Saltation transport on Earth

Alexandre Valance¹, Pascal Dupont¹, Ahmed Ould El Moctar³, Duc Ho¹, Jean-Luc Ralaiarisoa, Jean-Baptiste Besnard¹, Jim Jenkins⁴ and Diego Berzi⁵

- ¹ Université de Rennes, IPR, France
- ² Université de Nantes, LTeN, France
 - ⁴ Cornell University, Ithaca, USA
 - ⁵ Politecnico Milano, Milano, Italy

KITP, Multiphase flows, November 15, 2022

Saltation Transport

Different regimes of transport

• Saltation transport (sand in air, snow in air, sediment in rivers)

A. Valance

Aeolian saltation transport (Bagnold, 1941)

- Aeolian sand : size $d \approx 0.2 \, mm$ and density $\sigma = \rho_{p}/\rho_{air} = 2200$
- Transport mode : Saltation (successive jumps)

Α.	Va	lan	ce

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Dimensionless numbers

- Dimensionless numbers for wind blown on Earth
 - Shields number : $S^* = \rho_f u^{*2}/(\rho_p \rho_f)gd \approx 0.01 0.1$
 - Density ratio : $\sigma = \rho_p / \rho_f \approx 2000$
 - Reduced gravity : $g' = (1 1/\sigma)g \approx g$
 - Particle Reynolds number : $R_{
 ho} = d\sqrt{g'd}/\nu pprox 1$
 - Stokes number : $St = \sigma R_p \approx 2000$
 - Rouse number : $Rouse = v_t/\kappa u^* = St/\kappa\sqrt{\sigma S^*} \approx 10-50$

Outline

• Wind-tunnel experiments : Erodible versus Non-erodible beds

• Impact law at the bed : Erodible versus Non-erodible beds

• Two-phase modeling with two-way coupling

Conclusion

• • • • • • • • • • • •

Wind-tunnel experiments

• 6m wind-tunnel (LTeN, Nantes) (Ho D. PhD thesis, 2012) :

• Sand : $d \approx 0.2 \, mm$ and $\rho_p \approx 2650 \, kg/m^3$

• Instruments : Particle Tracking Velocimetry, Pitot tubes, Sand trap

Α.	٧	'a	la	n	C	e

< 6 b

Wind-tunnel experiments

• Erodible bed vs Rigid bed (Ho et al., PRL 2011) :

Nov. 15, 2022 7/18

Particle concentration profiles

Saltation

Rigid bed :

Particle velocity profiles

(Ho et al, PRL 2011, Ho Phd Thesis 2012)

A. Valance

Saltation

Nov. 15, 2022 9/18

Rigid bed

Air velocity profiles

(Ho et al, PRL 2011, Ho Phd Thesis 2012)

No feedback of the grains on the flow

No Bagnold focus point

-

Nov. 15, 2022 10/18

ъ

Friction velocity $u^* = \sqrt{\tau/\rho_{fluid}}$ (Ho et al, 2011, Ho Phd Thesis 2012)

Air friction speed vs the nominal velocity U_{∞}

ъ

Boundary conditions for Rigid beds

- Rigid Bed : rebound but no "Splash" (i.e., no particle ejection)
- Rebound law on a bumpy surface (Beladjine, PRE 2007)

Boundary condition for Erodible beds

• Splash process investigated via a model collision experiment (Beladjine et al, PRE 2007)

Particle parameters : d = 6 mm and $\rho_p = 1300 kg/m^3$

Boundary condition for Erodible beds

Ejection process (Beladjine, PRE 2007)

- Two saltation regimes :
 - Transport-limited regime : ξ_{imp} < ξ_c Splash is not triggered
 ⇒ Transport similar to that on a rigid bed
 - Splash-limited regime : ξ_{imp} ≥ ξ_c
 Splash is triggered
 Equilibrium state is bounded by the critical impact velocity ⇒ ξ^{eq}_{imp} ∝ ξ_c

 $egin{aligned} N_{tot} &= N_{rebound} + N_{ej} \ \end{array}$ Ejection threshold ($N_{ej} > 0$) : $\xi_{imp} > \xi_c pprox 40 \sqrt{g'd} \end{aligned}$

Periodic Saltation model

A Valance

(Jenkins et al, POF 2014, Berzi et al., JFM 2016, JGR 2017)

- Simple two-phase modeling : two-way coupling -Fluid phase : RANS
 - -Particle phase : Lagrangian approach with a non-linear drag
- Description of the saltation transport in terms of an unique periodic trajectory (instead of a distribution of trajectories)

 Implementation of relevant boundary conditions at the bed deduced from the impact laws

Saltation	Nov. 15, 2022	15/18

Model predictions in the splash-limited regime

System parameters : sand grains in air R = 0.73 (d = 0.23 mm) and $\sigma = 2200$

Conclusion

Conclusion

• Two different saltation regimes : -Transport-limited saltation : $Q \propto \sqrt{S^*}(S^* - S^*_c)$

-Splash-limited Saltation : $Q \propto (S^* - S^*_c)$

- Simple predictive model for saltation transport
- Application to other planetary aeolian environments (Venus : $\sigma = 80$; Titan : $\sigma = 200$; Mars : $\sigma \approx 10000$))

< ロ > < 同 > < 回 > < 回 >

Nov. 15, 2022

17/18

Saltation regime map for various density ratio $\sigma = \rho_{\rm P}/\rho_{\rm f}$

Regime map for saltation transport (Berzi et al. JFM 2016)

• Extra-terrestrial atmospheres : Venus ($\sigma = 80$) and Titan ($\sigma = 200$) \Rightarrow Expected transition from transport- to splash-limited saltation

$St = \sigma R = 1000$

A D b 4 A b