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Thermal noise in a continuum 

fluid
o Navier-Stokes equations with thermal noise (Landau & Lifshitz):

o Note that the thermal noise appears in the stress tensor so will 

conserve mass and momentum.  It should also obey the fluctuation-

dissipation theorem (Landau & Lifshitz):
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Simple Lattice Boltzmann Algorithm

• fi =  partial densities (9 in 2d, 15 in 3d)

• { fi }i =  a discrete probability distribution

• Moments of these distributions are the 
physical variables of interest:

• They evolve via the equation:
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and Ai, Bi, Ci, and Di are chosen so that
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Implementing thermal noise in Lattice-Boltzmann 

method
o Add stochastic stress to pressure tensor1:

o For simple fluids with viscous stress tensor:

the off-diagonal elements of s are independent but diagonal elements are 

not:

o Thermodynamic stability requires this matrix to be positive-definite so it 

can be Cholesky factorized (matrix “square root”) to generate the required 

correlated noise from 3 independent random variables2.
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1. Ladd, J. Fluid Mech. 271, 285 (1994) 2. Ollila, CD, et al., J.C.P. 134, 064902 (2011)



Implementing thermal noise in 

Lattice-Boltzmann method

o LB is not normally energy conserving so thermal noise can leak into 

higher moments and be dissipated there1.  Higher moments must be 

thermalized too1,2:

a > 3.

o Also, the 14th moment directly influences stress dissipation (Dellar) so 

needs to be chosen carefully2:

2. Ollila, CD, et al., J.C.P. 134, 064902 (2011)1. Adhikari, Europhys. Lett. 71, 473 (2005)



How do we know this works?
o In MD we are familiar with using equi-partition to measure T based on 

kinetic energy.  

o In continuum we are measuring over a finite volume so the analogous 

idea is:

o NOTE:  Vs = volume.   What volume should we use?

o Alternatively, we can also Fourier transform the local momentum flux 

(j=u) and look at 



Does T(k=0)=0 matter? 

(It is just a consequence of CM V=0)

We “fix” it byvthermostating the CM velocity using 

a Langevin thermostat 

so that                             for CM.



• Each node represents a fixed area  Ai

• Nodes are distributed onto the lattice

• weights proportional to the opposite enclosed area within the cell.  

Eg. xi1=A1/dx2

• Easily generalized to 3-D (use volume instead of area).

• Peskin’s Immersed boundary method is similar.  With 

compact support spreading 2 lattice sites from nodes lattice 

effects can be almost eliminated.

• First done for non-point objects in LB by Duenweg & 

Lobaskin, NJP (2004).



Modelling:
• Particles live off-lattice and evolve using molecular 

dynamics (written as a package for LAMMPS).  

• Particles are mapped to the mesh using NDA algorithm and 

hydrodynamic forces on each particle computed from:

•  is “drag” coefficient (to be determined), vp is the particle 

velocity, and ui is the interpolated fluid velocity at node i.  

The resulting torque is also computed for rotational motion.

•The fluid experience an equal and opposite force.



Drag Force

Brinkman Theory: Felderhoff et al., Bhatt & Sacheti



Does inertia matter for small Re?

Point particle result: 

Segre & Siilberberg (1961), 

Ho & Leal (1974)



Drag Torque

Brinkman Theory: Felderhoff et al.



Impenetrable, no-slip limit: 

Determining drag coefficient :
Particle experiences drag force and torque:  

particle radius

The hydrodynamic radius 

of the porous particle is 

only consistent with that 

for an impenetrable 

particle for both forces and 

torques if  is chosen to be  

quite large.
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Can this be turned into a conservative 

coupling?

Consider the collision of two point particles

ui

vi If the collision conserves mass and 

momentum (no potential forces) then:



Reformulate particle-fluid coupling as 

a collision:

mv=node mass

mu=fluid mass interacting with node via interpolation stencil

We also take: 



Hydrodynamics Radius:



Picking  in this way also give consistent particle-particle 

hydrodynamic interactions…

Fast particles

Slow particles

Fast particles

Slow particles

and diffusion with no additional adjustable parameters 
(other schemes have required Langevin noise on  force coupling 

to get correct diffusive motion)

B=2.837 (Kremer & Dunweg,1993)

B



Velocity auto-correlation 

function



Two-particle diffusion:
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Theory curve: Crocker et al.,PRL 85, 888 (2000)
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Polymer dynamics:

Point particles

Particles with

extended size



Polymer Diffusion
Analytic value known = 2.837

A=1.630.01 from bead-spring calculation1

1. Dünweg et al., JCP 117, 914 (2002).

Expected:

We do not expect a slip term as in Kirkwood model 

because:

• we imposed no-slip

Analytic value known = 2.837

A=1.630.01 from bead-spring calculation1

Slope gives

B=2.80.05

Asymptotic value

A=1.67 0.05



Static scaling

=0.5977 for SAW

Direct measurement gives                         

using N=48-96

gives =0.586  0.005



Polymer dynamics: Rouse-mode Analysis

For Zimm model one expects

and

For Zimm model one expects

and
Slope gives z=2.97  0.04

using  from S(k)



Dynamical Scaling: S(k,t)

Zimm model predicts                                assuming

one is looking at internal motions of the chain.

But there is no clear separation of time scales of CM 

motion and internal monomer motion.  As a result

one should expect1,2

To get Zimm prediction should measure:

1. Mussawisade et al., JCP 123, 144905 (2005).

2. Winkler et al., Macromol. Theory Sim. 6, 1007 (1997).



32-mer

64-mer gives 2.54,

closer to 8/32.67

Ollila, CD, et al., JCP 134, 064902 (2011)



Polymer in a channel
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2D to 3D crossover

MDLBLangevin



Dynamic Scaling

Continuous change of z-exponent from 2D (2) to 

3D value (3) as confinement is reduced.



Diffusion



Polymer in pressure driven 

flow with trough:

(flat top wall

removed

for viewing)



Conclusions
 Fluctuations and particles were included in a lattice-

Boltzmann model with a conservative coupling 
between MD and LB

 Intertia can matter at small Re for particles in flow 

 Particles included in a way that guaranteed 
conservative coupling and gave consistency of 
hydrodynamic size independent of the way it is 
measured (drag force, torque, diffusion…)

 Polymer structure and dynamics match very well 
with theory and gives results for S(k,t) in lab frame
and CM frame consistent with results from MPC 
(Winkler et al.)

 Confinement gives smooth crossover from 2D to 3D
dynamic exponent


