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Inspiration

Computer simulation of protein folding
Michael Levitt* & Arieh Warshel *

Department of Chemical Physics, Weizmann Institute of Science, Rehovoth, Israel

Nature Vol. 253 February 27 1975

“Here we tackle the [protein folding] problem differently. First,
we simplify the representation of a protein by averaging over fine
details. This is done both to make the calculations much more
efficient and also to avoid having to distinguish between many
conformations that differ only in these finer details. Second, we
simulate the folding of this simple structure ...”

“Our method ... is based on two assumptions: (1) that much of
the protein’s fine structure can be eliminated by averaging, and
(2) that the overall chain folding can be obtained by considering
only the most effective variables (those that vary most slowly yet
cause the greatest changes in conformation).”




A Warning

On the formation of protein tertiary structure on a computer

(protein folding/computer simulation/protein evolution/role of glycines)

ARNOLD T. HAGLER* AND BARRY HONIGT

“[Previous studies] have used extremely simplified representations of PTI,
which, upon energy minimization, fold into globular structures that in some way
resemble the native protein. ... The impression generated by these various
simulations is that major progress has been made ... i.e., the folding problem
may be far more tractable than generally been considered. ...

One of the major conclusions of this study is that the criteria that have been
used to evaluate the success of most folding simulations has been overly
permissive. ... First, we show that it is possible to obtain a computed structure
of PTI that satisfies all of the criteria that have been used previously to define
successful folding simulations, from a sequence that would certainly not yield
PTl-like conformation ... Many of the positive results that have been reported
are due entirely to [built-in features of the models] and may thus be regarded
as artifacts.

A careful examination reveals that despite superficial similarities to the native
protein, all computed structures have fundamental flaws ... they fail to
reproduce ... important features characteristic of the tertiary structure ... [and]
appear sterically inaccessible from the native conformation. ... “

The derailment at Gare Montparnasse, Paris, 1895.
51'010715\7013 A2cad. Sgg/;Ug?B Feb 1978 http://phys.columbia.edu/~tutorial/
ol. , NO. &, PP- - , Iebruary



Protein Sequence

A Very Good Question

Structure

Tanaka and Scheraga (1976):

What interactions generated
the PDB structures?

(At a Coarse-grained level.)



Knowledge-based approaches

Foldability Criterion: given R, for each protein U

UR,)=mmU(R) R

R

Scheraga, Crippen, Wolynes, Shakhnovich, Banavar, ...

Boltzmann hypothesis:

¢ »v@ €

4’  Reference State
UR)=U,(R)+ .U, (r,)
& p(R) _ po (R)H pg (rg) Interaction
e ¢

= expl-U ()] kT 1= p(r)/ pyy(r)

Scheraga, Jernigan, Sippl, Baker, Skolnick, Dill, Thirumalai, Straub ...




Protein Sequence

Motivating Questions

Structure

What interactions generated the PDB
structures? (Tanaka and Scheraga 1976)

1. Given a collection of structures,
what was the underlying potential?

2. How can one determine a transferable
Coarse-Grained (CG) potential that
accurately models structure for
multiple proteins?



Outline

Introduction: Basic theory of force-matching
Force-matching without forces: Generalized Yvon-Born-Green Theory
Extended Ensemble framework: Variational approach for transferability
New directions:

1. Connections to information theory and thermodynamics

2. Mean forces as a unifying framework for understanding structure-
potential relations

Outstanding challenges



Coarse-grained (CG) Mapping

Atomistic

Mapping

The mapping operator transforms an atomistic configuration onto a CG configuration

by defining the coordinates of each site as a linear combination of the coordinates
defining each site.

Noid, Chu, ..., Voth, Andersen
J Chem Phys (2008)



The PMF: Structurally Consistent CG Models

Atomistic Configuration Space CG Configuration Space
r R

M

W
&M
p,(r) o< e T P.(R) o< o~ UR/kgT
Kirkwood
Consistency PR (R) — pR (R) Scheraga and coworkers

Noid, Chu, ..., Voth, Andersen
J Chem Phys (2008)

o URVKST jdl‘ p.(r) 5(M(r)—R)

For a consistent CG model that reproduces the distribution of structures generated by the
atomistic model, the appropriate CG potential is a many-body PMF.



Mean Force Field

F (R) = —0U(R)
oR
= <f1 (r) >M(r)=R
fl(r)zzfi(r) R =Mr)=Mr)=

In a consistent model, the CG force field is the conditioned average of the atomistic force field
(l.e., the mean force field). The mean force field is sufficient for a consistent CG model.



Variational Principle for Multiscale Coarse-graining

X [F]= L<i\F{ (M)~ f£,(r) >

3N \IS
= [F]+[F - F|

f p
x[F] ){[F] Space of force fields of r %[F] = ”F - f”
(atomistic) )([F'] _ ”F/ _ f”
7l F Space of force fields of R/
(CG) Izvekov and Voth.
J Phys Chem B (2005)
F’ F - F| J Chem Phys (2005)

Noid, Chu, Ayton, Voth
J Phys Chem B (2007)
The Multiscale Coarse-graining (MS-CG) variational principle Noid, Chu, .., Voth, Andersen

. . J Chem Phys (2008)
determines the many-body PMF through a geometric
optimization problem in the space of CG force fields. See also Chorin 2003, 2006



Molecular Mechanics Basis Set

Approx. CG Potential

pairs bonds angles dihedrals
UR)= Y UY(R,)+ ZU (d)+z UP@O)+ > UY(y)+-
I-J>4 ;

Approx. CG Force field

pairs bonds angles

" ZF (d) Z FQ(O)—+

FI (R) =

1J
I-J>4

Basis expansion
Force function F,(z) =—dU, (z)/dz

I~ . v, (R
F:;J‘szg(Z)GC‘(Z\%— Basis vector GC(Z):( V. ( )j5(1//g(R)_Z)

IR,

Interactions C

Noid, ..., Chu, ..., Andersen, Voth
J Chem Phys (2008)

An approximate CG potential determines a set of force field basis vectors



Linear Least Squares Problem

)

FCR) corr

FOR)=Y, [diF,(2) G,(R:2)
4

> [dz F.(2) G, (M(r);z) - £,(r)

I=1

FIF)- <z

F

Space of CG FF

GC, FC Force functions

A CG G. (R ,
LF /Spa e OE CG FF spannec% 5( ) FF basis fcns
, by 16¢

The MS-CG variational principle determines FC by projecting the PMF
onto the space of CG force fields spanned by the given basis.




Geometric Projection

Basis expansion:

FO = [dz F,(2)G,(2)
¢

Projections: G,(2)

by (2) =G, (2)-F MF

— G§ (Z) . FCG Approx FF

=3 |Gy (2. 2E ()
2

F,(2") F¢

ooooooooooooooooooooooooooooo

Metric Tensor:

»G,(2)
N . ’ 1
Ggg'(Z,Z )= Gg(Z) Gg'(Z ) F(2) b,(2)
— . .7 Noid, ..., And , Voth. J Chem Ph (2008)
— <2 Gl;cj (M(r)’ Z) ) GI;C’ (M(r)’ Z )> Mcijlllinax a:del\rlso?(rzl]. ° J Ph)e;TCheﬁ C (2010)
1 Mullinax and Noid J Chem Phys (2010)

The PMF is approximated by projecting the MF onto each basis vector,
while treating the metric tensor resulting from many-body correlations.



Generalized Yvon-Born-Green Equation

Integral Eq b, (2) = G, (2) - F =G, (2)- F¢° = ZJ.dZ,GCC’(Z’Z,)F;”(Z,)
Z

f

bC (2)= Gg (z)-f  MS-CG “Force-Matching”
— Gg (Z) - K MF
= G(2)- V(=ksT In py(R))
= k,T dg,(z)/dz

kBT dgé (Z)/dZ = Z J‘dZ,Gggf (Z,Z’)Fg' (Z,)
Iz

Mullinax and Noid.

Phys Rev Lett 103 198104 (2009)
J Phys Chem C 1145661 (2010)

The generalized-YBG Equation determines the MS-CG potentials directly from structures!



Honeycutt-Thirumalai (HT) Model

Green: hydrophobic (B)
White: hydrophilic (L)
Blue: neutral (N)

pairs

b
UR)= Y, Uy (R,)
I1-J>4
bonds angles dihedrals

+2 UMY+ 2 UL 6)+ X UM ()

i

Honeycutt and Thirumalai Biopolymers (1992) 32, 695



b.(z)= kT dg,(z)/dz

T

— Forces
— = Structures

0.02

-0.02

180

HT Results 1

; [ ! [
B-B: — Exact — —- Calculated
L-B, L-L: =— Exact = = - Calculated
N-B, N-L, N-N: - Exact

- - Calculated

2.5
r [a]

Mullinax and Noid
Phys Rev Lett 131 198104 (2009)

First generalization of the YBG theory for proteins with many-body, e.g., torsional and
angle, interactions.




2. Precise Definition of Transferability

Model:
- atomistic CG

(1) Topology
- Particles and bonds used
to describe system

(2) Potential
- Interactions among
those particles

u (r) | Up(Rp)

A potential is transferable if it can be used for describing multiple topologies.

Mullinax and Noid. J Chem Phys 2009.



Topology

Extended Ensemble

Configuration

An extended ensemble is a
collection of equilibrium
ensembles for different
topologies.

Distributions:

py topology

Dy (ry ) configuration

Averages: <ay (I‘y )> — Zpyjdrypﬂy(ry )a}, (I‘},)

Mullinax and Noid. J Chem Phys 2009.



Constructing a CG model requires two maps:
(1) Topology map - specifying site types and bonds

(2) Configuration map - specifying site coordinates

~
v
=
I
-~
~
=
~

-
v
=

I
=
=

-

~

g

A 4

Then the remaining challenge is to determine UF (RF)



Consistency between extended ensembles

(?/>ry) MVz er er RF3
/\
] T
P e v I L
// V3
4 r,
Y

Y2

}/2 l—'\
/ hoohoh
73

CG Extended Ensemble

y Atomistic Extended Ensemble

Consistency: P = <5F,u(y)>

Generalized PMF exp[—Ur(Ry) / kpT ] o< <6F,/,L(y)5(RF - My(rf}/))>

Mullinax and Noid. J Chem Phys 2009.



Variational Principle for the generalized PMF

Zz [F,] = < Z F.L,l(Y);I (My(ry)) N fV;I(rV) >
= 1 [F]+|F" - F|

where FFI (RF) — _VFIUF (RF) is a mean force field

Key approximation UF (RF) ~ EU(; (WC (RF))

Cer/‘

Determine optimal transferable approximation to the PMF



Methanol-Neopentane Test System

MINI

neopentane methanol

Percent methanol

(%) Methanol Neopentane

100 968 0 :

80 S74 144 CG Potential

60 342 228

50 259 259 . (2)

40 189 284 UF (RF) o Z U{(I,J)(RIJ)
20 81 323 {1,J}el

0 0 353

Mullinax and Noid. J Chem Phys 2009.



neopentane

methanol

dg(r)

dg(r)
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M-N: Results 1
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Mullinax and Noid. J Chem Phys 2009.

Extended ensemble potentials provide improved transferability.



M-N: Results 2

M3N1
T T I T l T
100% Me
C . 80%Me
| e 50% Me —

c—ei=  20%Me
L el

dg(n)

MINI1

T | T I T l T
- M-N—|

@ _‘. % i'l‘. .
0 W) (‘"..:Mﬁ!gg-.m e T ko bar
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-
SbL Y eas=s 5b2

| | | | | . = 1 | 1 | | | | . C 1 | 1 | Il | | ]

M2N1

dg(r)

M3N1

r (nm) r (nm) r (nm)

Mullinax and Noid. J Chem Phys 2009.

The accuracy and transferability of the potentials are sensitive to the topology mapping.



Model Protein Databank
L

Extended Ensemble

-To<T<T,

- Uniform topology distribution
- 5 sequences

- 10° structures / sequence

- modified HT potential

Honeycutt and Thirumalai
Biopolymers (1992) 32, 695



Distributions from Model PDB

1. Soft degrees of freedom
couple to other degrees of
freedom.

2. Chain connectivity
generates long-ranged
effective interactions
between B-X and X-X pairs

(which are purely repulsive).

A= 0.003

A 0.001F

0.06

fe=]
=~ 0.03

0.006

0

0.002 7
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-180
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J\LIA
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180

4000
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5 1000

| 1 I 1
B g i
B B-B
I R
1 > 3 4
| T I T T <{
I //\/\/\/ B-X
| N B Lo
1 2 3 4
| [ | [ [ f“
] /‘/\ X-X
]
I > 3 4

Mullinax and Noid. PNAS 107 19867 (2010)

Soft degrees of freedom are strongly coupled and cannot be treated independently.



Validation

2+ B-B
:i =) 0 __ |
- | 1
1 2
| ' | ' | '
0.4 b . B-X,X-X
> 02F 4 = 1
i | o | . |
1 2
— Exact
-- Calculated

The generalized-YBG theory quantitatively determines the underlying
potentials for a model extended ensemble of folded protein structures.

Mullinax and Noid.

JCP 131104110 (2009)
PRL 103 198104 (2009)
PNAS 107 19867 (2010)



Relative Entropy

®D(R) Information content in configuration R for distinguishing atomistic and CG distributions

Atomistic
' R)=P,(R|U
CI)(R|U):1H[LR)} o it Pr(R)=P(RU)
Fe(R|U) too it Pr(R)/P;(R|U)—> o0 0r0
CG
Relative Entropy: _
(Kullback-Leibler divergence) SRel[U] JdR Pr (R)(I)(R|U)

883 [U1/8U () = (p,(2) = P.(d|U)) [k, T

Considering variations w.r.t. CG potential U;(Z)
1. The Relative Entropy is minimized when the conjugate distribution is reproduced
2. Minimizing the Relative entropy via Newton’s method leads to IMC equations

References: Kullback & Leibler Ann Math Stat (1951); Shell JCP (2008,2010); Murtola et al. JCP (2009)



Relation to the Relative Entropy

Inverse Monte Carlo (Relative Entropy)

) 0.75
functional:

SealU1=ky [ dR p (R)YO(R|U)

Multiscale Coarse-graining 1 ' . .
“force-matching” functional

05 -

1 N , I R IR Al sV B :\\
Pl (SO ) e S
=x [U ] 3 .

(kBT)2 21 sk
2 [aR p,(R)|VOR|V) |

0

3

Both the MS-CG “force-matching” and Inverse Monte Carlo approaches can be expressed

in terms of the Kullback-Leibler information function.
Rudzinski and Noid JCP 2011



Additional results

1. Equivalence of Force- and Structure-based potentials for quadratic potentials

2. Remarkable parallels in formulation:
Variational problems in linear space with bases that are related by differentiation

3. Generalization of Henderson’s uniqueness theorem
1. Conditions — Linear independence of conjugate density operators
2. Relation to force-matching uniqueness:
Uniqueness of force-matching implies uniqueness of structure-based potential
4. Generalization of force-matching and g-YBG theory for arbitrary potentials
5. Entropy changes in coarse-graining:

S. = _kB .dl' pr(l‘)lnl:Vnpr(l'):I Smap = Sr B SR

$¢ =k, [dR p(R)In[ V" p,(R)] _ [dR p,R) &, h{VNpR(R)}
Vip,(r) |/,

Rudzinski and Noid JCP 2011
Noid and Shell In progress S O



Mean forces

401

Generalized YBG theory:

-1

[\
[=}
T

by (2) = k,T dg,(2)[dz ="y, [ d2' Gy (2.2) Fy(2)
.

(=]

kJ mol” nm

-20

—w(R)=F,(R)+ Y [dZ' F..(2') Gy (R.2)[3,(R) K

CI
T Fy(R)
pair MF

conditioned

CG pair force , ,
3-particle density

F(2)

The generalized Yvon-Born-Green equation determines the CG

potential that reproduces the mean force (when using atomistic Ellis, Rudzinski, and Noid
configurations). Macromol Sim Theory (2011)



Ilterative Boltzmann Inversion
First estimate:

1=0 Ug (Z) = WC(Z) — _kBT ln(pg(z) / JC(Z)) Corresponding

pmf
‘ PC (z | Ui) 7 pC(Z) Error in distribution
Error in pmf: W;(Z) — Wg (2)= —kBT hlI:pC(Z)/Pg (z | Ui):|

Improve pmf \

i=0,.. U"(z)=Ui(z)-k;Tn| p,(2)/ P, (z1U")]

References:

e Schommers Phys Rev A (1983) 28 3599

e Soper Chem Phys (1996) 202 295

* Muller-Plathe ChemPhysChem (2002) 9 754
e Faller, and others

e Majek and Elber Proteins (2009) 76 930

lterate to convergence !




Understanding the Metric Tensor
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Rudzinski and Noid JPCB 2012




Robust features
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Rudzinski and Noid JPCB 2012



Decomposition of mean forces

CT-CT CM-CM CT-CM
' (al) ' '

20 ,

(a3)

(a2)

/ — mean force
/ — direct force
— - angles

— - bonds

(b3)

[/ —- CT-CT
p CM-CM
5 , | , , | , , —- CT-CM
%.4 0.8 1.2 04 0.8 1.2 04 0.8 1.2
r (nm) r (nm) r (nm)

Rudzinski and Noid JPCB 2012



Eigenspectrum of metric tensor

| (al) (b1) (cl)
' | ' | - ’ ' |
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Rudzinski and Noid JPCB 2012



Impact upon CG structure

20

Rudzinski and Noid JPCB 2012
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Conclusions

The generalized-YBG theory determines variationally optimal potentials (i.e., MS-
CG potentials) directly (i.e., noniteratively) from structures.

The extended ensemble framework systematically and quantitatively improves the
transferability of CG potentials for accurately modeling multiple chemically distinct
systems.

In combination, these approaches provide a rigorous and accurate approach for
determining physics-based potentials from a databank of protein structures.

The MS-CG/g-YBG method can be related to gradients of the information function
that provides a variational basis for structure-based coarse-graining.

Mean forces provide a basis for connecting force and structure-based coarse-
graining approaches.



