Anemometry on barchan sand dunes

http://grainflowresearch.mae.cornell.edu
with Renee Richer, Anthony Hay, Alexandre Valance, Ahmed Gueled, Patrick Chasle, Jin Xu, Jiannong Fang

Wind and transport

Ultrasonic anemometers

turbulent core

$u=\frac{u^{*}}{\kappa} \ln \left(\frac{z}{z_{0}}\right)$

shear velocity

$$
u^{*}=\sqrt{\frac{\tau}{\rho}}
$$

inertial inner layer thickness ℓ

$$
\frac{\ell}{\lambda \kappa^{2}} \ln ^{2}\left(\frac{\ell}{z_{0}}\right) \sim o(1)
$$

Log-law in the turbulent core

$$
u=\frac{u^{*}}{\kappa} \ln \left(\frac{z}{z_{0}}\right)
$$

long-term records showing the Bagnold transition to transport

Surface shear stress

The conventional view of longitudinal shear stress profiles

Jackson \& Hunt (1975) max shear stress before peak

[^0]
Jackson \& Hunt (1975) theory

Excursion in shear stress

$$
\frac{\hat{\tau}}{\rho u^{* 2}}=B h^{\prime}(x)+A \int_{-\infty}^{+\infty} h^{\prime}(x-\xi) \frac{\mathrm{d} \xi}{\pi \xi}
$$

Dune surface elevation $h(x, y)$

$$
A \text { and } B \text { are functions of } \frac{\lambda_{x}}{z_{0}}=\frac{2 \pi}{k_{x} z_{0}}
$$

$$
\frac{\overline{\hat{\boldsymbol{\tau}}}}{\rho u^{* 2}}=\frac{A k_{x}^{2}+i B k_{x}\left|k_{x}\right|}{\sqrt{k_{x}^{2}+k_{y}^{2}}} \bar{h}
$$

Anomalous peak of shear velocity at the brink

$$
\text { shear velocity } u^{*}=\sqrt{\frac{\tau}{\rho}}
$$

Jackson \& Hunt captures u^{*} evolution qualitatively

Large-eddy simulations (LES)

LES predictions

LES capture the general trend in u^{*} / u_{∞}^{*}, but ...

anomalous peak

flow reversal

- they do not have a local maximum ahead of the crest, as predicted by Jackson \& Hunt;
- they have no anomalous u^{*} at the brink;
- they return to upstream u_{∞}^{*} ahead of the line joining the dune horns;
- they do not have a significant flow reversal behind the avalanche face.

LES surface boundary condition

inertial inner layer thickness l
issues

- $\ln z_{0}$ varies on dune
- inner layer not resolved
could one use the Jackson \& Hunt BC instead?

$\ln z_{0}$ can be $\ll \ln (d / 30)$

$\ln z_{0}$ can be $\ll \ln (d / 30)$

Nikuradse (1931) measurements in a roughened pipe suggest that $d / 30$ is the minimum value of z_{0}

Conclusions

$u^{*}\left(\right.$ and $\left.\ln z_{0}\right)$ evolve on topography
Jackson \& Hunt captures trends qualitatively
there is an anomalous peak of u^{*} at the brink
Bagnold's focal point predicts transport transitions in u^{*} and $\ln z_{0}$
LES boundary conditions need repair

[^0]: Kroy, Sauermann and Herrmann, PRE 66 \& PRL 88 (2002)

