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Outline 

•  Self-Assembly 

•  Development of DDIS potentials 

•  Application to a Surfactant System 

References:        Allen and GCR, J.Chem.Phys. 2008, 128, 154115. 
Allen and GCR, J.Chem.Phys. 2009, 130, 034904. 
Allen and GCR, J.Chem.Phys., 2009, 130, 204903. 
Ismail, GCR and Stephanopoulos, J. Chem. Phys. 2003, 118, 4414. 
Ismail, Stephanopoulos and GCR, J. Chem. Phys., 2003, 118, 4424. 
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Self-assembly 

Self-assembly refers to the spontaneous and reversible organization 
of molecular units into ordered structures held together by non-
covalent interactions 

Muthukumar, Phil. Trans Roy. 
Soc. Lond A, 2003, 539.	



Saiz & Klein, Acc. 
Chem Res. 2002, 482.	



Important examples: 

•  Crystallization from dilute solution 

•  Lipid bilayers 

•  Protein folding 

•  Micellar phases 
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Surfactant Background 

Hydrophilic 
head group 

Hydrophobic 
tail group 

Critical Micelle 
Concentration 

(CMC) 

Typically µM to mM 

Typical aggregation 
numbers 10-100 

Micelle 

XCMC = exp βgmic n *( )"# $%
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A Typical All-Atom Simulation 

•  Simulation size limited to one 
micelle 

•  Simulation times limited to <100 ns  

 (1 µs or longer needed to study 

aggregation properties) 

•  Solvent is the main culprit! 

D. P. Tieleman, D. van der Spoel, H.J.C. 
Berendsen, J. Phys. Chem. B 104, 2000"

MIT!
Coarse-graining refers to the systematic removal of degrees of freedom (i.e. 

particles) from an all-atom representation in order to speed computation, while 
“conserving” some property or properties of the underlying all-atom system. 

Particle 
deletion 

Particle 
aggregation 

Coarse-graining 

2 General Approaches: 

Either approach entails modification of the interaction between remaining 
particles to represent, in some approximate way, the influence of the lost 
degrees of freedom.  Information is lost. 
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A ”systematic” coarse-graining illustration 
•  Wavelets are translation-invariant functions with useful properties 

(orthonormality, localization, completeness) that can be applied recursively to 
generate means and differences 

The degrees of freedom (ui) are TRANSFORMED (si, δi) and DOWNSAMPLED 
(si/2+1, δi/2+1) without loss of detail	



Original 
model 

Transformed model 
averages + differences 

+	



Ex. Haar wavelet applied to Ising lattice in 2D  
(Ismail, Stephanopoulos and GCR, JCP 2003, 4414 & 4424) 

MIT!
Systematic Coarse-Graining 

Entails keeping only a fraction of the transformed degrees of freedom (e.g the 
averages, si) and approximating the combined effect of the lost degrees of 
freedom (i.e. the differences, δi).	



Instead of calculating the 
complete partition function: 

“Weight” of each configuration 
determined by counting or sampling 
(a “degeneracy”) 

. . . we approximate as a sum over 
partitions of configuration space. 

s4 

s3 

s1 

s2 

s5 

Z = exp −βH ui( )( )
ui ∈Ω
∑

Z ' = w si( )exp −βH ' si( )( )
si ∈Ω '
∑
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Multi-resolution 

Wavelet transformation can be applied recursively.  
Invocation of differencing functions permits reverse mapping.  

(1,4) (2,2) (4,1) 

size of 
block 

blocks 
per side 

For large blocks, w(s) can be estimated through sampling:   
        Wavelet Accelerated Monte Carlo 

MIT!
Entropy error at intermediate temperatures 
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Z = drsolv
N −n

V∫ drS
n exp −βV rsolv

N −n ,rS
n( )$% &'V∫

= Csolv ρS( ) drS
n exp −βV eff rS

n ,ρS( )$% &'V∫

= drS
n exp −β µ ρS ,i( ) + V eff rS ,ij ,ρS ,i( )

j=1

n

∑
*

+,
-

./i=1

n

∑
$

%
0
0

&

'
1
1V∫

Density-dependent implicit solvent potential (DDIS) 

•  Solute density becomes a proxy for lost solvent degrees of 
freedom 

1-body 
term 

2-body 
term 

ensures reproduction of structure 
(rdf), by Henderson’s Theorem 

ensures reproduction of 
thermodynamic free energy 

 (in the mean) Henderson, Phys. Lett. 1974, 197	
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•  Global Density Dependent Potential 

–  Fitting is “easy” 
–  Some pathological behavior 
–  Not sensitive to inhomogeneities 

•  Local Density Dependent Potential 

–  Global solution as initial guess, optimization converges readily 
–  Finite in range 
–  More transferable? 

Global vs. Local Density Dependence 

Ei ρS( ) = µi ρS( ) + 1
2

V EFF rij ,ρS( )
j≠ i

n

∑

Ei ρS ,i( ) = µi ρS ,i( ) + 12 V EFF rij ,ρS ,i( )
j
∑

ρS = n /V

ρS ,i = δ r − rij( )w r( )r2 dr
0

rD

∫
j≠ i

n

∑ w r( )r2 dr
0

rD

∫
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Implementation 

•  Run short, explicit particle simulations for simple 
(e.g. monomeric) systems to collect training data 
for the range of particle densities 

•  Remove or assign explicit particles to CG 
particles 

•  Select a free energy metric (µex(ρS)) and a local 
structure function (g(r, ρS)), both to be conserved 
during coarse-graining 

•  Numerically fit µ(ρS) and Veff(r,ρS) to reproduce 
targets 

C C C C H 
H 

H 

H 

H H 

H H 

H 
H 

MIT!
E(r,ρS) Solution Procedure 

MD sim 

Schommers, Phys. Rev. A 28,3559 (1983) 

Iterate to 
convergence 

Vk
eff r,ρS( ) = Vk−1eff r,ρS( ) − kT log

gtarget r,ρS( )
gk r,ρS( )

#

$
%

&

'
(

Initial guess 

Update 

Δµ ρS( ) + ρS
∂Δµ ρS( )
∂ρS

= µtarget
ex ρS( ) − µk−1

ex ρS( )

Δµ = µk − µk−1
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Structure of the DDIS Potential 

ρS	



rij	

 vEFF(rij , ρS)	



µ(ρS)	



 

veff11  veff1q

 

veffp1  vpq
eff

µ1 µq

A piecewise linear potential with 1- and 2-body contributions 

MIT!
Testing the DDIS Approach (1) 

System Specs: 	


εA=1,σA=1; εZ=1,σZ=1 
T* = kT/εA =1.35; 	


ρ* = ρσA

3 = 0.55	



Allen and GCR, J. Chem. Phys 128 (2008), 154115.	



“Worst-case” 
RDF fitting	



System 1: A homogeneous system of Lennard-Jonesium comprising  explicit 
solute A within an implicit solvent Z identical to A, at various XA=ρA/ρ   

… 

Excess Chemical Potential 
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Results for fitted DDIS Potentials 

One-Body Potential	

 Two-Body Potential	



µ ρS ρ→ 0( ) = µex ρ( ) V eff r,ρS ρ→ 0( ) = −kT lng r( )

V eff r,ρS ρ→ 1( ) = V (r)

State point sensitivity: up to 10% variation in T* or ρ* can be sustained with <1% error in   
     either mean particle coordination number or mean particle energy  

MIT!

Fitting Results for 
Dissimilar Particles (2) 

B = Solvo-philic 	

	


C = Solvo-phobic 	


A, Z = Solvent	



 

 

“Worst-case” RDF fits	



Excess Chemical Potentials	



System 2: LJ mixtures comprising  explicit 
solute B (or C) within an implicit solvent Z 
identical to A, at various XB=ρB/ρ	



Allen and GCR, J. Chem. Phys 130 (2009), 024904	
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Solvo-philic and Solvo-phobic particle potentials 

One-Body Potential	

 Two-Body Potential	



A	

B	



C	



B	


A	


C	



µC
ex(0)	



µB
ex(0)	



µA
ex(0)	



V eff r,ρS ρ = 0.5( )

MIT!
DDIS Summary 

•  In implicit solvent simulations, a density-dependent potential 
with both 1-body and 2-body terms is indicated 

•  Using such a two-term potential, we can reproduce both the 
excess chemical potential and the radial distribution function 
over a wide range of composition 

•  Transferability to mixtures, chains, and chains of mixed 
composition (e.g. surfactants) is acceptable, especially at 
low (global) concentrations relevant to micellar self-
assembly 

•  DDIS potentials follow predictable relationships depending 
on the solvent-philic or solvent-phobic nature of the solute 
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Application to Surfactant Self-Assembly 

•  “Smit”1 (nonionic) surfactant 
model 

•  εt= εh= εs=1.0 

•  σt= σs=1.0, σh=2.0 

•  Particles interact via truncated 
and shifted Lennard-Jones 
potential 

•  T*=1.0; ρ*=0.6 

•  Pool and Bolhuis (all-atom 
simulations)2  

–  h1t4: ρCMC~5×10-6, 
NAGG~20 

–  h1t5: ρCMC~5×10-7, 
NAGG~30 

“h1t4”	

 Solvent s	



€ 

Vij
TS rij;εij ,σ ij ,Rc,ij( ) =

Vij
LJ rij;εij ,σ ij( ) −Vij

LJ RC ,ij;εij ,σ ij( )  rij ≤ RC ,ij

0                                                   rij > RC ,ij

& 
' 
( 

) ( 

1.  Smit, Phys. Rev. A. 37 (1988), 343."
2.  Pool and Bolhuis, J. Phys. Chem. B 109 (2005), 6650."

Rc/σij s h t 

s 2.5 2.5 21/6 

h 2.5 21/6 21/6 

t 21/6 21/6 2.5 
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Fitting results for Head and Tail particles 

µex/ε	

 RDF	



Already in explicit T/W simulations, clustering is observed  

ρT=0.1 
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Fitting results for Head and Tail particles 

Allowing the offsets at rC to vary accounts for this 

Veff(rc,ρT)/kT	



ρT=0.9 

MIT!
Head and Tail Potentials 

HEAD	



Lennard-Jones	


TAIL	



HEAD	


TAIL	
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Direct observation of CMC’s 

Left: h1t4	



(216 molecules)	



	



• ρ1: Free Surfactant   
Concentration	



• ρS: Total 
Surfactant 
Concentration	



MIT!
Direct observation of CMC’s 

Left: h1t4	



Right: h1t5	



	



• ρ1: Free Surfactant   
Concentration	



• ρS: Total 
Surfactant 
Concentration	



Allen and GCR, J. Chem. Phys 130 (2009), 204903	



Simulation H1T4 CMC H1T5 CMC 

All-Atom 5(1) 10-6 6(1) 10-7 

Implicit Solvent 4(1) 10-6 8(2) 10-7 

IS – No Offset 2 10-4 2 10-5 
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Average Aggregation Number 

NAGG: Micelle aggregation size as 
determined by a clustering 
algorithm	



Simulation H1T4 NAGG H1T5 NAGG 

All-Atom ~20 ~30 

Implicit Solvent 16 34 

 

h1t4	


h1t5 

MIT!
Computational Performance 

 

 

Simulation # Atoms Simulation Time 

(Days) 

All-Atom (est) 2.5 108 4.6 107 

Implicit Solvent 1080 2 
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Summary 

•  Self-assembly involves simulation across a broad range of local 
densities (compositions) 

•  Coarse-graining inevitably implies a tradeoff between speed and 
accuracy (in selected quantities).  The challenge is to find a form that 
optimizes this tradeoff.   

•  Local solute density as a proxy for the number of lost configurations 

•  Density-dependent implicit solvent (DDIS) potentials with both 1- and 2-
body terms offer a particularly simple form that permits to retain some 
approximation of both thermodynamics (µex) and structure, g(r ) 
simultaneously 

•  Direct simulation of micellar self-assembly for a simple, nonionic 
surfactant demonstrated, with promising results.   


