Anemometry on barchan sand dunes

Member of Qatar Joundation

Weill Cornell Medical College in Qatar

http://grainflowresearch.mae.cornell.edu

with Renee Richer, Anthony Hay, Alexandre Valance, Ahmed Gueled, Patrick Chasle, Jin Xu, Jiannong Fang

Wind and transport

$$u = \frac{u^*}{\kappa} \ln\left(\frac{z}{z_0}\right)$$

long-term records showing the Bagnold transition to transport

Surface shear stress

The conventional view of longitudinal shear stress profiles

Kroy, Sauermann and Herrmann, PRE 66 & PRL 88 (2002)

Jackson & Hunt (1975) theory

Excursion in shear stress

$$\frac{\hat{\tau}}{\rho u^{*2}} = B h'(x) + A \int_{-\infty}^{+\infty} h'(x-\xi) \frac{\mathrm{d}\xi}{\pi\xi}$$

Dune surface elevation h(x, y)

A and B are functions of
$$\frac{\lambda_x}{z_0} = \frac{2\pi}{k_x z_0}$$

Kroy, Sauermann and Herrmann, PRL 88 (2002)

Anomalous peak of shear velocity at the brink

shear velocity
$$u^* = \sqrt{\frac{ au}{
ho}}$$

Jackson & Hunt captures u^* evolution qualitatively

Large-eddy simulations (LES)

Jiannong Fang and Fernando Porte-Agel

- they do not have a local maximum ahead of the crest, as predicted by Jackson & Hunt;
- they have no anomalous u^* at the brink;
- they return to upstream u_{∞}^* ahead of the line joining the dune horns;
- they do not have a significant flow reversal behind the avalanche face.

LES surface boundary condition

at first grid point,
$$u(z = \delta_z) = \frac{u^*}{\kappa} \ln\left(\frac{\delta_z}{z_0}\right)$$

surface shear stress $\tau_0 = \rho u^{*2}$

inertial inner layer thickness ℓ

• $\ln z_0$ varies on dune

inner layer not resolved

could one use the Jackson & Hunt BC instead?

issues

$\ln z_0$ can be $\ll \ln(d/30)$

Nikuradse (1931) measurements in a roughened pipe suggest that d/30 is the minimum value of z_0

distance along transect (m)

 u^* (and $\ln z_0$) evolve on topography Jackson & Hunt captures trends qualitatively there is an anomalous peak of u^* at the brink Bagnold's focal point predicts transport transitions in u^* and $\ln z_0$ LES boundary conditions need repair