

Department of Mathematics Institute of Scientific Computing

Cell motility - a continuum approach

Axel Voigt

Dresden

Membrane dynamics

Numerical methods

Outline

- phase separation and coarsening in cell membranes large-scale phase separation vs. dynamically stable microdomains
- crawling cells mechanical interactions and complex reactions within cytoplasm and on cellular membrane
- mathematical tools diffuse domain description

Phase separation	
000	
000000000	

Numerical methods

GUV's

- two-phase system lipid-ordered and lipid-disordered phase
- phase separation

Veatch, Keller; Biophys. J. 85 (2003) 3074

Membrane dynamics

Numerical methods

Mathematical model

- two-phase system driving force is line tension
- surface Cahn-Hilliard equation

$$\partial_t \phi = \Delta_{\Gamma} rac{\delta \mathcal{E}_1[\phi]}{\delta \phi}, \qquad \mathcal{E}_1[\phi] = \int_{\Gamma} rac{\epsilon}{2} \gamma |
abla_{\Gamma} \phi|^2 + rac{1}{\epsilon} rac{\phi^2 (1-\phi)^2}{4} \ d\Gamma$$

Rätz, AV; Comm. Math. Sci. 4 (2006) 575

Membrane dynamics

Numerical methods

Scaling and self-similarity

- scaling law for size of islands
- self-similar island size distribution

Backofen, Witkowski, AV; preprint (2012)

consistent with Ising model

Numerical methods

Discrepancy between in vitro and in vivo results

- model membranes phase separation and coarsening
- cell membranes heterogeneity on a submicrometer scale persits

Simons, Ikonen; Nature 387 (1997) 569

lipid rafts - today understood as heterogeneity as a result of interactions of lipids with proteins, the cytoskeleton and fluid interactions, as well as effects due to curvature

Membrane dynamics

Numerical methods

Theoretical concepts

two-phase system - lipid raft phase, enriched in cholesterol, proteins and saturated lipids and a matrix phase

Fan, Sammalkorpi, Haataja; FEBS Lett. 584 (2010) 1678

Numerical methods

Modeling approaches

transient compositional fluctuations driven by thermal noise

Veatch, Soubias, Keller, Gawrisch; PNAS 104 (2007) 17650

hybrid lipids as line active components to reduce line tension

Brewster, Safran; Biophys. J. 98 (2010) L21

membrane viscosity and bulk fluid interactions

Fan, Han, Haataja; J. Chem. Phys. 133 (2010) 045019

pinning effects due to membrane proteins and cytoskeleton

Yethiraj, Weisshaar; Biophys. J. 93 (2007) 3113

▶ ...

Membrane dynamics

Numerical methods

Membrane viscosity and bulk fluid interactions

- two-phase flow of Newtonian bulk fluids
- advected interface with Boussinesq-Scriven law

large Safmann-Delbrueck number $I_H = \mu_{\Gamma}/\mu$ decouples bulk from surface fluid

 surface Navier-Stokes-Cahn-Hilliard equation (stream function formulation)

$$egin{aligned} \partial_t \phi + J(\psi,\phi) &= & \Delta_{\Gamma} rac{\delta \mathcal{E}_1[\phi]}{\delta \phi} \ \partial_t \Delta_{\Gamma} \psi + J(\psi,\Delta_{\Gamma} \psi) &= & \mu_{\Gamma} (\Delta_{\Gamma}^2 \psi + 2
abla_{\Gamma} \cdot (\mathcal{K} \Delta_{\Gamma} \psi)) + f \end{aligned}$$

Nitschke, AV, Wensch, preprint (2012)

Membrane dynamics

Numerical methods

Flow shows the opposite effect

Nitschke, AV, Wensch, preprint (2012)

Membrane dynamics

Numerical methods

Can be done on arbitrary surfaces

strong coupling between curvature and flow field

Numerical methods

Pinning effects

0.6

- membrane proteins favorable energetic interaction with one phase
- interaction with membrane skeleton pinned to filaments

Backofen, Witkowski, AV: preprint (2012)

modified surface Cahn-Hilliard equation

$$\partial_t \phi = \Delta_{\Gamma} \frac{\delta \mathcal{E}_1[\phi]}{\delta \phi}, \qquad \mathcal{E}_1[\phi] = \int_{\Gamma} \frac{\epsilon}{2} \gamma |\nabla_{\Gamma} \phi|^2 + \frac{1}{\epsilon} \frac{\phi^2 (1-\phi)^2}{4} + V(x) P(\phi) \ d\Gamma$$
$$V(x) = \sum_i^N \exp(-\frac{(x-x_i)^2}{\sigma^2}); \qquad P(\phi) = \tanh(a(\frac{1}{2}-\phi))$$

Membrane dynamics

Numerical methods

Local pinning potential

Numerical methods

Local pinning potential

- slowing down of coarsening
- broadening of size distribution
- no self-similarity

consistent with random-field Ising model

Ehrig, Petrov, Schwille, Biophys. J. 100 (2011) 80, Fischer, Vink; J. Chem. Phys. 34 (2011) 055106

Membrane dynamics

Numerical methods

Elastic properties of membrane

Helfrich energy

$$\mathcal{E}_{2}[\Gamma] = rac{1}{2} \int_{\Gamma} b_{N} (H - H_{0})^{2} + \sigma \ d\Gamma$$

- inertia forces of membrane are neglected
- bulk fluid is highly viscose
- with constraint to ensure volume conservation

$$k\mathbf{u}_{\Gamma} = -rac{\delta \mathcal{E}_2}{\delta \Gamma}$$

Membrane dynamics

Numerical methods

Elastic properties of membrane

Helfrich-type energy

$$\mathcal{E}[\Gamma,\phi] = rac{1}{2} \int_{\Gamma} b_N(\phi) (H-H_0(\phi))^2 + \sigma(\phi) \; d\Gamma$$

themodynamically consistent evolution equations

$$\frac{D}{Dt}\phi + \phi\nabla_{\Gamma} \cdot \mathbf{u}_{\Gamma} = \Delta_{\Gamma}\frac{\delta\mathcal{E}}{\delta\phi}$$
$$k\mathbf{u}_{\Gamma} = -\frac{\delta\mathcal{E}}{\delta\Gamma} + \phi H\frac{\delta\mathcal{E}}{\delta\phi}\mathbf{n} - u\nabla_{\Gamma}\frac{\delta\mathcal{E}}{\delta\phi}$$

Lowengrub, Rätz, AV; Phys. Rev. E 79 (2009) 031926, Sohn, Tseng, Li, AV, Lowengrub; J. Comput. Phys. 229 (2010) 119; Li, Lowengrub, AV; Comm. Math. Sci. 10 (2012) 645

allows to model coarsening, budding and fission

Numerical methods

Cell motility

- crawling cells move by protruding a cell front and retracting the cell rear
- driven by reorganization of actin cytoskeleton
- push by actin polymerization and contract by reaction with myosin
- described through protein interactions
- signaling network of small GTPases

Marth, AV; preprint (2012)

Membrane dynamics

Numerical methods

Reaction-diffusion model

$$\frac{D}{Dt}u_i + u_i \nabla_{\Gamma} \mathbf{u}_{\Gamma} = d_i \Delta_{\Gamma} u_i + f_i(u_0, u_1, \dots, u_n) + q_i(u_0, u_1, \dots, u_n, U_i)$$
$$\frac{D}{Dt}U_i = D_i \Delta U_i + F_i(U_0, U_1, \dots, U_n) \text{ in } \Omega$$
$$D_i \nabla U_i \cdot \mathbf{n} + u_i \mathbf{u}_{\Gamma} \cdot \mathbf{n} = q_i(u_0, u_1, \dots, u_n, U_i) \text{ on } \Gamma$$

- u_i concentration of membrane bound protein, e.g. membrane bound active and inactive states of GTPase
- U_i concentration of protein in cytoplasma, e.g. complexes of cytoplasmic GTPase

allows for Turing instability for different d_i , D_i and attachment / detachment coefficients $q_i = \alpha U_i(1 - \sum_i u_i) - \beta u_i$

Rätz, Röger; preprint (2012); Marth, AV; preprint (2012)

Membrane dynamics

Numerical methods

Combine with Helfrich model

$$k\mathbf{u}_{\Gamma} = -\frac{\delta \mathcal{E}_2}{\delta \Gamma} + \sum_{i=1}^{n} \alpha_i u_i \mathbf{n} + \sum_{i=1}^{n} \beta_i U_i \mathbf{n}$$

Shao, Rappel, Levine; Phys. Rev. Lett. 105 (2010) 108104; Marth, AV; preprint (2012)

Membrane dynamics

Numerical methods

Sheet like protrutions - lamellipodia

Turing instability resulting from different d_i and D_i

Marth, AV; preprint (2012)

Membrane dynamics

Numerical methods

Rod like protrutions - filopodia

Turing instability resulting from different d_i

Marth, AV; preprint (2012)

Membrane dynamics

Numerical methods

Controling polarization by spatial signals

amplification of spatial signal by gradient of chemoattractants

$$\frac{D}{Dt}u_1 + u_1 \nabla_{\Gamma} \mathbf{u}_{\Gamma} = d_1 \Delta_{\Gamma} u_1 + f_1(u_1, u_2) + q_1(u_1, u_2, U_1) - \nabla_{\Gamma} \cdot (u_1 \nabla_{\Gamma} c)$$

Membrane dynamics

Numerical methods

Solving equation in evolving domains

equations on surfaces

$$\frac{D}{Dt}u_{i} + u_{i}\nabla_{\Gamma}\mathbf{u}_{\Gamma} = d_{i}\Delta_{\Gamma}u_{i} + q_{i}(u_{1}, \dots, u_{n}, U_{i})$$

$$\Rightarrow$$

$$\frac{D}{Dt}(|\nabla\phi|u_{i}) + u_{i}|\nabla\phi|\nabla_{\Gamma}\mathbf{u}_{\Gamma} = d_{i}\nabla_{\Gamma} \cdot (|\nabla\phi|\nabla_{\Gamma}u_{i}) + |\nabla\phi|q_{i}(u_{1}, \dots, u_{n}, U_{i})$$

equation in bulk

$$\frac{D}{Dt}U_i = D_i \Delta U_i, \quad D_i \nabla U_i \cdot \mathbf{n} + u_i \mathbf{u}_{\Gamma} \cdot \mathbf{n} = q_i(u_1, \dots, u_n, U_i)$$

$$\Rightarrow \qquad \frac{D}{Dt}(\phi U_i) = D_i \nabla \cdot (\phi U_i) + |\nabla \phi| q_i(u_1, \dots, u_n, U_i)$$

Rätz, AV; Comm. Math. Sci. 4 (2006) 575; Li, Lowengrub, Rätz, AV; Comm. Math. Sci. 7 (2009) 81; Teigen, Li, Lowengrub, Wang, AV; Comm. Math. Sci. 7 (2009) 1009

Membrane dynamics

Numerical methods

Acknowledgment

- Institute of Scientific Computing Sebastian Aland, Rainer Backofen, Wieland Marth, Ingo Nitschke, Simon Praetorius, Sebastian Reuter, Florian Stenger, Jörg Wensch, Thomas Witkowski
- TU Dortmund Andreas Rätz, Matthias Röger
- UC Irvine John Lowengrub, Fan Wang, Xiangrong Li
- Illinois Institute of Technology Shuwang Li
- University of Trondheim Knut Erik Teigen

