multiscale aspects of thermal transport

davide donadio mpip-mainz

Top-down approach: from Fourier ...

Joseph Fourier 1768–1830 "Analytic theory of Heat" continuum theory, partial differential equations

Steady-state condition:

thermal conductivity

...to Peierls kinetic theory of heat transport

Heat carriers: electrons and lattice vibrations (phonons)

Selectrons. Wiedman-Franz
law: $\frac{\kappa}{\sigma} = LT$

Phonons obey a transport equation analogous to the Boltzmann transport equation, but with quantum statistics.

Rudolf Peierls 1907-1995

> Oxford Classic Texts IN THE PHYSICAL SCIENCES

Electrons and Phonons

J. M. Ziman

Boltzmann-Peierls equation for phonons $\frac{\partial n}{\partial t} + v\frac{\partial n}{\partial r} + \frac{F}{m}\frac{\partial n}{\partial t} = \left(\frac{\partial n}{\partial t}\right)_{collision}$ Transport equation Relaxation $\left(\frac{\partial n}{\partial t}\right)_{collision} = -\frac{n-n^0}{\tau}$ stationary $\vec{v} \cdot \vec{\nabla} n = -\frac{n - n^0}{\tau}$ conditions $n = n^0 + \delta n \longrightarrow \delta n = -\tau \frac{\partial n^0}{\partial T} \vec{v} \cdot \vec{\nabla} T$ linearize

Solution of the linearized Boltzmann-Peierls equation the heat flux (power/area) is linked to δn : $\vec{J} = \sum_{BZ} \int_{BZ} d^3q \frac{\hbar\omega_s(q)}{8\pi^3} \delta n_s(q) \vec{v}_s(q)$ using Fourier's law and $\delta n = -\tau \frac{\partial n^0}{\partial T} \vec{v} \cdot \vec{\nabla} T$ $J_{\alpha} = \sum \int_{BZ} \int_{BZ} d^3q \frac{\hbar\omega_s(q)}{8\pi^3} \frac{\partial n_s^0(q)}{\partial T} \tau v_{s,\alpha}(q) v_{s,\beta}(q) \nabla_{\beta} T$ $\kappa_{lphaeta}$ here we assumed that normal modes populations can be treated separately!

Wednesday, April 25, 2012

Solution of the Boltzmann-Peierls equation

In a more human-readable and computerpracticable way:

$$\kappa_{\alpha\beta} = \sum C(s,q) v_{\alpha} v_{\beta} \tau$$

phonon mean free path λ

more approximations on top:
single relaxation time
v: speed of sound

s,q

Collisions: where does λ (or τ) come from?

Anharmonicity: phonon-phonon scattering (3-phonon processes are the lowest order)

Ø Defects

Isotopic mass disorder

Boundaries

 $\tau_b^{-1} = (\langle 1/c \rangle_b lF)^{-1},$

$$\tau_a^{-1} = BT\omega^2 e^{-C/T},$$

$$\tau_i^{-1} = A \omega^4$$
.

Simple models from BP: Callaway's model (1959) Disregard distinct phonon branches Assume linear dispersion: $\omega = \bar{v_q}q$ \oslash Effective lifetime τ^* and λ^* $\kappa(T) = \rho^{-2/3} \int_{0}^{\omega_{D}} d\omega \lambda^{*} \frac{\hbar\omega}{2\pi} \frac{\partial n}{\partial T}$

Refinements followed, but do not work for nanostructures (more parameters)

Thriving research activity in thermal transport

new (and nanostructured) thermoelectric materials

Atomistic methods: equilibrium MD

The thermal conductivity is just another response function.

Second Green-Kubo theory: $\kappa = \frac{1}{kT^2V} \int_0^\infty dt \langle J(o)J(t) \rangle$

or Einstein relation:

 $\kappa_{\alpha\beta} = \frac{1}{k_B T^2} \lim_{t \to \infty} \lim_{V \to \infty} \frac{1}{2V} \frac{d}{dt} \langle [R_{\alpha}(t) - R_{\beta}(0)]^2 \rangle$

Size and time convergence require special care

Size and time convergence: carbon nanotubes

Several long (100 ns) runs are needed

need to sample well low frequency modes, which contribute a lot

Size and time convergence: graphene

- k converges, unlike purely
 2D and 1D models:
 flexural modes
- Convergence occurs from above: in general convergence is nonmonotonic
- phonons are heat carriers but also scatterers

L.F. Pereira, DD (in preparation)

MD, lattice dynamics and the Boltzmann-Peierls equation

 $\kappa_{\alpha\beta} = \sum_{s,q} C(s,q) v_{\alpha} v_{\beta} \tau$

Shopping list:

Normal modes e_i: diagonalization of the force constant matrix

Group velocities: dispersion curves

Phonon lifetimes: projection of a MD trajectory on the normal modes (all orders of anharmonicity)

Phonon lifetimes from MD

Green-Kubo formula for τ :

Energy of mode *i*:

Projection of the atomic displacements over the eigenmode e_i of the dynamical matrix

$$\lambda_{i} = v_{i}\tau_{i} \qquad \text{v: from dispersion curves}$$

$$\tau_{i} = 2\int_{0}^{\infty} dt \langle E_{i}(0)E_{i}(t) \rangle$$

$$E_{i} = \frac{\omega_{i}^{2}S_{i}^{*}S_{i}}{2} + \frac{\dot{S}^{*}\dot{S}}{2}$$

$$S_{i}(q) = N^{-1/2}\sum_{j}^{N} \sqrt{M}e^{-iqr_{j,0}}e_{i}^{*}(q) \cdot u_{j}$$

Ladd, Moran, Hoover Phys. Rev. B 34, 5058 (1986) P. Chantrenne et al. J. Appl. Phys. 97, 104318 (2005) A.J.H McGaughey et al. Phys. Rev. B 69, 094303 (2004)

Resolving contributions to k -> customize heat transport

Suspended CNT: ~1600 W/m K On a Si substrate: ~250 W/m K

DD & G. Galli PRL 99, 255502 (2007)

Non-Equilibrium MD

 $\frac{1}{\kappa_L} = \frac{1}{k} + \frac{A}{L}$

O Use Fourier's law

- Thermostats are applied to hot/cold temperature reservoirs
- Temperature gradients are computed at stationary nonequilibrium conditions

Size scaling. Usually:

Comparing EMD and NEMD

Good news: sometimes they give the same result

amorphous silicon

1/k is not linear with 1/L

Y. He, DD, G. Galli, APL (2011)

Comparing EMD and NEMD

... but some other times they don't! (graphene)

(non)-Equilibrium phonon populations

non-equilibrium phonon
 populations must be
 explicitly considered

this would imply failure of the single-mode relaxation time approximation

(Dis)advantages of MD

- Full details, atomistic treatment
- Relatively large scales (million-atom systems)
- No truncation of anharmonicity
- Possibility to simulate systems out of equilibrium
- No quantum effects (important at room temperature for Si, crucial for C)
- Need for very accurate forcefields: so far the method cannot be implemented in a DFT framework

Other atomistic approaches

ballistic transport by non-equilibrium Green's function or scattering theory (elastic scattering)
very good at low T, but no anharmonicity
self-consistent solution of the Boltzmann-Peierls equation (limited to 3-phonon scattering)
extremely expensive, and fails at high T

Recent and future developments

neural network approximation of DFT potentials
 recently applied to phase-changing materials

ø pushing the limit of the scattering matrix approach to million atom simulations

And-matter/soft-matter interfaces: model systems and realistic composite materials

Chances for multiscale modeling?

- Systematic application of DFT-quality neural network potentials
- How much can we learn from model systems?
- Energy transfer in biological systems (cell membranes)
- Quantum dynamics

Systems and references

Silicon Nanowires	DD and G. Galli, Phys. Rev. Lett. 102, 195801 (2009) DD and G. Galli Nano Lett 10, 847 (2010)
SiGe alloys and heterostructures	MYK Chan et al. Phys. Rev. B 81, 174303 (2010) Y. He, DD, and G. Galli, Nano Lett. I. Savic, DD, F. Gygi and G. Galli, submitted (2012)
Amorphous and nanoporous Silicon	Y. He, et al. ACS Nano 5, 1839 (2011) Y. He, DD, and G. Galli, Appl. Phys. Lett. (2011) G. Galli and DD, Nat. Nanotech. 5, 701 (2010)
Carbon nanotubes and graphene	DD and G. Galli, Phys. Rev. Lett. 99, 255502 (2007) L.F.C. Pereira and DD (2012)
Contact interfaces and SiNW devices	I. Duchemin and DD Phys, Rev. B (2011) I. Duchemin and DD submitted (2012)
Amoprhous GeTe	G. Sosso et al. submitted (2012)

Acknowledgements:

L.Felipe Pereira
Ivan Duchemin
Sanghamitra Neogi
Yuping He
Giulia Galli

Ivana Savic

Jeff Grossman

Gabriele Sosso

Marco Bernasconi

Joerg Behler