Modeling Nanoparticles in Solution

Gary S. Grest
Sandia National Laboratories
Center for Integrated Nanotechnology
Albuquerque, NM

Rich Physical Phenomena

Polymer Nanoparticle Complexes

Controlled Designed Properties

- Mechanical, Thermal
- Optical
- Electronic
- Transport

High performance materials
Plasmonic devices
Sustainable energy

Protein Recognition

Drug and Gene Carriers

Polymer-mediated assembly of Au NP

Y. Ofir, B. Samanta and V. M. Rotello, Chem. Soc. Rev. 37, 1814 (2008)

Nanoparticle Assembly Challenges

- Synthesis of nanoparticles well defined size, uniform, stable coating
- Tailored properties
 optical, electrical, and
 magnetic
- Assemble nanoparticles
 retaining unique
 properties without
 acting like a bulk metal
- -long range order is possible, only some times desirable, but often not necessary

Slow evaporation of solvent

Bigioni et al, Nature Mat.5, 265 (2006)

Coated Nanoparticles

Polyethylene PEO(6) coated 5nm silica nanoparticle in water (3.1 chains/nm²)

Lane et al, PRE 79, 050501 (2009); in prep (2012)

Interactions between Nanoparticles

- Determine velocity independent (solvation)
 and velocity dependent (lubrication) forces
 -chain length, nanoparticle size/shape, coverage
- Integrate into coarse-grained model

Lane et al, Phys. Rev. E 79, 050501(R) (2009); Ismail, Lane, Grest, in prep.

Force between Silica Nanoparticles

- Stokes drag at large separation with linear velocity scaling
- Complex mixed response in the separation range of interest (near contact)
- No oscillations in force

Interactions between Nanoparticles

90

Alkanethiol Coated Au Nanoparticles in Water

Symmetric Coating Leads to Asymmetric Shapes

Lane, Grest, Phys. Rev. Lett. 104, 235501(2010)

Different Solvents

8 nm diameter

- CH₃ terminated chains behave largely as expected to solvent changes based on hydrophilic/phobic interactions
- COOH terminated chains form small tight bundles unless solvated
- Implicit solvent captures, some but not all features of explicit solvent

Coated Nanoparticles at a Water/Vapor Interface

Surface Aggregation and Self-Assembly

COOH terminal group (top)

CH₃ terminal group (bottom)

Surface Aggregation and Self-Assembly

COOH terminal group

CH₃ terminal group

1,200,000 atoms ~ 1.1 ns/day on 1152 cores (Red Sky)

~ 2.2 million core hours for 90 ns

Surface Aggregation and Self-Assembly

COOH terminal group

90 ns

CH₃ terminal group

0.8 ns/day on 1920 cores Cray XE6 (Hopper), 1.1 ns/day on 1152 cores Red Sky

4 nm Diameter Alkanethiol Nanoparticles

36 Nanoparticles – Hexagonal Lattice 4 ns – initial lattice spacing 80Å

Equilibrium 65 Å

CH₃ terminal group

4 nm Diameter Alkanethiol Nanoparticles

4 nm Diameter Alkanethiol Nanoparticles

Coarse Graining - Nanoparticle Solutions

- Natural length scale of solvent is comparable to size of NP
- Effective Potential
 - Integrated NP potential
 - Potential of Mean Force

- Solvent representation
 - Implicit easy/ignores hydrodynamics
 - Explicit number increases as volume of nanoparticle
 NP diameter 20-25 x solvent diameter
 - Dissipative Particle Dynamics (DPD)
 - Stokesian Dynamics
 - Lattice Boltzmann
 - Multi-Particle Collision Dynamics

Minimal Model for NP in Suspension

- 167 NP of diameter 20σ in 1.8 million LJ monomers
- Integrated interaction between NP

- Most models treat large colloidal particles as hard spheres
 - not suitable for modeling NPs in an explicit solvent
 - hard spheres strongly phase separate even for relatively small differences in size
- To solvate NPs in an explicit solvent critical to include attractive component of the interaction between NP and solvent
- Solvent layer surrounding NP forms increases the effective radii of NP

NP/NP Pair Correlation Function

- First peak is higher and shifted to larger separations for the explicit solvent
- Solvent forms a layer near NP
 - two NPs cannot approach as closely as for implicit solvent

Effective Potential between Nanoparticles

- Ornstein–Zernike equation with the Percus–Yevick closure approximation*
- Pure repulsive NP potential in implicit solvent recovered only for $\phi_v < 0.30$

*Behrens and Grier, PRE 64, 050401 (2001); Rajagopalan and Rao, PRE 55, 4423 (1997); Wang et al, PRE 81, 061204 (2010)

Effective Potential between Nanoparticles

 Effective Potential between NPs for varying strength of NP/solvent interaction

Multi-Particle Collision Dynamics

- · Point particle based fluid
 - fluid interacts through collision operations
- Conserves linear momentum
- Produces fluctuating hydrodynamic behavior
- Computational efficient
 - No pair wise potential
 - Rotation does not limit time step
- Density/viscosity can be mapped to LJ fluid, water, ...*

Malevanets and Kapral, J. Phys. Chem. 110, 8605 (1999).

Gompper et al, Adv. Polym. Sci. 221, 1 (2009)

^{*}Petersen, JCP 132, 174106 (2010).

Equilibrium: Nanoparticle Diffusion

- Select MPC parameters to map to LJ viscosity and density
 - MPC have ideal gas pressure
- Implicit/MPC give identical g(r)

- MPC results agree with hard sphere experiments on micron size colloids
- Deviations for low ϕ_v for LJ solvent due to solvation shell around NP

Zero Shear-Rate Viscosity

 MPC results in good agreement with hard sphere simulations and experiment

Summary and Conclusions

- For small particles asymmetric coatings are the norm even for perfectly uniform grafting at full coverage
 - •Geometric properties dictate when a coatings' spherical symmetry will be unstable.
 - •Chain end group and the solvent play a secondary role in determining the properties of surface patterns.
- Water/vapor interface significantly distorts and orients the particle coatings
- Mapping to Coarse Grained Models captures some but not all the important details of Nanoparticles in Solution

Acknowledgements

Collaborators:

- J. Matthew Lane, Michael Chandross, Steve
 Plimpton, Mark Stevens (Sandia National Laboratories)
- Ahmed Ismail (Universität Aachen)
- Christian Lorenz (King's College)
- Qifei Wang, David J. Keffer (University of Tennessee)

Funding:

- –Center for Integrated Nanotechnology (CINT)
- -DOE ALCC grant 40 million core hours on NERSC/ORNL

Computers:

- Sandia's Red Sky/Red Mesa
- NERSC Hopper XE6
- ORNL Jaguar Cray XE6

How Systems are Build

- Ligands attached to nanoparticle, equilibrated in implicit solvent
- Spherical cavity is grown in melt NPT
- Nanoparticle inserted into melt, equilibrated NPT
- System run for 2-10 ns NVT

Integrated Hierarchical Approach

Multi-Particle Collision Dynamics

- Simulation cell divided up into cubic cells of side
 - On average, M SRD particles with mass m_f are placed in each cell of volume a^3
- Two simulations steps
 - Particle streaming
 - particles move according to Forward Euler v_it
 - Velocity update (coarse-grained collision)
 - Apply rotation about randomly chosen axis to fluctuating part of the velocity

$$\mathbf{v}_{i}(t+\tau) = \mathbf{u}(\xi_{i}(t+\tau)) + \omega(\xi_{i}(t+\tau))(\mathbf{v}_{i}(t) - \mathbf{u}(\xi_{i}(t+\tau)))$$

Or can have U(r_{coll}-r_{SRD})

$$m_f \frac{d\mathbf{v}_i}{dt} = \mathbf{f}_i$$

$$\frac{dr_i}{dt} = \mathbf{v}_i$$

Coupling to Colloids

- MPC particles collide with colloids
 - Solvent coarse-grained so assume noslip via stochastic rule
 - SRD particle receives a new random velocity magnitude

$$P(v_n) \propto v_n \exp(-\beta v_n^2)$$

 $P(v_t) \propto \exp(-\beta v_t^2)$

- Difference in new and old velocity is momentum transferred to colloid
- Generalized slip conditions or pairinteraction, $U(r_{coll}-r_{SRD})$ possible

