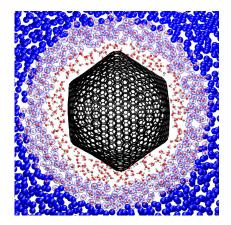
Towards a Unified Framework for Coarse-graining Particle-based Simulations

Christoph Junghans

Los Alamos National Laboratory NM, USA

Jun 5, 2012

UNCLASSIFED(LA-UR 12-21100)


Introduction

Kirkwood-Buff Models

Targeted Coarse-Graining 00000 Conclusion

Coarse-graining is an essential part of multi-scale simulations!

- Reduces number of degrees of freedom
- Enhances accessible range of time- and length-scales
- Links atomistic and coarse-grained representations

Targeted Coarse-Graining 00000 Conclusion 000

Introduction

Systematic Coarse-Graining

Is there a force-field for the coarse-grained model which reproduces a certain property?

- Structure (e.g. bond distribution or two-body correlations):
 - Boltzmann inversion
 - Iterative Boltzmann inversion
 - Inverse "Monte Carlo"
 - Relative Entropy Method
- Forces \rightarrow Force matching (multi-body PMF)
- Free energy (MARTINI force-field)
- Further properties:
 - Pressure \rightarrow Pressure correction
 - $\bullet~$ Diffusion $\rightarrow~$ Thermostat (friction constant fitting)

Incomplete list, many more methods and variations available! UNCLASSIFED(LA-UR 12-21100)

Introduction	Kirkwood-Buff Models	Targeted Coarse-Graining	
•	00000	00000	
Introduction			

- $\bullet\,$ Consistent implementation of most of these methods $\rightarrow\,$ Allows for direct comparison
- Platform for the implementation of new methods
- Integrates existing sampling programs (e.g. MD codes)

Parts of VOTCA¹- www.votca.org

Mapping engine

VOTCA Framework

- Parallel analysis framework
- Automated iterative coarse-graining
- Charge transport modules
- Ohloh: 10 Person Years / 39.8k Lines / \$ 528.4K
- 15 Developers
- Packages in Fedora, OpenSuse, Gentoo

¹JCTC 5, 3211 (2009) & Macromol. Theo. Simul. 20, 472 (2011) UNCLASSIFED(LA-UR 12-21100)

Kirkwood-Buff Models

Targeted Coarse-Graining 00000

Conclusion 000

Kirkwood-Buff Models

Find a coarse-grained model that reproduces the Kirkwood-Buff Integrals:

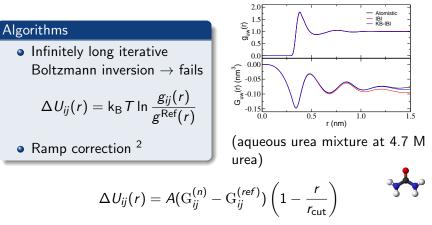
$$G_{ij}=4\pi\int_0^\infty [g_{ij}^{\mu VT}(r)-1]r^2~{
m d}r$$

Motivation

Describe salting-in/salting-out of Biomolecules on a coarse-grained level:

$$f_{cc} = \left(\frac{\partial \ln \gamma_c}{\partial \ln \rho_c}\right)_{p,T} = -\frac{\rho_c \left(G_{cc} - G_{cw}\right)}{1 + \rho_c \left(G_{cc} - G_{cw}\right)},$$

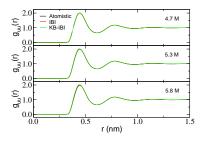
 $\label{eq:kb} \begin{array}{l} {\sf k}_{\rm B} T \mbox{ In } \gamma_c \mbox{: co-solvent solvation free energy} \\ \gamma_c \mbox{: co-solvent molar scale activity coefficient} \\ \rho_c \mbox{: co-solvent number density} \end{array}$


Assumption: large systems $(g^{\mu VT} \approx g^{NVT})$

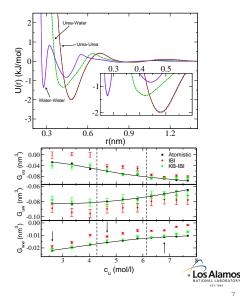
Kirkwood-Buff Models

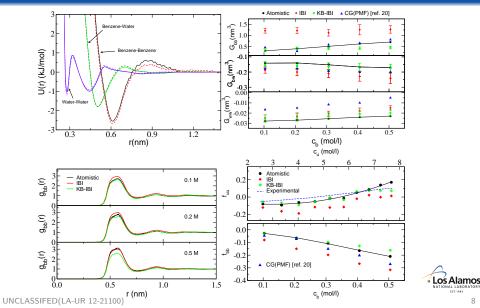
Targeted Coarse-Graining 00000 Conclusion 000

Kirkwood-Buff Models Aqueous Urea Mixture



Problem: A is difficult to determine.


²Ganguly et al., JCTC 8, 1802 (2012) UNCLASSIFED(LA-UR 12-21100)


Kirkwood-Buff Models Aqueous Urea Mixture

- Minimal differences in the potential
- Potentials are transferable in a small concentration interval
- Does it work for other systems?

Kirkwood-Buff Models Benzene in Water

Kirkwood-Buff Models

Targeted Coarse-Graining

Conclusion 000

Kirkwood-Buff Models Conclusion

What did we learn?

- Iterative Boltzmann inversion alone is not enough
- Transferable potentials over different concentrations
- Useful method to develop models to study salting-in and salting-out

Open questions:

- Are there less arbitrary ways of correcting?
- Is it possible to incorporate the correction in an inversion scheme?

Kirkwood-Buff Models

Targeted Coarse-Graining

Conclusion 000

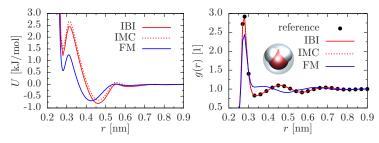
Targeted Coarse-Graining Introduction

Find a coarse-grained model, which reproduces other non-structural related property.

Reformulation

Use $n \ (\sim 5000)$ input parameters (potential tables) to generate m output parameters (properties measured in the MD simulation) and rank their quality.

- $\bullet~$ The problem is overdetermined $\rightarrow~$ use ${\sim}10$ essential parameters
- Equivalent to a standard optimization problem
- Minimization would be possible if all ∂ input/ ∂ output exist



Kirkwood-Buff Models

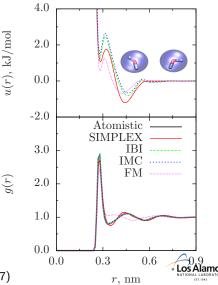
Targeted Coarse-Graining ○●○○○

Conclusion

Targeted Coarse-Graining Example: Water

Potential should have 2 minima.

Kirkwood-Buff Models

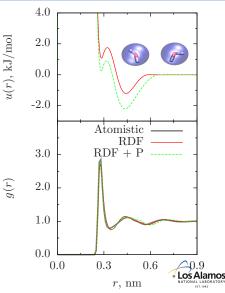

Targeted Coarse-Graining

Conclusion

Targeted Coarse-Graining Example: Water

- Center of mass mapping
- CKD (= WCA + cos² attraction) + Gaussian (6 parameters)³
- Optimize parameters with Nelder-Mead method (Simplex)⁴

³Idea: M. Jochum, Phd Thesis ⁴Shinoda et al., Mol. Sim. 33, 27 (2007) UNCLASSIFED(LA-UR 12-21100)


Kirkwood-Buff Models

Targeted Coarse-Graining ○○○●○ Conclusion

Targeted Coarse-Graining Example: Water

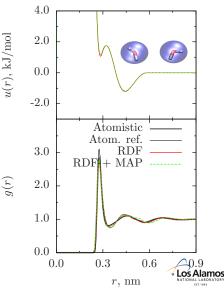
What about the pressure?

- Can easily be incorporated
- Objective (penalty) function needs modification

Kirkwood-Buff Models

Targeted Coarse-Graining ○○○○● Conclusion

Targeted Coarse-Graining Example: Water


What about the mapping?

$$\vec{R} = \sum_{i} \lambda_{i} \vec{r}_{i}$$

with

$$\sum_i \lambda_i = 1$$

- Can easily be incorporated
- adds 1 extra parameter for symmetric mappings
- Objective (penalty) function needs no modification
- Reference rdf changes

O O
Conclusion
Example: Water

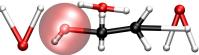
Targeted Coarse-Graining 00000

Conclusion

What did we learn?

- 6 parameters are enough, but simple LJ (2) is not
- Potential is short ranged
- Other target properties can be incorporated
- Simplex is fast, but can be trapped, inefficient for ≥ 10 parameters
- Use of learning optimizers (e.g. CMA Evolution Strategy or genetic algorithms) possible
- Functional potential can speed up the simulations
- Mapping can be optimized as well

The optimization view provides a framework to aim for a broader class of coarse-grained models.



Kirkwood-Buff Models

Targeted Coarse-Graining 00000 Conclusion

Conclusion VOTCA Team

Core developers Victor Rühle Christoph Junghans

Versatile Object-oriented Toolkit for Coarse-graining Applications

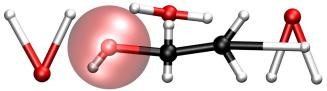
Modular C++ kernel Scripting for iterative workflow Simple integration of other simulation packages Iterative Boltzmann inversion Inverse Monte Carlo Force matching

Implementations

Tristan Bereau Sebastian Fritsch Mara Jochum Konstantin Koschke Alexander Lukyanov Sikandar Mashayak Interface to ESPResSo Interface to AdResS Simplex algorithm Parallel analysis engine force-matching Relative entropy method

Project supervisor

Denis Andrienko Kurt Kremer


• LOS Alamos NATIONAL LABORATORY EST. 1943

Conclusion VOTCA Package Kirkwood-Buff Models

Targeted Coarse-Graining 00000 Conclusion

Linus Torvalds:

Talk is cheap, show me the code.

Versatile Object-oriented Toolkit for Coarse-graining Applications

Modular C++ kernel Scripting for iterative workflow Simple integration of other simulation packages Iterative Boltzmann inversion Inverse Monte Carlo Force matching

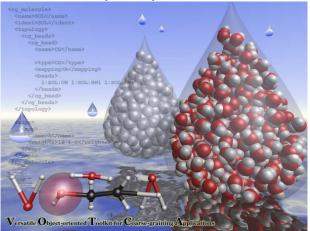
- It's free
- All examples are in the tutorial
- It's flexible and expandable

Visit us at www.votca.org

Conclusion Acknowledgments Kirkwood-Buff Models

Targeted Coarse-Graining

Conclusion


\$\$\$

- Max Planck Society
- SFB 625 "From Single Molecules to Nanoscopically Structured Materials"
- Department of Energy

The End

Thank you for your attention !

UNCLASSIFED(LA-UR 12-21100)