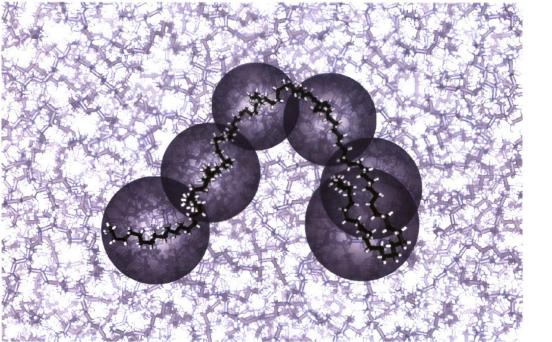
Memory Matters



W.J. Briels

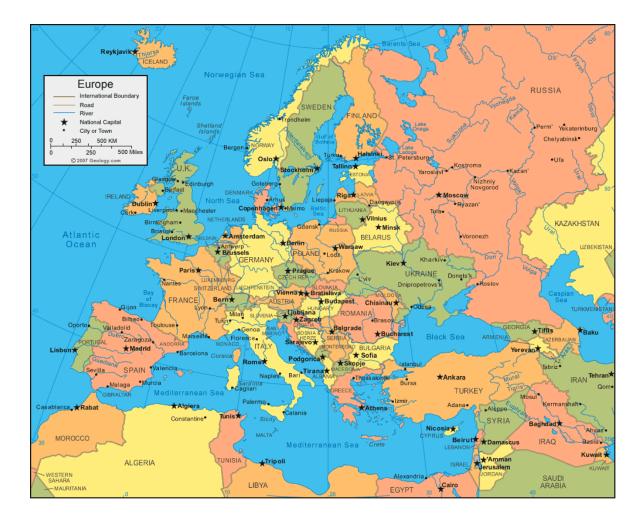
A. Van den Noort, W.K. Den Otter, P. Kindt, J.T. Padding, J. Sprakel, I.S. Santos de Oliveira, D. Vlassopoulos, C. Bailly, J. Dhont, L. Liu.

Memory and transient forces in coarse grain simulations of complex polymers

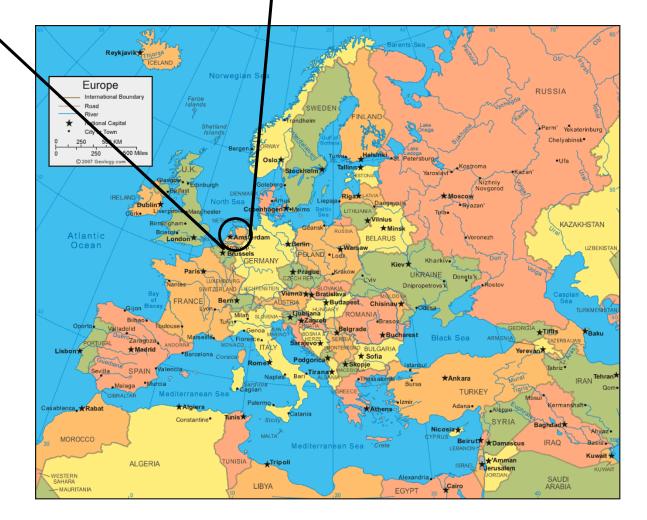
Memory and transient forces in coarse grain simulations of complex polymers

But first

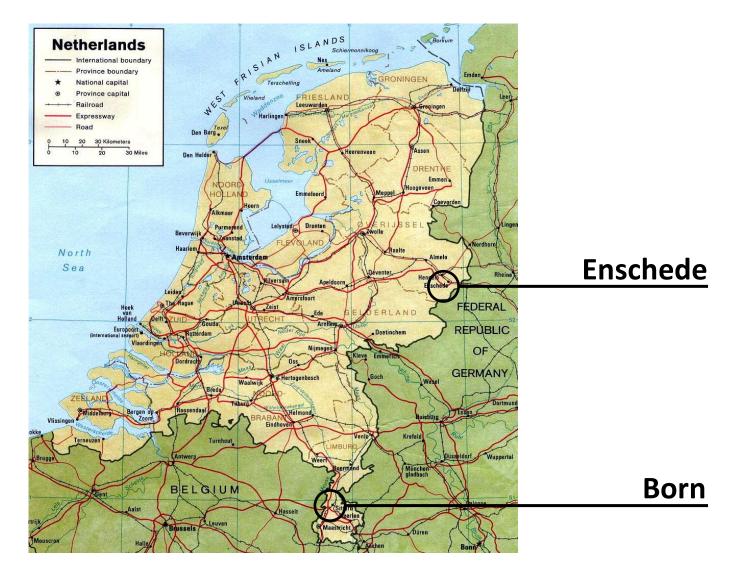
Netherlands and environments

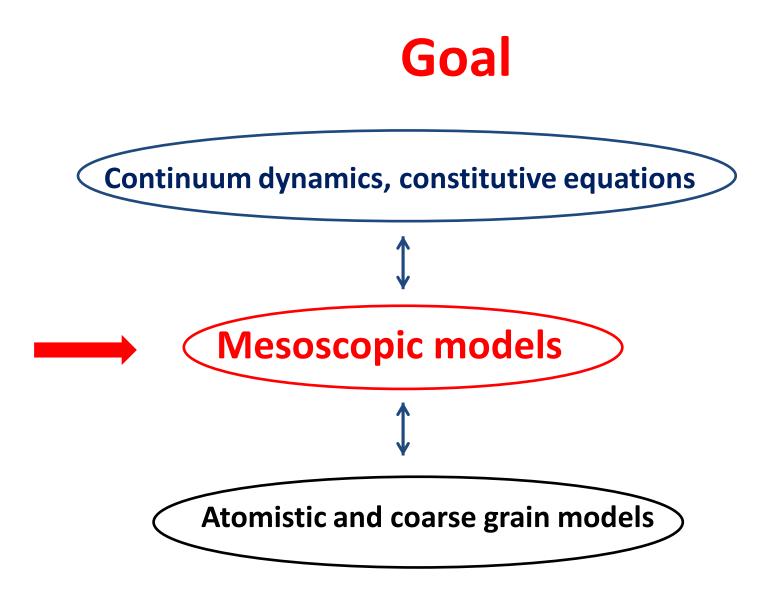


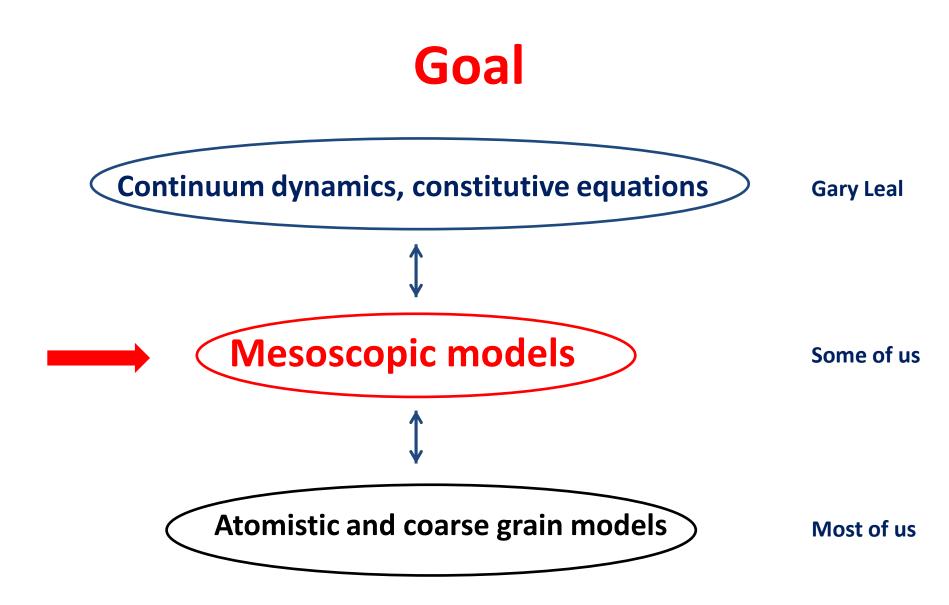
Netherlands and environments



Born







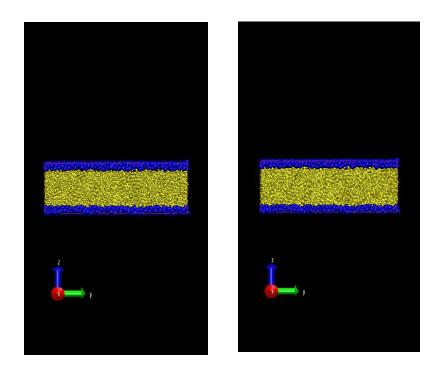
Examples

Rheology of

- Star polymers
- Telechelic polymer solutions
- Colloids in visco-elastic media
- Pressure sensitive adhesives

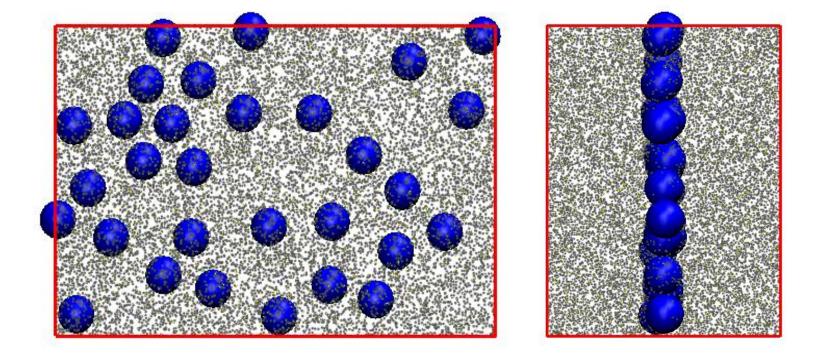
Interplay between internal and translational dynamics

Pressure sensitive adhesives

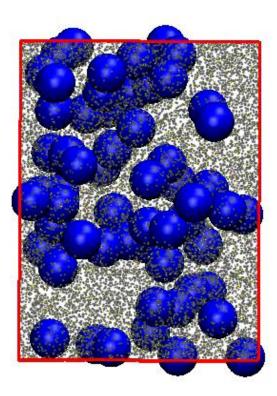


Weak adhesion Strong adhesion

Colloids in polymer solutions



You want it bigger?



Crash course on coarse graining

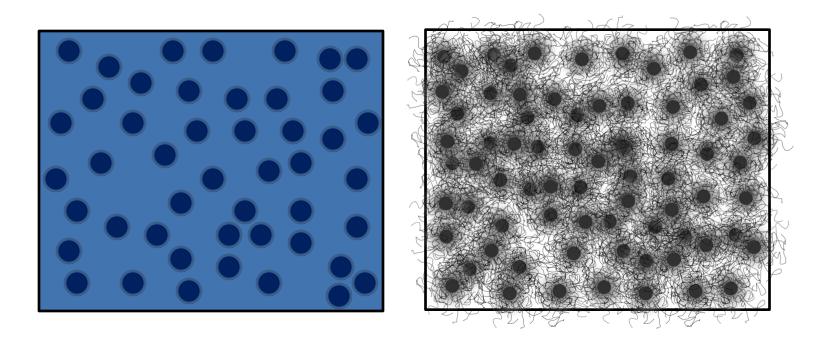
Crash course on coarse graining

Terminology

Retained coordinates = Particles Eliminated coordinates = Bath

Coarse Grain Picture

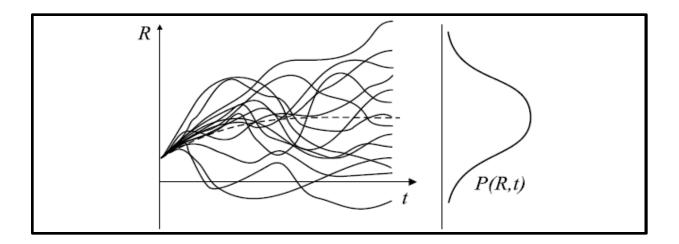
Experimentally: limited resolution Simulationally: limited computing power Conceptionally: enlarged understanding



Strategy

Consider a particle with given initial position and initial velocity

Plot its path for different initial configurations and velocities of the bath



At time t you will get a distribution of positions and velocities

Generalized Langevin equation

$$\frac{dP_n}{dt}(t) = -\frac{\partial A}{\partial R_n}(t) - \sum_m \int_0^t d\tau \frac{P_m(\tau)}{M} \beta \left\langle F_m^R F_{n,t-\tau}^R \right\rangle_B(\tau) + F_{n,t}^R \qquad \left\langle F_{n,t}^R \right\rangle_B = 0$$

Generalized Langevin equation

$$\frac{dP_n}{dt}(t) = -\frac{\partial A}{\partial R_n}(t) - \sum_m \int_0^t d\tau \frac{P_m(\tau)}{M} \beta \left\langle F_m^R F_{n,t-\tau}^R \right\rangle_B(\tau) + F_{n,t}^R \qquad \left\langle F_{n,t}^R \right\rangle_B = 0$$

Markov approximation

$$\frac{dP_n}{dt}(t) = -\frac{\partial A}{\partial R_n}(t) - \sum_m \frac{P_m(t)}{M} \int_0^t d\tau \beta \left\langle F_m^R F_{n,t-\tau}^R \right\rangle_B(t) + F_{n,t}^R$$

Generalized Langevin equation

$$\frac{dP_n}{dt}(t) = -\frac{\partial A}{\partial R_n}(t) - \sum_m \int_0^t d\tau \frac{P_m(\tau)}{M} \beta \left\langle F_m^R F_{n,t-\tau}^R \right\rangle_B(\tau) + F_{n,t}^R \qquad \left\langle F_{n,t}^R \right\rangle_B = 0$$

$\begin{aligned} \mathbf{Markov approximation} \\ \frac{dP_n}{dt}(t) &= -\frac{\partial A}{\partial R_n}(t) - \sum_m \frac{P_m(t)}{M} \int_0^t d\tau \beta \left\langle F_m^R F_{n,t-\tau}^R \right\rangle_B(t) + F_{n,t}^R \\ \frac{dP_n}{dt}(t) &= -\frac{\partial A}{\partial R_n}(t) - \sum_m \frac{P_m(t)}{M} \xi_{m,n}(t) + F_{n,t}^R \qquad \left\langle F_m^R F_{n,\tau}^R \right\rangle(t) = 2kT\xi_{m,n}\delta(t-\tau) \end{aligned}$

Generalized Langevin equation

$$\frac{dP_n}{dt}(t) = -\frac{\partial A}{\partial R_n}(t) - \sum_m \int_0^t d\tau \frac{P_m(\tau)}{M} \beta \left\langle F_m^R F_{n,t-\tau}^R \right\rangle_B(\tau) + F_{n,t}^R \qquad \left\langle F_{n,t}^R \right\rangle_B = 0$$

Markov approximation

$$\frac{dP_n}{dt}(t) = -\frac{\partial A}{\partial R_n}(t) - \sum_m \frac{P_m(t)}{M} \int_0^t d\tau \beta \left\langle F_m^R F_{n,t-\tau}^R \right\rangle_B(t) + F_{n,t}^R$$
$$\frac{dP_n}{dt}(t) = -\frac{\partial A}{\partial R_n}(t) - \sum_m \frac{P_m(t)}{M} \xi_{m,n}(t) + F_{n,t}^R \qquad \left\langle F_m^R F_{n,\tau}^R \right\rangle(t) = 2kT\xi_{m,n}\delta(t-\tau)$$

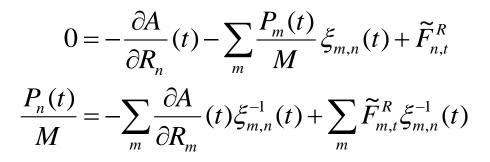
Overdamped; average over long periods

$$0 = -\frac{\partial A}{\partial R_n}(t) - \sum_m \frac{P_m(t)}{M} \xi_{m,n}(t) + \widetilde{F}_{n,t}^R$$

See Masao Doi

Brownian dynamics

General



Brownian dynamics

General

$$0 = -\frac{\partial A}{\partial R_n}(t) - \sum_m \frac{P_m(t)}{M} \xi_{m,n}(t) + \widetilde{F}_{n,t}^R$$
$$\frac{P_n(t)}{M} = -\sum_m \frac{\partial A}{\partial R_m}(t) \xi_{m,n}^{-1}(t) + \sum_m \widetilde{F}_{m,t}^R \xi_{m,n}^{-1}(t)$$

Simple example (diagonal friction matrix)

$$\frac{dR_n}{dt} = -\frac{1}{\xi_n} \frac{\partial A}{\partial R_n} + \frac{\widetilde{F}_{n,t}^R}{\xi_n}$$

Brownian dynamics

General

$$0 = -\frac{\partial A}{\partial R_n}(t) - \sum_m \frac{P_m(t)}{M} \xi_{m,n}(t) + \widetilde{F}_{n,t}^R$$
$$\frac{P_n(t)}{M} = -\sum_m \frac{\partial A}{\partial R_m}(t) \xi_{m,n}^{-1}(t) + \sum_m \widetilde{F}_{m,t}^R \xi_{m,n}^{-1}(t)$$

Simple example (diagonal friction matrix)

$$\frac{dR_n}{dt} = -\frac{1}{\xi_n} \frac{\partial A}{\partial R_n} + \frac{\widetilde{F}_{n,t}^R}{\xi_n}$$

A bit more precise

$$dR_n = -\frac{1}{\xi_n} \frac{\partial A}{\partial R_n} dt + \frac{\partial}{\partial R_n} \frac{kT}{\xi_n} dt + \sqrt{\frac{2kTdt}{\xi_n}} ran$$

How about memory?

Borneo

Mercator

Mercator = Kremer

Briels

In the small scale simulation the deformation of the eliminated degrees of freedom is correlated with the recent displacements of the particles

Briels

In the small scale simulation the deformation of the eliminated degrees of freedom is correlated with the recent displacements of the particles

Briels

In the small scale simulation the deformation of the eliminated degrees of freedom is correlated with the recent displacements of the particles

Everaers

Particles move with their nose in the wind and their hair in the back

Briels

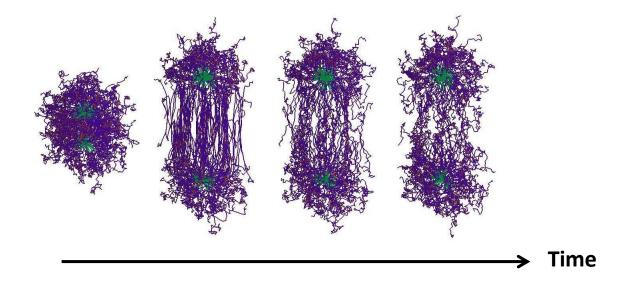
In the small scale simulation the deformation of the eliminated degrees of freedom is correlated with the recent displacements of the particles

Everaers

Particles move with their nose in the wind and their hair in the back*

*Not because of inertia, but because of entanglements with other stars

The cause of memory



Introduce variables to keep track of the state of the bath

RaPiD

Degrees of freedom

- Particle positions
- State of the bath

$$\left\{ \begin{aligned} &\vec{R}_i; i = 1, \dots, N \\ & \left\{ n_{ij}; \forall pairs \right\} \end{aligned} \right\}$$

RaPiD

Degrees of freedom

- Particle positions
- State of the bath

$$\left\{ \begin{aligned} &\vec{R}_i; i = 1, \dots, N \\ & \left\{ n_{ij}; \forall pairs \right\} \end{aligned} \right\}$$

At equilibrium

 $\langle n_{ij} \rangle = n_0(R_{ij})$

RaPiD

Degrees of freedom

- Particle positions
- State of the bath

$$\left\{ \begin{matrix} \vec{R}_i ; i = 1, \dots, N \\ n_{ij} ; \forall pairs \end{matrix} \right\}$$

At equilibrium

$$\langle n_{ij} \rangle = n_0(R_{ij})$$

Free energy

$$\Phi(R^{3N}, \{n_{ij}\}) = A(R^{3N}) + \frac{1}{2}\alpha \sum_{i,j} (n_{ij} - n_0(R_{ij}))^2$$

RaPiD, Eqs. of motion

$$d\vec{R}_{i} = \frac{1}{\xi_{i}} \left[-\vec{\nabla}_{i}A + \vec{F}_{i}^{T} \right] dt + r\vec{a}n_{i}$$

$$dn_{ij} = -\frac{1}{\tau} \left[n_{ij} - n_{0}(R_{ij}) \right] dt + ran_{ij}$$

Brown
Onsager

RaPiD, Eqs. of motion

$$d\vec{R}_{i} = \frac{1}{\xi_{i}} \left[-\vec{\nabla}_{i}A + \vec{F}_{i}^{T} \right] dt + r\vec{a}n_{i}$$
$$dn_{ij} = -\frac{1}{\tau} \left[n_{ij} - n_{0}(R_{ij}) \right] dt + ran_{ij}$$

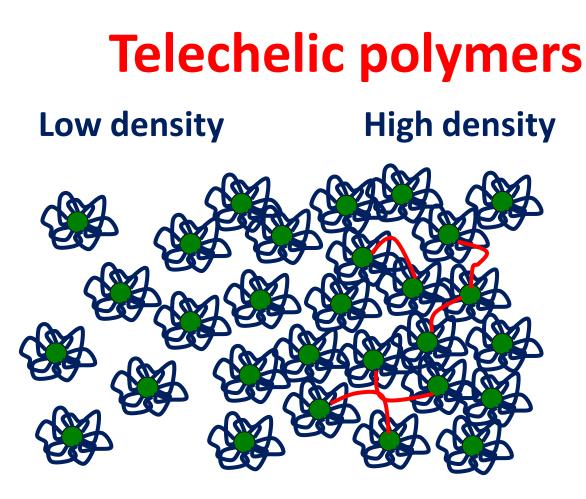
$$\vec{F}_i^T = \alpha \sum_j \left[n_{ij} - n_0(R_{ij}) \overrightarrow{\nabla}_i n_0(R_{ij}) \right]$$

Transient force

Examples

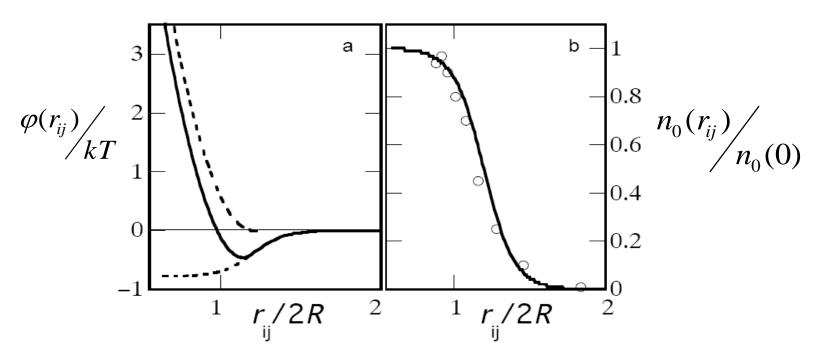
-Telechelic Polymer Solutions

- Pressure sensitive adhesives



 n_{ij} = number of bridges

Phi and n



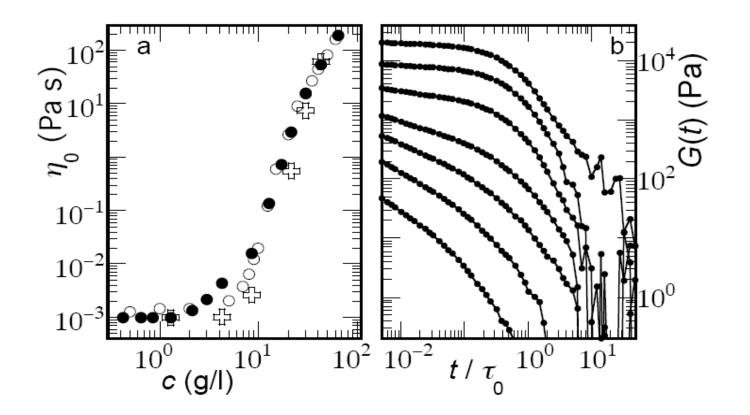
Pair-wise free energy from SCF calculations

$$A(R^{3N}) = \sum_{\langle i,j \rangle} \varphi(R_{ij})$$

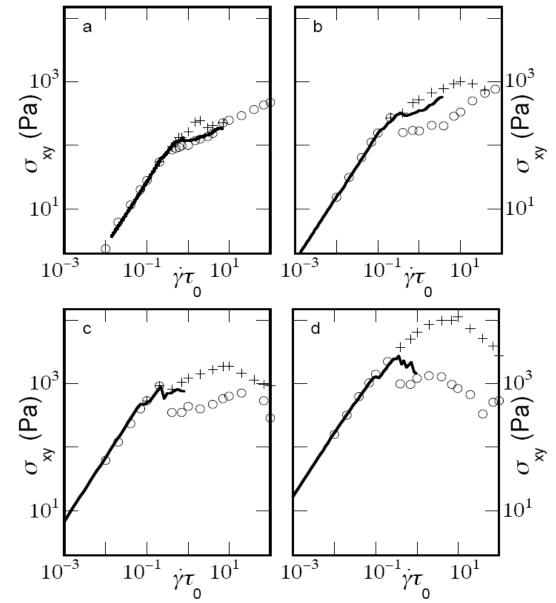
Parameters

$$\tau(R_{ij}) = \tau_0 \exp(-R_{ij}/\lambda)$$
$$\xi_i = \xi_0 + \xi_b \sum_j \sqrt{n_{ij}n_0(R_{ij})}$$
$$\lim_{R \to 0} n_0(R) = \frac{f}{12}$$

Linear rheology



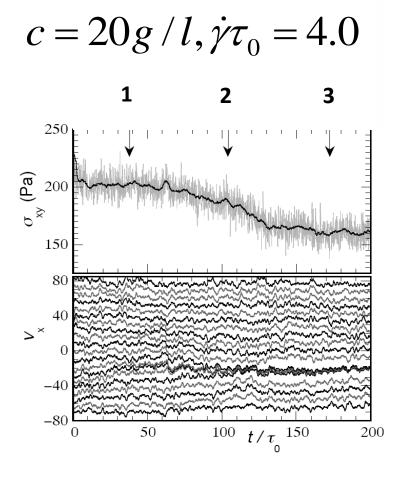
Viscosities used to fix α

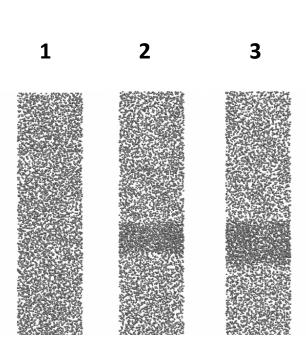


Predicted non linear rheology

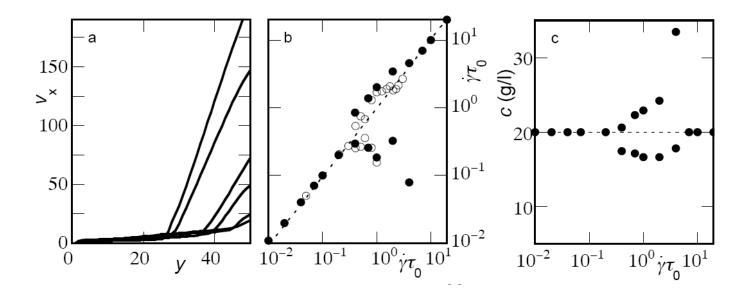
From upper left to lower right, increasing concentration

Shear banding



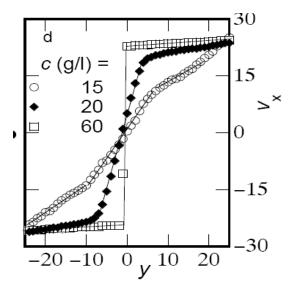


Shear banding 20 g/l

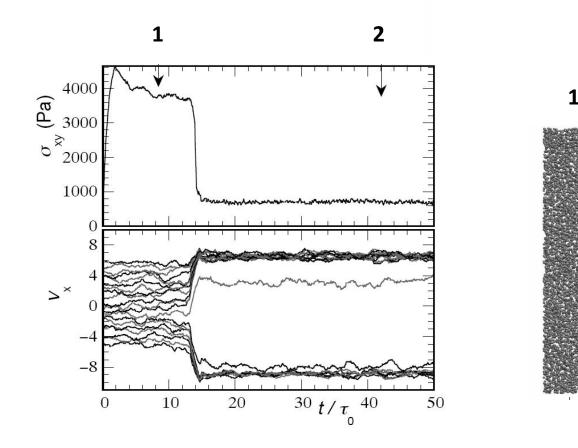


Open symbols from experiments, everything else from simulations

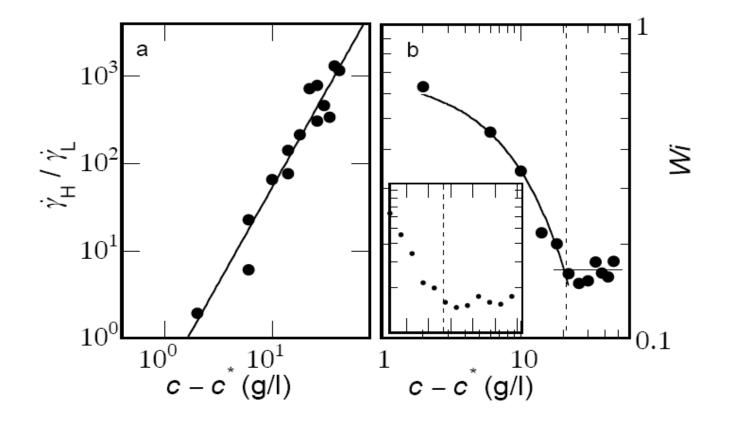
Banding to fracture



Melt fracture

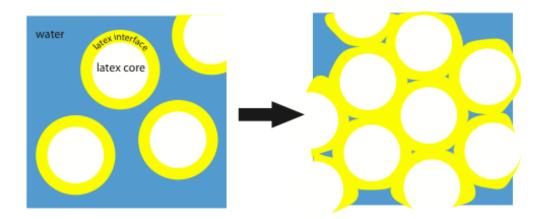


Melt fracture



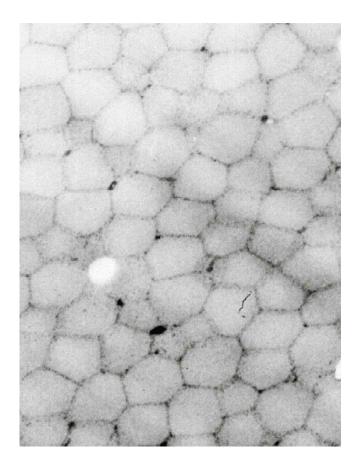
Pressure sensitive adhesives

Dry latex dispersion stabilized by surfactant



Can we simulate Scotch Tape ??

Pressure sensitive adhesives



Transmission Ellectron Micrograph

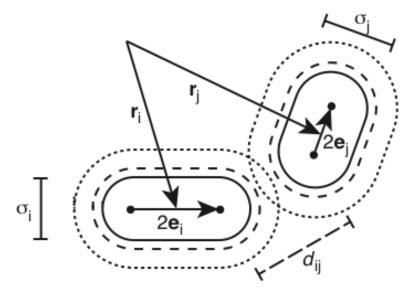
Sticky, deformable latex particles

Each latex particle is an extensible hemispherical cylinder

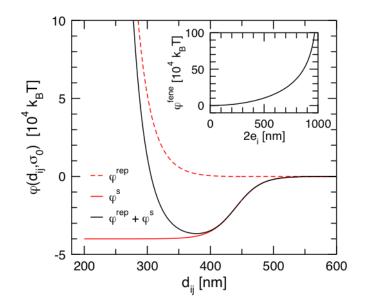
- Extensible particle with constant volume
- Intraparticle fene spring

$$\varphi^{fene}(e) = -\frac{1}{2}kR_0^2 \ln\left[1 - \left(\frac{2e}{R_0}\right)^2\right]$$

 interparticle interactions are function of closest distance d



Conservative interactions



- Soft repulsive interaction
- Attractive 'sticker' interaction, proportional to the number of hydrogen bonds

Transient interactions

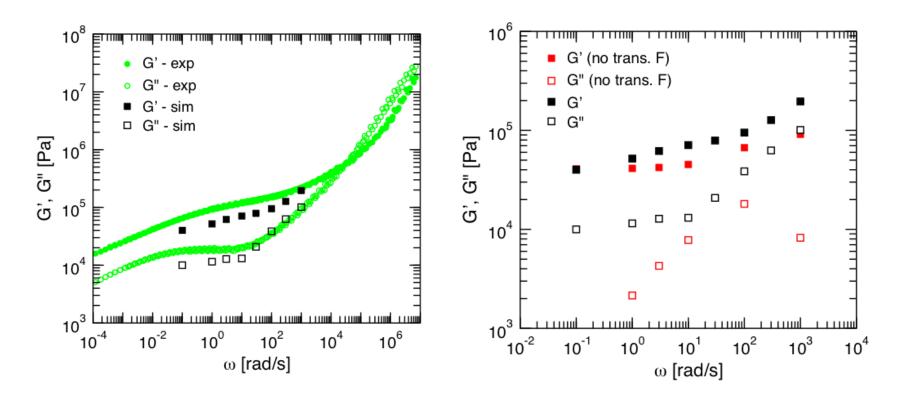
Total free energy

$$\Phi(R, n^s, n^e) = A(R) + B(R, n^s, n^e)$$

Two types of transient forces

$$B(R, n^{s}, n^{e}) = \frac{1}{2} \sum_{i \neq j} \left\{ \frac{1}{2} \alpha^{s} \left[n_{ij}^{s} - n_{0}^{s} (d_{ij}, \sigma_{ij}) \right]^{2} + \frac{1}{2} \alpha^{e} \left[n_{ij}^{e} - n_{0}^{e} (d_{ij}, \sigma_{ij}) \right]^{2} \right\}$$

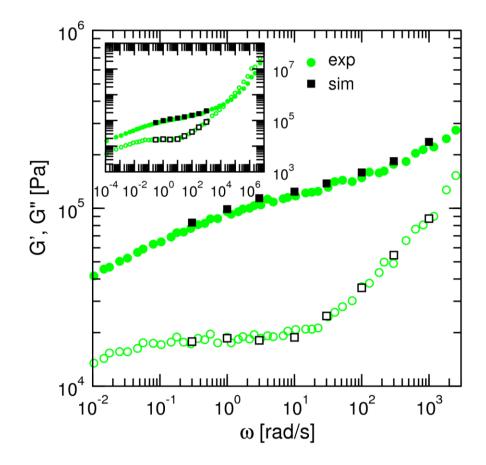
Moduli using initial rough estimates for parameters



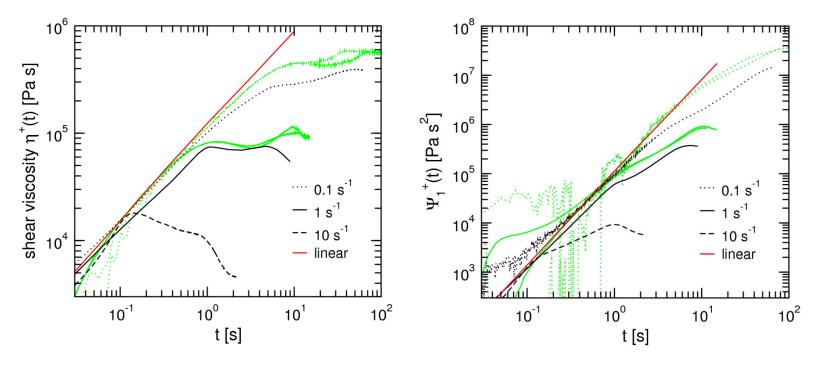
Black: simulation

Red: no transient forces

Moduli after some parameter tweaking



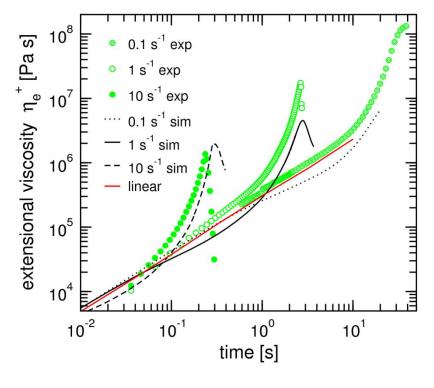
Onset of steady shear flow



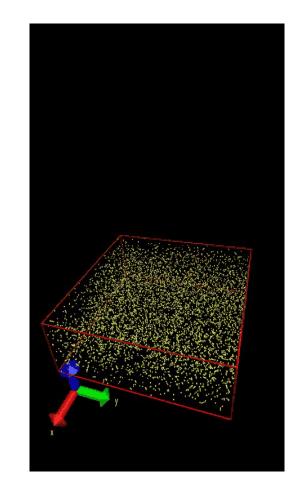
Shear viscosity

First normal stress

Onset of steady uniaxial extensional flow



Good agreement.



Thank You

Brrrrrrrrrrrrrrrrrrrrrrr

Potential of mean force

$$A(R^{3N}) = \sum_{j} a(\rho_j(R^{3N}))$$
$$\rho_j(R^{3N}) = \sum_{k} w(R_{jk})$$

Taylor expansion

$$a(\rho_j) = a(\rho) + \frac{P}{\rho} \left(\frac{\rho_j}{\rho} - 1\right) + \frac{1}{\rho} \frac{1}{\kappa_T} \left(1 - 2\kappa_T P\right) \frac{1}{2} \left(\frac{\rho_j}{\rho} - 1\right)^2$$
$$- \frac{5}{\rho} \frac{1}{\kappa_T} \left(1 - \frac{6}{5} \kappa_T P - \frac{1}{5} \frac{\partial \ln \kappa_T}{\partial \ln \rho}\right) \frac{1}{6} \left(\frac{\rho_j}{\rho} - 1\right)^3 + \dots$$