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Thermal noise In a continuum
fluid

o Navier-Stokes equations with thermal noise (Landau & Lifshitz):

(at + 8ozuoc)p — O

p(at + uaﬁa)uﬁ = _aa (Pﬂa + S,Ba ) + aa(naﬂyv a)/uv)

o Note that the thermal noise appears in the stress tensor so will
conserve mass and momentum. It should also obey the fluctuation-
dissipation theorem (Landau & Lifshitz):




Simple Lattice Boltzmann Algorithm

- f. = partial densities (9 in 2d, 15 in 3d)
- {f.}; = adiscrete probability distribution

- Moments of these distributions are the
physical variables of interest:

(0, +e,0,)f ==, (f(x,t) - f7(x,t,{f})



Implementing thermal noise In Lattice-Boltzmann
method

o Add stochastic stress to pressure tensorl:
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o Thermodynamic stability requires this matrix to be positive-definite so it
can be Cholesky factorized (matrix “square root”) to generate the required
correlated noise from 3 independent random variables?.

1. Ladd, J. Fluid Mech. 271, 285 (1994) 2. Ollila, CD, et al., J.C.P. 134, 064902 (2011)




Implementing thermal noise In
Lattice-Boltzmann method

o LB is not normally energy conserving so thermal noise can leak into
higher moments and be dissipated therel. Higher moments must be

thermalized tool:2:
)
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o Also, the 14" moment directly influences stress dissipation (Dellar) so
needs to be chosen carefully?:
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1. Adhikari, Europhys. Lett. 71, 473 (2005) 2. Ollila, CD, et al., J.C.P. 134, 064902 (2011)



How do we know this works?

In MD we are familiar with using equi-partition to measure T based on
Kinetic energy.

(Ouq(ry)dus(ra)) = 0ap0(T1 — T2)
pt2. PR |

In continuum we are measuring over a finite volume so the analogous

Idea Is: Z ) )2 -
_ _ ( xEVy p( ) U-‘('}-'(X_) )H > 3 T/ ‘
s N = =n] L.

)
NOTE: Vs = volume. What volume should we use?

Alternatively, we can also Fourier transform the local momentum flux
(6j=pou) and look at

T(k) = (|8j(k, 1)|*);/(3kg po)
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Does T(k=0)=0 matter?

(It Is just a consequence of CM V=0)

We “fix” it byvthermostating the CM velocity using
a Langevin thermostat

so that




» Each node represents a fixed area A A,
 Nodes are distributed onto the lattice

weights proportional to the opposite enclosed area within the cell.
Eg. &,=Al/dx?

Easily generalized to 3-D (use volume instead of area).

Peskin’s Immersed boundary method is similar. With
.15 compact support spreading 2 lattice sites from nodes lattice

. 7= effects can be almost eliminated.

* First done for non-point objects in LB by Duenweg &
JEey Lobaskin, NJP (2004).




Modelling:

« Particles live off-lattice and evolve using molecular
dynamics (written as a package for LAMMPS).

» Particles are mapped to the mesh using NDA algorithm and
hydrodynamic forces on each particle computed from:

* v is “drag” coefficient (to be determined), v, Is the particle
velocity, and u; Is the interpolated fluid velocity at node i.
The resulting torgue is also computed for rotational motion.
*The fluid experience an equal and opposite force.



Drag Force

® g : (R N) = (3.3Ax, 320)

Y nan: (Ry, Ry, N) =(:

m sy (RN)=(3.3Ax, 9693)

A 7sp: (R, N) = (3.3Ax, 1473)
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Brinkman Theory: Felderhoff et al., Bhatt & Sachet



Does Inertla matter for small Re?

0.10 0.15 020 025 030 0.35
R/W

Point particle result:
Segre & Siilberberg (1961),
Ho & Leal (1974)



Drag Torqgue O
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Brinkman Theory: Felderhoff et al.




Impenetrable, no-slip limit:
Determlnlng drag coefficient y:
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Particle experiences drag force and torque:

T = 4mna’ (v, /h)n

The hydrodynamic radius
of the porous particle is
only consistent with that
for an impenetrable
particle for both forces and
torques if ¥ is chosen to be
quite large.



Can this be turned into a conservative
coupling?

Consider the collision of two point particles

\ If the collision conserves mass and
Uj momentum (no potential forces) then:




Reformulate particle-fluid coupling as
a collision:

ADnode My (V§ — V)
F*n.- ode — —

At collision At collision

Ap fluid Lz (Uf — u?;)

F f’[ ) . - I -
flurd — —
At collision At collision

m,=node mass
m, =fluid mass interacting with node via interpolation stencil

We also take: [ / Atcoll-'i..s;*-'i(_)*n.. = 1




Hydrodynamics Radius:
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Picking vy in this way also give consistent partlcle partlcle
hydrodynamic interactions..
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Velocity auto-correlation
function
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Two-particle diffusion:
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Theory curve: Crocker et al.,PRL 85, 888 (2000)



Polymer dynamics:

Point particles

- - Particles with
Ty~ - s extended size




..........................

1. Dinweg et al., JCP 117, 914 (2002).

Analytic value known = 2.837

lie known = 2.837

il-spring calculation
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Static scaling

QPRI =0.5977 for SAW

Direct measurement SIES R, — (0.490 )N0!
using N=48-96 "

0 001 002 0.03

0.1 02 05 1.0 2.0 50 100 2 04 06
< (o) k(!

k
S(k) ~k gives v=0.586 + 0.005




Polymer dynamics: Rouse-mode Analysis
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Dynamical Scaling: S(k,t)

_ |
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Zimm model predicts NGSIEININOIA(EI] assuming
one Is looking at internal motions of the chain.

But there Is no clear separation of time scales of CM
motion and internal monomer motion. As a result
one should expect!? S(q.1)=S(q.0)g(g">

To get Zimm prediction should measure:
N
i;n': (f) =1p(f) —rey(! )

. Mussawisade et al., JCP 123, 144905 (2005).
. Winkler et al., Macromol. Theory Sim. 6, 1007 (1997).
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Polymer in a channel

Periodic in x and y



2D to 3D crossover
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FIG. 2. Static structure factor from Langevin simulations probed (a) for N = 32 and (¢) N = 96 in the plane of the walls|
(k| = k(éx+&,)/v2) and (b) for N = 32 and (d) for N = 96 normal to the walls (k, = ke.) at different levels of confinement:
panels (a) and (b) €' = 1.8 (solid line), 0.9 (dashed), 0.5 (dotted) and 0.3 {dot-dashed); panels (¢) and (d) C' = 1.0 (solid line),
0.5 (dashed), 0.3 (dotted) and 0.25 (dot-dashed).




Dynamic Scaling
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FIG. 5. Dynamic scaling for N = 32 in LB fluid along a vector k = k| confined to a plane parallel to the confining walls. As

the spacing between the walls in increased from (a) C' = 0.9 to (b) € = 0.5 and (¢) €' = 0.3, the scaling exponent increases
from z = 2.3 +0.05 to z = 2.75 1+ 0.05

Continuous change of z-exponent from 2D (2) to
3D value (3) as confinement Is reduced.
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FIG. 9. The planar center-of-mass diffusion coefficient as a
function of decreasing degree of confinement in LB (solid sym-
bols) and Langevin simulations (hollow symbols). The shape
of the symbol indicates the degree of polymerization: N=32
(square) and N=96 (circles). The finite-size corrected value
of the diffusion coefficient 1s also shown as horizontal lines for

N=32 (dashed) and N=96 (dotted).



Polymer in pressure driven
flow with trough:

) (flat top wall
I — removed
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Conclusions

Fluctuations and particles were included in a lattice-
Boltzmann model with a conservative coupling
between MD and LB

Intertia can matter at small Re for particles in flow

Particles included in a way that guaranteed
conservative coupling and gave consistency of
hydrodynamic size independent of the way it Is
measured (drag force, torque, diffusion...)

Polymer structure and dynamics match very well
with theory and gives results for S(k,t) in lab frame
and CM frame consistent with results from MPC
(Winkler et al.)

Confinement gives smooth crossover from 2D to 3D
dynamic exponent



