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Top-down approach: 
from Fourier ...

Joseph Fourier
1768-1830

“Analytic theory of Heat”
continuum theory, partial 

differential equations

�J = κ�∇T
thermal 

conductivity

Steady-state condition:
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...to Peierls
kinetic theory of heat transport
Heat carriers: electrons and 
lattice vibrations (phonons)

Electrons. Wiedman-Franz 
law:

Phonons obey a transport 
equation analogous to the 
Boltzmann transport 
equation, but with quantum 
statistics.

κ

σ
= LT

Rudolf 
Peierls

1907-1995

Wednesday, April 25, 2012



Boltzmann-Peierls 
equation for phonons

∂n

∂t
+ v

∂n

∂r
+

F

m

∂n

∂t
=

�
∂n

∂t

�

collision

�
∂n

∂t

�

collision

= −n− n0

τ

Transport 
equation

Relaxation 
time approx.

stationary 
conditions �v · �∇n = −n− n0

τ

linearize n = n0 + δn δn = −τ
∂n0

∂T
�v · �∇T
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Solution of the linearized 
Boltzmann-Peierls equation

the heat flux (power/area) is linked to δn:

using Fourier’s law and 

here we assumed that normal modes 
populations can be treated separately!

δn = −τ
∂n0

∂T
�v · �∇T
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�

s
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8π3
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Solution of the Boltzmann-
Peierls equation

In a more human-readable and computer-
practicable way:

more approximations on top:

single relaxation time

v: speed of sound

καβ =
�

s,q

C(s, q)vαvβτ

phonon mean free path λ
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Collisions: 
where does λ (or τ) come from?

Anharmonicity: phonon-phonon scattering   
(3-phonon processes are the lowest order)

Defects

Isotopic mass disorder

Boundaries
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Simple models from BP:
Callaway’s model (1959)

Disregard distinct phonon branches

Assume linear dispersion:

Effective lifetime τ* and λ* 

Refinements followed, but do not work for 
nanostructures (more parameters) 

ω = v̄gq

κ(T ) = ρ−2/3

� ωD

0
dωλ∗

�ω

2π

∂n

∂T
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Thriving research activity 
in thermal transport
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The thermal conductivity is just another response 
function. 

Green-Kubo theory:

or Einstein relation:

Atomistic methods: 
equilibrium MD

καβ =
1

kBT 2
lim

t→∞
lim

V→∞

1
2V

d

dt
�[Rα(t) − Rβ(0)]2�

κ =
1

kT 2V

� ∞

0
dt�J(o)J(t)�

Size and time convergence require special care
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Size and time convergence: 
carbon nanotubes

Several long (100 ns) 
runs are needed

need to sample well low 
frequency modes, which 
contribute a lot
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Size and time convergence: 
graphene

k converges, unlike purely 
2D and 1D models: 
flexural modes

Convergence occurs from 
above: in general 
convergence is non-
monotonic 

phonons are heat carriers 
but also scatterers
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MD, lattice dynamics and the 
Boltzmann-Peierls equation

Shopping list:

Normal modes ei: diagonalization of the force 
constant matrix 

Group velocities: dispersion curves

Phonon lifetimes: projection of a MD trajectory 
on the normal modes (all orders of anharmonicity)

καβ =
�

s,q

C(s, q)vαvβτ
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Phonon lifetimes from MD

v: from dispersion curves

Green-Kubo formula for τ:

Energy of mode i:

Projection of the atomic 
displacements over the 
eigenmode ei of the dynamical 
matrix Ladd, Moran, Hoover Phys. Rev. B 34, 5058 (1986)

P. Chantrenne et al. J. Appl. Phys. 97, 104318 (2005)
A.J.H McGaughey et al. Phys. Rev. B 69, 094303 (2004)

€ 

λi = viτ i

τ i = 2 dt Ei(0)Ei(t)
0
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Resolving contributions to k 
-> customize heat transport

DD & G. Galli PRL 99, 255502 (2007)

Suspended CNT:   ~1600 W/m K
On a Si substrate:    ~250 W/m K

Wednesday, April 25, 2012



Non-Equilibrium MD

Use Fourier’s law

Thermostats are applied to 
hot/cold temperature 
reservoirs

Temperature gradients are 
computed at stationary non-
equilibrium conditions

Size scaling. Usually: 1
κL

=
1
k

+
A

L

hot cold hot
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Comparing EMD and NEMD
Good news: sometimes they give the same result

EMD

NEMD

holey a-Si

Replicated 512 atoms a-Si units

Truly amorphous system

amorphous silicon

1/k is not linear  
with 1/L 

Y. He, DD, G. Galli, APL (2011)
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Comparing EMD and NEMD
... but some other times they don’t! (graphene)

10 100 1000
L

x
/2 (nm)

0

400

800

1200

1600

2000

2400

κ
 (

W
/m

/K
)

NEMD
RNEMD
RNEMD

1 126 400 atoms

3 344 340 atoms

EMD Green-Kubo

L.F. Pereira, DD (in preparation)
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(non)-Equilibrium phonon 
populations

non-equilibrium phonon 
populations must be 
explicitly considered

this would imply failure of 
the single-mode relaxation 
time approximation

1

1

1

1

1

1

1

1

0.1 1 10 50
Frequency (THz)

1

layer 2

layer 10

n*
N

EM
D

/E
M

D

Wednesday, April 25, 2012



(Dis)advantages of MD
Full details, atomistic treatment

Relatively large scales (million-atom systems)

No truncation of anharmonicity

Possibility to simulate systems out of equilibrium 

No quantum effects (important at room temperature for 
Si, crucial for C) 

Need for very accurate forcefields: so far the method 
cannot be implemented in a DFT framework
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Other atomistic 
approaches

ballistic transport by non-equilibrium Green’s 
function or scattering theory (elastic scattering)

very good at low T, but no anharmonicity

self-consistent solution of the Boltzmann-Peierls 
equation (limited to 3-phonon scattering)

extremely expensive, and fails at high T
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Recent and future 
developments 

neural network approximation of DFT potentials

recently applied to phase-changing materials

pushing the limit of the scattering matrix 
approach to million atom simulations

hard-matter/soft-matter interfaces: model 
systems and realistic composite materials
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Chances for multiscale 
modeling?

Systematic application of DFT-quality neural 
network potentials

How much can we learn from model systems? 

Energy transfer in biological systems (cell 
membranes)

Quantum dynamics
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