
GEOMETRY AND TOPOLOGY OF PARTICLE 
CLUSTERING IN TURBULENT FLOWS

Pablo D. Mininni
Departamento de Física, FCEyN, UBA e IFIBA, CONICET-UBA

S. Angriman (UBA), C. Reartes (UBA), F. Zapata (UBA), P. Cobelli (UBA), 
M. Obligado (Grenoble), M. Bourgoin (ENS-Lyon)

FLiP



Perron y Sura 
(2013): 

Non-Gaussianity
in climatology

FROM LARGE TO SMALL SCALES



Pearson and Fox-Kemper, 
PRL (2018): energy 
dissipation in oceanic 
models is strongly 
localized.



CAT over the Drake passage:

Rodriguez Imazio, 
Dörnbrack, Delgado Urzua, 
Rivaben & Godoy, JGR 
Atmospheres (2022).



PARTICLE LADEN FLOWS IN GEOPHYSICS
• Turbulent flows in geophysics 

are inhomogeneous and 
anisotropic.

• Particles are often treated as 
Lagrangian tracers, or as 
continuous fields.

• Even with the growth of 
computing power, ensembles 
of runs are needed, and 
descriptions should be 
statistical.

• How to improve descriptions 
of particle laden flows in this 
context? What are the 
minimal ingredients?

Wagner et al., J. Phys. Ocea Oceanography (2019).



The Feynman Lectures on Physics, Vol. 2, 1966



PARTICLES AND DYNAMICS

• How to improve descriptions of particle laden flows in this 
context? Can we see particles in a 3D time-evolving phase space?

• Can we derive probabilistic descriptions for their evolution?
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v̇ = F [u(x, t)]



• Landau model and the path to turbulence 
through bifurcations (1944).

• Lorenz model and atmospheric 
convection (1963).

GEOMETRY AND TOPOLOGY
Local versus global properties

forcingconservative terms



EXPERIMENTS AND SIMULATIONS



THE VON KARMAN FLOW
An inhomogeneous and anisotropic flow 
if we consider the entire domain!





NUMERICAL 
SIMULATIONS

• GHOST: 
https://github.com/pmininni/
GHOST

• SPECTER: 
https://github.com/mfontanaar
/SPECTER

• VAPOR (NCAR): 
https://www.vapor.ucar.edu/

https://github.com/pmininni/GHOST
https://github.com/mfontanaar/SPECTER
https://www.vapor.ucar.edu/


LAGRANGIAN TRACERS
Angriman, Mininni & Cobelli, PRF (2020)

• Flow geometry and topology affect Lagrangian statistics.

• Velocity and acceleration spectra compare well between experiments and simulations.



INERTIAL PARTICLES
Angriman, Mininni & Cobelli, PRF (2020)

• Flow geometry and topology also affect inertial particles statistics.

• Neutrally buoyant particles (a = 30h) against point particles with effective Stokes number.



PREFERENTIAL 
CONCENTRATION

Journal of Turbulence 297

Figure 2. (a) Example of raw image of water droplets in the active-grid-generated turbulence.
(b) Corresponding Voronoı̈ diagram and detected clusters.

found that (1) Reynolds and Stokes number effects essentially influence small and highly
concentrated areas (left tail of the PDFs in Figure 3(a)) while large and depleted areas (right
tail) remain independent of Reynolds and Stokes numbers and (2) the centred–reduced PDFs
of log (V) are well approximated by a Gaussian distribution, suggesting that Voronoı̈ area
distributions are close to log-normal. Finally, Figure 4 shows how σV varies with the particle
Stokes number St. We recall that the standard deviation of 2D Voronoı̈ cells for an RPP can
be obtained analytically, being σ RPP

V = 0.53. Higher values of σV indicate the presence of
clustering, and the higher σV the stronger the clustering. Figure 4 shows that clustering in
active grid experiments is significantly more intense than what was observed in previous
measurements by Monchaux et al. [15] at lower Reynolds numbers. Interestingly, though
σV changes by less than 10% over the different active grid experiments, the present data-set
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Obligado, Teitelbaum, Cartellier, Mininni & Bourgoin, JoT (2014).

• Flow geometry and topology affect particle acumulation.

• Point particles with more inertia than the fluid (St > 1) tend 
to accumulate in points with zero Lagrangian acceleration 
(Coleman & Vassilicos 2009; Obligado, Teitelbaum, 
Cartellier, Mininni & Bourgoin 2014, Angriman et al 
2022), particles with less inertial (St > 1) accumulate in 
points with low vorticity.

• Small and inertial particles do not cluster (Fiabane et al. 
2013), but the dynamics depends on many parameters.



TAYLOR SCALE PARTICLES IN THE VK FLOW

PDFs of 3D Voronoï volumes 
compared against a Random 
Poisson Process (RPP).

One parameter (St) is not enough 
to describe the problem!

Angriman, Ferran, Zapata, Cobelli, Obligado & Mininni, JFM (2022)
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Reynolds number

<latexit sha1_base64="XVY4uGIZ1PWzLXdhln33GmE/0mY="></latexit>

@u

@t
+ u ·ru = �rp+ ⌫r2u+ F

HELICITY

<latexit sha1_base64="YUfdIv9OqhUfJi5EyahPJggqziE=">AAACCnicbVDLSsNAFL2pr1pfUZduRovgqiSlqBuhKILLCvYBTSyT6aQdOnkwMxFKyNqNv+LGhSJu/QJ3/o3TNgttPXDhcM693HuPF3MmlWV9G4Wl5ZXVteJ6aWNza3vH3N1rySgRhDZJxCPR8bCknIW0qZjitBMLigOP07Y3upr47QcqJIvCOzWOqRvgQch8RrDSUs88vEYXyPEFJqmdpdUMOSxUKHU8HyXZfRX1Wz2zbFWsKdAisXNShhyNnvnl9COSBDRUhGMpu7YVKzfFQjHCaVZyEkljTEZ4QLuahjig0k2nr2ToWCt95EdClz5kqv6eSHEg5TjwdGeA1VDOexPxP6+bKP/cTVkYJ4qGZLbITzhSEZrkgvpMUKL4WBNMBNO3IjLEOhel0yvpEOz5lxdJq1qxTyu121q5fpnHUYQDOIITsOEM6nADDWgCgUd4hld4M56MF+Pd+Ji1Fox8Zh/+wPj8Ab9QmQ0=</latexit>

E =
1

2

Z
u2dV

<latexit sha1_base64="GgIUsMVNfetuu7apjhBq/BKiYoA=">AAACGXicbVDLSgMxFM3UV62vUZdugkVwIWVGiroRim66rGAf0BlKJpNpQzPJkGSEMvQ33Pgrblwo4lJX/o2ZdhbaeiHkcM693HNPkDCqtON8W6WV1bX1jfJmZWt7Z3fP3j/oKJFKTNpYMCF7AVKEUU7ammpGeokkKA4Y6Qbj21zvPhCpqOD3epIQP0ZDTiOKkTbUwHaa8Bp6lGuYeUEE0yn0cCg09ALBQjWJzZd5IiZDZJQzGHYGdtWpObOCy8AtQBUU1RrYn14ocBoTrjFDSvVdJ9F+hqSmmJFpxUsVSRAeoyHpG8hRTJSfzS6bwhPDhDAS0jzjccb+nshQrHKXpjNGeqQWtZz8T+unOrryM8qTVBOO54uilEEtYB4TDKkkWLOJAQhLarxCPEISYW3CrJgQ3MWTl0HnvOZe1Op39WrjpoijDI7AMTgFLrgEDdAELdAGGDyCZ/AK3qwn68V6tz7mrSWrmDkEf8r6+gG2Xp+J</latexit>

H =

Z
u · ! dV

<latexit sha1_base64="Wreqkm6sV9Pcp7811+glVkSnYrM=">AAACBXicbVA9SwNBEN2L3/EraqnFYhCswp0EtRGCNhYWKp4KuRD2NnPJkr29Y3dODMc1Nv4VGwtFbP0Pdv4bNzGFXw8GHu/NMDMvTKUw6LofTmlicmp6ZnauPL+wuLRcWVm9NEmmOfg8kYm+DpkBKRT4KFDCdaqBxaGEq7B/NPSvbkAbkagLHKTQillXiUhwhlZqVzYChFvUcX4OBT2gQaQZz/2TIg9UVrQrVbfmjkD/Em9MqmSM03blPegkPItBIZfMmKbnptjKmUbBJRTlIDOQMt5nXWhaqlgMppWPvijollU6NEq0LYV0pH6fyFlszCAObWfMsGd+e0PxP6+ZYbTfyoVKMwTFvxZFmaSY0GEktCM0cJQDSxjXwt5KeY/ZINAGV7YheL9f/ksud2rebq1+Vq82DsdxzJJ1skm2iUf2SIMck1PiE07uyAN5Is/OvfPovDivX60lZzyzRn7AefsEwOaYwA==</latexit>

Re =
UL

⌫

Conserved quantities

(global or topological 
quantities, e.g., Moffatt 
1992)

<latexit sha1_base64="NXBO1zL5zIj5qALN7lF4AIfBoqw=">AAACIXicbVDLSgMxFM3UV62vUZdugkVwVWakaDdC0Y3LCvYBnaFkMpk2NJMMSUYoQ3/Fjb/ixoUi3Yk/Y6adhW09EHI4517uvSdIGFXacb6t0sbm1vZOebeyt39weGQfn3SUSCUmbSyYkL0AKcIoJ21NNSO9RBIUB4x0g/F97nefiVRU8Cc9SYgfoyGnEcVIG2lgN7xAsFBNYvNlnojJEE3hLVxSOQqYUT1NY6Jg5gURTKcDu+rUnDngOnELUgUFWgN75oUCpzHhGjOkVN91Eu1nSGqKGZlWvFSRBOExGpK+oRyZYX42v3AKL4wSwkhI87iGc/VvR4Zila9rKmOkR2rVy8X/vH6qo4afUZ6kmnC8GBSlDGoB87hgSCXBmk0MQVhSsyvEIyQR1ibUignBXT15nXSuau51rf5YrzbvijjK4Aycg0vgghvQBA+gBdoAgxfwBj7Ap/VqvVtf1mxRWrKKnlOwBOvnFwLspKU=</latexit>

! = r⇥ u



EXPERIMENTS AND SIMULATIONS



HELICITY AND LINKS

Angriman, Cobelli, Bourgoin, Huisman, Volk, & Mininni, PRL (2022)
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MEASURING HELICITY
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K = ↵H
Angriman, Cobelli, Bourgoin, Huisman, Volk, & Mininni, PRL (2022)



THROUGH THE LOOKING GLASS
• We can quantify 

how long the 
datasets must be to 
reconstruct the 
field topology.

• We can also 
quantify the 
number of 
trajectories needed.

• This is relevant for 
machine learning, 
time series analysis 
and data 
embeddings.



MARKOVIAN PROPERTY OF TRACERS AND PARTICLES

Velocity increments of particles in a turbulent flow satisfy Markovian properties.

This implies they follow a Fokker-Planck equation, which allows the definition of an entropy 
and the verification of integral and detailed fluctuation theorems.

Fuchs, Obligado, Bourgoin, Gibert, Mininni & Peinke, EPL (2022)



ENTROPY AND DETAILED THEOREMS

Fuchs, Obligado, Bourgoin, Gibert, Mininni & Peinke, EPL (2022)
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FIG. 3: Above: (Color online.) Normalized histograms (in
semi-log coordinates) evaluated shortly after the peak of dissi-
pation, for the temperature fluctuations ✓ and for the vertical
component of the velocity, w, for high resolution simulations
of a stratified flow with Froude number Fr ⇡ 0.1 (N = 4)
and Fr ⇡ 0.03 (N = 12). A normal distribution is shown
(inner black curve) as a reference. Below: PDFs of vertical
derivatives for the same quantities. In all cases, the more
strongly stratified flow with N = 12 has larger probability of
developing extreme events, as illustrated by the wider wings
in the PDFs. For the fields themselves, the velocity is more
intermittent than the temperature, and the converse is true
for their vertical derivatives.

Fig. 1 for N > 12. The large negative values of �w can be
interpreted as the signature of strong intermittent bursts.
Note that for larger values of N , although the solutions
become oscillatory, they still display skewness (i.e., they
have a preference towards more negative values of �w).
If the initial conditions are negative (�w, �✓ < 0), the
divergence is delayed by increasing stratification.

The coupling of this evolution to that of the horizontal
velocity damps the run-away evolution of �w (because
of incompressibility) but strong gradients still form (see
[17] for a similar model for non-stratified flows with a pas-
sive scalar, and [18] for rotating flows which display less
extreme events than isotropic homogeneous turbulence).
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FIG. 4: Above: Two-dimensional cuts in a [0, 2⇡]3 box in the
x, z directions for the flow with Fr ⇡ 0.1 (N = 4, top rows)
and Fr ⇡ 0.03 (N = 12, bottom rows). The white segment is
of unit length. The first column corresponds to the tempera-
ture, and the second to the vertical velocity. Note the strata in
the temperature (the more strata, the higher the value of N).
For Fr ⇡ 0.03, sporadic overturning in the vertical cut and
weaker eddies in the horizontal plane are clearly visible. The
flow with stronger stratification is less complex, but extreme
values of the fields and their gradients are higher, leading to
the development of turbulent bursts and localized mixing. Be-
low: Details of some extreme events: Kelvin-Helmholtz (KH)
instability in the velocity field for Fr ⇡ 0.03 (N = 12, top),
eddies in the temperature field for Fr ⇡ 0.1 (N = 4, bot-
tom left), KH instability in the temperature field for N = 12
(bottom right).

Our model can also be extended to consider the e↵ects of
shear in the flow, and results in a stronger amplification
of velocity variations.

This run-away toward strong gradients can be inter-
preted somewhat di↵erently: for a given level of strati-
fication, there exists a scale ` at which strong negative
tails in the velocity fluctuations will occur. For N not too
large, extreme events can develop even at large scale, and
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values of the fields and their gradients are higher, leading to
the development of turbulent bursts and localized mixing. Be-
low: Details of some extreme events: Kelvin-Helmholtz (KH)
instability in the velocity field for Fr ⇡ 0.03 (N = 12, top),
eddies in the temperature field for Fr ⇡ 0.1 (N = 4, bot-
tom left), KH instability in the temperature field for N = 12
(bottom right).

Our model can also be extended to consider the e↵ects of
shear in the flow, and results in a stronger amplification
of velocity variations.

This run-away toward strong gradients can be inter-
preted somewhat di↵erently: for a given level of strati-
fication, there exists a scale ` at which strong negative
tails in the velocity fluctuations will occur. For N not too
large, extreme events can develop even at large scale, and

• Many control parameters 
or dimensionless 
numbers (Reynolds, 
Froude, Richardson, …).

• Waves and eddies.

• Anisotropy

• A huge number of 
degrees of freedom.

Rorai, Mininni & Pouquet PRE 
(2014)



PARTICLES IN STABLY STRATIFIED TURBULENCE



• The Froude and Stokes number 
control whether particles are in 
overdamped or underdamped 
regimes.

• This in turn results in strong 
vertical confinement of the 
particles.
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A SIMILAR PROBLEM: FLOATERS IN SHALLOW WATER





• Flow geometry and topology have a strong 
impact in statistical properties of point 
particles. 

• The von Karman flow is a good testbed for 
many of these ideas, and for calibration of 
particles’ models.

• In many cases, local properties are the 
result of global topological properties, of 
the flow, as is the case in the linking of 
particles’ trajectories, or in accumulation 
of large particles.

• A probabilistic description of velocity 
fluctuations of inertial particles is possible, 
at least for the case of point particles.

• Many of these ideas can be extended to 
stratified flows, or to floaters in free surface 
flows.

OpenAI


