call it the “momentum diffusion component.”
Finally, the term cosφ accounts for the orientation of the bed
surface. Eq. 3 is not closed–to find τ , we still need to solve the
Stokes equation for u to get the vertically averaged velocity, ū .
Since we hope to bypass the solution of the Stokes equation, Eq.
3 is not very useful in its present form; we will, however, close
it by assuming the river is much wider than it is deep (Boundary
Value Problem).

Sediment Transport. If the forces acting to dislodge sediment
grains are too weak, the grains remain trapped on the river bed,
and there is no sediment transport (24). The existence of this
threshold force is an instance of Coulomb’s law of friction (17).

On a flat bed, the fluid acts tangentially to the bed surface,
dislodging the grains, while gravity acts normally, anchoring the
grains to the bed. In such a case, the sediment flux depends on
the so-called Shields parameter, θ, which is proportional to the

4 of 11 PNAS
https://doi.org/10.1073/pnas.2111215118
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Fig. S1. Depth and sediment profiles for all experiments of Abramian et al. (1). The left column are the measured (brown lines) and modeled (blue dashed lines) depth profiles.
The right column are the measured (red lines) and modeled (blue lines) sediment flux profiles.
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Fig. S2. Comparison of various river properties in dimensional units between our model and experiments of Abramian et al. (1). Slope in panel (c) is estimated using Eq. S1.
We only show the weak transport regime for the properties related to the sediment flux.
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Fig. S1. Depth and sediment profiles for all experiments of Abramian et al. (1). The left column are the measured (brown lines) and modeled (blue dashed lines) depth profiles.
The right column are the measured (red lines) and modeled (blue lines) sediment flux profiles.
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Waving hand explanation

• As the river widens, the force exerted on the grains saturates to a value 
about 20% higher than the threshold of entrainment. 


• Rivers self organize near the threshold of sediment transport.

• Saturation of force  → saturation of maximum sediment flux 

• The river widens to transport more sediment.
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Fig. S2. Comparison of various river properties in dimensional units between our model and experiments of Abramian et al. (1). Slope in panel (c) is estimated using Eq. S1.
We only show the weak transport regime for the properties related to the sediment flux.
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for appropriately large aspect ratios. It is tested by using the observed values of 0 
and B* to calculate R from (37) and then comparing this with the observed value of R, 
as is done in figure 10. While considerable scatter is present, rough confirmation of (33) 
and (34) is obtained. It is of interest to note that  the laboratory data, although of a 
scale that  differs vastly from that  of the field data, fit in among the latter in the 
dimensionless plots. 
The load relation (35) has not been tested owing to its illustrative nature and to a 

lack of field data. 
These regime relations can be used to derive dimensionally homogeneous down- 

stream relations for the hydraulic geometry of gravel streams (Parker 1978). 

1 1. Conclusion 
The concept of lateral transfer of downstream momentum by turbulent diffusion 

embodied in the work of Lundgren &, Jonsson (1964) has been used together with 
singular perturbation techniques to explain the coexistence of stable banks and 
mobile beds in straight reaches of coarse gravel rivers. The analysis has been used to 
obtain rational regime relations for such reaches. 
Points which deserve further attention are the use of more accurate closure as- 

sumptions, a treatment of secondary currents in straight channels, and the inclusion 
of sediment gradation effects. 

J .  Fluid Mech. (1978), WOE .  89, part 1 ,  p p .  127-146 
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Self- formed straight rivers with equilibrium banks and 
mobile bed. Part 2. The gravel river 

By GARY  PARKER  
Department of Civil Engineering, University of Alberta, 

Edmonton, Canada T6G 207 

(Received 26 May 1977 and in revised form 3 March 1978) 

Rivers are capable of transporting their own bed material without altering their 
width. However, a naive extension of the threshoId theory of canals in coarse alluvium 
to straight reaches of gravel rivers leads to the stable-channel paradox: transport of 
bed material is incompatible with a stable width. In  this paper singular perturbation 
techniques are used to obtain a bed stress distribution which allows a mobile bed but 
immobile banks a t  bankfull or dominant discharge. This result is used to obtain 
regime relations for straight rivers with bed and banks composed of coarse gravel. 
The analysis, although dependent on a series of approximate assumptions for 

Reynolds-stress closure and sediment transport, provides reasonable agreement with 
data. 

1. Introduction 
Alluvial rivers possess channels that  are self-formed by the interaction of water 

and sediment. They thus present a novel fluid flow problem in which one is asked to 
determine not only the flow in a given ‘container’, but also the geometry of the 
‘ container ’ itself. 
The general problem is the prediction of stable, morphologically active river 

channels, i.e. a channel that  can transport most of the available sizes of its own bed 
material without immediately eroding or narrowing its banks. I n  part 1 (Parker 1978) 
the case of the suspendable sand-silt channeI was analysed, and stable channels were 
delineated in terms of a dynamic equilibrium between bank erosion and bank de- 
position. The present paper analyses the case of channels in which the bed and banks 
are composed of gravel of sufficient coarseness to preclude its suspension. It is shown 
that  the banks can induce a lateral redistribution of stress such that  the bed is mobile, 
although the banks are in static equilibrium. 

2. Natural coarse-gravel rivers 
A description of some of the salient features of rivers with a coarse-gravel bed and 

banks provides a basis for abstraction to a realistic but tractable model. The Athabasca 
River near Fort Assiniboine, Alberta, illustrated in figure 1 (plate 1),  provides an 
example of a large (mean discharge is 310 m3/s) river in coarse gravel. An analysis of 
the hydraulic and morphologic characteristics of this reach has been performed by 
Neil1 (1973). Both the bed and the banks are composed essentially of very coarse 
gravel. From bar samples it was found that  D,, (sediment equivalent diameter such 

G. Parker [1978]

Why is momentum diffusion so important ?



Take home messages

• Laboratory rivers construct their bed 
near the threshold of entrainment 


• Result of the combination of 2 
diffusion processes.

gravity • Diffusion of bedload particles
diffusion

gravity

• Diffusion of momentum 
active channel 

above threshold

inert bank at threshold
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Box 1: The threshold of motion constrains fluid stress through channel geometry977

Box 1. The threshold of motion constrains fluid stress through channel geometry. a| Hydrograph for the Mameyes River
(USGS gage 50065500) normalized by the threshold of motion. Due to frequent storms and steep topography the Mameyes
floods frequently, note the occurrence of four bankfull floods (dashed and dotted lines) within two months during the dry
season. b| Probability density functions (PDF) for discharge (blue squares) and shear stress (red circles) normalized by the
threshold of motion (vertical dashed line) for Water years 1995-2020. The peak in each PDF represents baseflow, values greater
than one indicate flows capable of transporting the bed material, and the highest flows are primarily hurricanes (red symbol) at
values of 20Qc (3tc). Discharge beyond baseflow is well described by a power law with slope of �5/2, while shear stress
contains a subtle scaling break at approximately tc. The inset shows t/tc on a semi-log plot where a straight line represents an
exponential function. c| Cross section of the Mameyes River227, 228 with the approximate location of the threshold (tc) and
bankfull indicated. d| Relations between depth and discharge (blue line) and width (gray points). These data share the same
vertical depth scale as the cross section. The relation between depth and width is informative in understanding the relation
between depth and discharge. Depth increases rapidly initially but gives way to increases in width as the cross section expands.
e| Photograph of the section of the Mameyes River downstream of the gaging station where the cross section was measured
(wetted width is 12 m across).

Box 2: Application of the near-threshold model978

Box 2 | Given an imposed water (Q) and sediment (Qs) discharge, the bankfull geometry of a natural channel can be designed979

with the threshold-limited model through the following five relations. Conservation of mass for the fluid yields the bankfull980

discharge:981

Qb f =Ub f Hb fWb f , (1)982
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Mameyes river, Puerto-Rico Phillips et al. [2016, 2022]
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Do alluvial rivers obey the Boltzmann-like 
equilibrium condition ?

data : Liu (2008)



Do alluvial rivers obey the Boltzmann-like 
equilibrium condition ?



Do alluvial rivers diffuse momentum in the 
cross-stream direction ?

• flat river bed 

• curved depth-averaged velocity profile


→ cross-stream diffusion of momentum

(Popović et al., sub)

016604-8 Chauvet et al. Phys. Fluids 26, 016604 (2014)
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FIG. 7. Comparison of the depth-averaged momentum balance (solid curve) with the ADCP measurements (dots). Equation
(18) is represented with U∞ ≈ 1.2 m s−1 and Lt ≈ 14 m fitted to the data.

D. Comparison with field data

We now proceed to compare the estimates of the cross-stream flux of momentum to our field
measurements in the Seine river. Equations (15) and (17), with the requirement that the velocity
vanishes at the banks, share the following analytical solution:

Ux = U∞

√

1 − cosh (y/Lt )
cosh (w/(2Lt ))

, (18)

where

U∞ =
√

g H S
C f

. (19)

The diffusion length Lt determines the inflection of the velocity profile near the banks. Its mathe-
matical expression depends on the cross-stream diffusion model

Lt = H

√
B
2

(no secondary flow, Eq. (15)) (20)

Lt = H

√
Cd

2C f
(with secondary flow, Eq. (17)). (21)

We evaluate the parameters U∞ ≈ 1.2 m s−1 and Lt ≈ 14 m by fitting Eq. (18) to the data
(Figure 7). The resulting shape of the velocity profile accords reasonably with the data.

Since the slope of the Seine river in Paris is about 10−4, we find Cf ≈ 0.0042 ± 0.0001, which
is consistent with classical empirical formulas.33, 34 The estimation of U∞, and therefore of Cf, is
virtually independent from the value of the diffusion length Lt.

Based on our estimate of Cf and on relations (20) and (21), we can calculate the diffusion length
for the two diffusion models

Lt ≈ 4.8 ± 0.1 m (no secondary flow), (22)

Lt ≈ 3.7 ± 0.6 m (with secondary flow). (23)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
194.254.225.241 On: Wed, 12 Feb 2014 15:24:18

Chauvet et al. [2014]
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Stability of alluvial rivers ?

tra
ns

iti
on

single thread braided river

flow discharge = 1 l/min



Suisse

500 m

Stability of alluvial rivers ?



Suisse

500 m

1300 m

flow

chinese Tian-Shan

Stability of alluvial rivers ?


