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Permafrost
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Permafrost is defined (by IPA) as ground (soil or rock and included ice or organic material) 
that remains at or below 0°C for at least two consecutive years.

• In the Northern Hemisphere, 
regions in which permafrost 
occurs occupy approximately 
25% (23 million km²) of the land 
area

• The thickness of permafrost 
varies from less than one meter 
to more than 1500 meters.

• Most of the permafrost existing 
today formed during cold glacial 
periods, and has persisted 
through warmer interglacial 
periods, including the Holocene 
(last 10,000 years).
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Arctic Armageddon Needs More Science Less Hype
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Yakutsk, Russia, 2006

Cherski, Russia, 2002

Credit: http://www.globalwarming.org
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Permafrost carbon - climate feedback

Schuur et al., Nature, 2017
Schaefer et al.,ERL, 2014

•

•

The permafrost carbon feedback is the amplification of surface warming 
due to methane emissions from thawing permafrost.
The surface permafrost carbon pool (0 −3 m) is 1,035 ±  150 Pg carbon (1 Pg = 
1 billion tons).
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Carbon sources
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19

doi:10.1038/scientificamericanearth0609-30
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Challenges in climate modeling  
Key challenges
• incorporating

sub-grid scale
processes

• linkage of
scales

• critical
behavior

Global Climate Models

Data-Driven Climate Emulators

Phase transitions in statistical physics

Bifurcations in nonlinear theory

Lucarini, V. Intro to the Statistical Mechanics of Climate. J Stat Phys 179 (2020).
Ghil and Lucarini. The Physics of Climate Variability and Climate Change, Rev Mod Phys 92 (2020).
Sudakow et al. Statistical Mechanics in Climate Emulation: Challenges and Perspectives, Env. Data Sci., 10 (2022).
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What is this talk about?

Ivan Sudakow "Permafrost-atmosphere" interface and criticality 7

The thawing permafrost is a phase transition 
phenomenon  ...on large regional scales ...that depends on 
environmental forcing and other factors. ... mathematical 
models.... to understand the processes on the interface "frozen 
ground-atmosphere" and  ... their criticality. 
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Frame Title
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The Stefan problem for permafrost
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Phase field model
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The Stefan problem
ut = K1∆u, 0 < z < l(t),

ũt = K2∆ũ, l(t) < z < h,

the thawing  transition front:

n · (∇(u(x , y, z, t) − ũ(x , y, z, t))) = QV

KuZZ =
bV
2

ΦZ ,


”The order parameter”: Φ = 

+1, thawing soil
Φ(z),melting front
−1, frozen ground

−V ξ2ΦZ = ξ2ΦZZ + a−1g(Φ)

u

 ũ

The phase field model
Landau,1937
Caginalp, Phys. Rev. A ,1989

ε = a−1/2ξ−1 - a parameter that defines the front width.
Normal thawing front velocity may be found through the
mean curvature flows. 

Ginzburg–Landau formalism - super-conductivity 

Huisken, J. Differential Geom., 1984
Molotkov & Vakulenko, 1988
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The averaged lake growth
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Stochastic effects
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Methane Gun
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Shapes
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The lakes are power-law distributed.The fractal dimension of lakes is 
between 1.6 and 1.7.



Climate Feedback Stochastic models Nonlinear models

Nucleation-and-growth of tundra lakes
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The area fraction φ of the unstable phase is defined by Johnson–Mehl–Avrami–
Kolmogorov (JMAK) equation 

�(t) = 1� ⇢(t) = exp[�1

3
�⇡v4t5]
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The atmosperic dynamics model
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Fluid Velocity:
vt + (v · ∇)v = σ∆v − ∇P + σ1(θ − Θ0)z 

Temperature:
θt + (v · ∇)θ + wΓ = ∆θ − 3αθ

Ct + (v · ∇)C = d∆C − b0
2C

Incompressible fluid:

 ∇ · v =  0
Gas concentration:

Goody’s model is similar to 
Rayleigh−Benard convection except 

that thermal radiative transfer is 
included, thereby altering the basic 

state temperature profile and 
introducing radiative damping.

We consider the motion in the flat  layer Ω defined by
0 < z < h, (x , y ) ∈ Π, where Π is a rectangle .

v − the fluid velocity with the vertical component w;
θ(x , y , z , t) − the temperature field; 
Θ0 − the reference temperature;
P − the pressure; 
σ − the Prandtl number, 
σ1 − the buoyancy parameter;
Γ − a dimensionless adiabatic lapse rate;
α  − absorption of radiation per unit volume. 
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Goody model: gas concentration
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Ct + (v · ∇)C = d∆ C − b0
2C

C (x , y , z , t) − gas concentration;
d − the diffusion coefficient;
−b0

2 describes a natural degradation of gas molecules in the
system due to chemical reactions.

To describe gas influence on fluid circulation, we assume that the
coefficient α depends on C : α = α(C ).
If gas concentration C is small

α ≈ α0 + α1C

α0, α1 − constants;
α1 − a phenomenological coefficient that can be defined by an analysis of
experimental data on gas mass in the system.
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The boundary condition for C describes absence of gas flux at
z = h and gas production at the bottom

Cz (x , y , z , t)|z=h = 0

Cz (x , y , z , t)|z=0 = µ(x , y , θ(x , y , 0, t))

We assume that this flux is inhomogeneous in space and
depends on the temperature.
The function µ describes gas flux intensity at the bottom:

µ(x , y , t) = g(x , y ) exp(−k
V
B

0
θ

)

V0 is a potential barrier, kB is the Boltzmann constant.

Boundary conditions: gas sources
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We consider the circles as the main gas source, we can
assume that

g(x , y , t) = −cg

N∑
i=1

χΩi (t)(x , y)

cg > 0 is a constant, Ωi is a two dimensional domain occupied
by the i-th circle and χV denotes the characteristic function
of the set V : χV = 1 if (x , y) ∈ V and χV = 0 otherwise.
We can assume that Ωi are fixed domains.

Boundary conditions: gas sources
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For simple linear temperature profiles U(y ) the bifurcation is a 
result of a single mode instability.This mode is periodic in x 
with period T = 2π/k .
The instability arises if, for a given k , the real part
rk (b) = Reλk (b) of the eigenvalue λk corresponding to this 
mode goes through 0 as a bifurcation parameter b passes 
through a critical point b = bc .
For b < bc we determine that the trivial zero solution of fluid 
equations is stable, and for b close to bc we find stable 
solutions describing periodical patterns.
For the Marangoni case, an analysis of this system shows that 
the system bifurcates into two steady state solutions, which 
are local attractors.

Control of bifurcations by space inhomogeneities

S. Vakulenko and I. Sudakov. Complex bifurcations in Bénard-Marangoni convection,
J. Phys. A: Math. Theor., 49 424001, 2016.
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Control of bifurcations by space inhomogeneities

• The number of slow modes is 
controllable by the space 
inhomogeneity. 

• These slow modes are associated 
with eigenfunctions of a linear 
operator that describe linearization of 
system.
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We linearize main equations at zero state
v = 0, θ = T0(z),C = C0 for small perturbations θ,C
assuming, for simplicity, that µ is a function of θ and
independent of x , y :

θt = K∆θ − 3α0θ − 3α1CT0

Ct = d∆C − b0
2C

α0, b0 > 0;

We denote by θ the temperature deviation with respect to the base state
T0;

We consider these equations in the layer
Ω = {0 < z < h, x ∈ (−L1, L1), y ∈ (−L2, L2)} and assume that
h << L1, L2.

Extended Goody model
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The simplest boundary conditions

Tz(x , y , z)|z=0 = r0T (x , y , 0)

Tz(x , y , z)|z=h = 0

Cz(x , y , z)|z=h = 0

Cz(x , y , z)|z=0 = βT (x , y , 0)

β = dµ
d

(
θ
θ) |θ=T0(0);

The coefficient r0 is a result of linearization: r0 = dq
dθ

(T0(0)).

The simplest boundary conditions describing a uniform gas
emission.

The last condition means that we consider a simple linear
approximation: emission is proportional to the temperature
deviation.

We have the gas flux inside the system if β < 0.
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Critical level of methane emissions

We obtain an explicit relation for the emission critical value βc 

|βc| ≈
α0

3α1KT0

√
b0/d

The parameter K is thermal diffusivity, K ≈ 0.15 · 10−8m · sec−2

b0
2 defines a rate of the natural greenhouse gas concentration C decay.

b0
2 ≈ 0.3 − 0.5 ∗ 10−9sec−1;

d is the greenhouse gas diffusion coefficient; d ≈ 10−6 − 10−7m2 · sec−1;

Estimates show that methane emission level, that
observed now, should be increased minimum in 103 − 104

(maybe, more) times to attain the critical level
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We derive a nonlinear equation for the surface temperature and show
that, for sufficiently large methane emissions from the soil, the climate
system becomes bistable.
The corresponding pattern is always the same, with our ”toy planet”
sinking slowly into a homogeneous greenhouse gas fog.

Sudakov I, Vakulenko S. Bifurcations of the climate system and greenhouse gas 
emissions // Philos Trans A Math Phys Eng Sci. 2013: 371(1991): 20110473.

Bistable regime
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¶ The processes on the "permafrost  - atmosphere" interface are critical
at all scales.

¶ The complex shape of tundra lakes and phase transitions in there are
important factors of greenhouse gas emission intensity from them.

¶ There is a possible tipping point in atmospheric dynamics resulting
from greenhouse gas emission from tundra lakes, where the climate
system becomes bistable under sufficiently intensive greenhouse
gas emissions.

THANK YOU!
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