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Advantages and Challenges in Coarse-graining�

Local degrees of freedom are averaged out  !
!
Free energy landscape is simplified !
!
Simulation speeds up improving resolution on large length and time scales!

                                               à Changes in Entropy�
�
                                      à Thermodynamic consistency�
�
�
à Dynamics is unrealistically fast �



Transferability: an effective pair potential optimized at one set of 
conditions (molecular structure and thermodynamic) will not 
generally be transferable to another set of conditions.!
!

“Beware of density dependent pair potentials” !
A.A.Louis J. Phys. Condens. Matter 14 (2002) 9187 !

Challenges in CG with NUMERICALLY OPTIMIZED POTENTIALS!

!
Representability: even at the correct state conditions numerical 
potential optimized to reproduce one quantity, e.g. the correct radial 
distribution function, will not necessarily reproduce any other, such 
as the correct pressure or energy.!
!
!
!
!
!
!
!
!
!

!
Dynamical Rescaling: CG dynamics is unrealistically accelerated!
!
!
!
!
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An analytical coarse-grained model!

J. McCarty, I. Lyubimov,  M. G. Guenza J. Phys. Chem. B 113, 11876-11886 (2009).!
A. J. Clark, and M. G. Guenza J. Chem. Phys. 132, 044902-12  (2010).!
J. McCarty, I, Y, Lyubimov,  and M. G. Guenza, Macromolecules  43, 3964-3979  (2010).!
Y. Lyubimov, J. McCarthy, A. Clark, and M. G. Guenza J. Chem. Phys. 132, 2249031-2249035 (2010).!
J. McCarty, and M. G. Guenza J. Chem. Phys. 133,094904-094918 (2010)!
Y. Lyubimov, and M. G. Guenza Phys. Rev. E 84, 031801-19 (2011).!



Monomer-size, l!
Microscopic scale!

Blob or Block size!
Mesoscale description�

Polymer-size !
Rg radius of gyration!
Mesoscale description�

~Rg(blob)	

~Rg(polymer)	


ANALYTICAL COARSE-GRAINING OF MACROMOLECULAR LIQUIDS!

GOAL: Reproducing Radial Distribution Function g(r) or total correlation 
function h(r)=g(r)-1, i.e. probability of finding beads belonging to different 
molecules at a relative distance r.!
!
Any isotropic potential which reproduces the correct pair structure of a fluid is 
unique up to a constant - R. L. Henderson Phys. Lett. A 49, 197 (1974)!
!
From g(r) --> Thermodynamic properties !
D. A. Mc Quarrie “Statistical Mechanics” (University Science Book, Sunsalito, 2000)!
J. –P. Hansen & I. R. McDonald “Theory of Simple Liquids” (Academic Press, 1991)!



A Soft-Sphere Representation of Polymer Liquids�

THEORETICAL APPROACH: Ornstein-Zernike equation for real 

(monomer) and auxiliary (center-of-mass of coarse-grained unit) sites �



hcc k( ) = ωmc k( ) /ωmm k( )!" #$
2
hmm k( ) V. Krakoviack, J.-P. Hansen, A. A. Louis!

Europys. Lett. 58, 53 (2002).!

€ 

hmm r( ) =
ξρ
r
exp − r ξρ( ) − exp − r ξc( )[ ]

ξρ = 3 πρl3( )
ξc = Rg 2

Rg = Nl2 /6

Density-fluctuation correlation �
length�
Correlation hole length scale�

RISM - Chandler & Andersen 1972 !
PRISM - Curro & Schweizer 1990!

ω

€ 

ˆ h k( ) = ˆ ω k( ) ˆ c k( ) ˆ S k( )

c�

h�

N monomers in a chain!

Mapping of polymers into soft colloidal particles!
Not a novel idea: Flory, Hall, Hansen, Kremer, Likos, Louis, and more. !

Derive Total Correlation Function from analytical solution of Ornstein-Zernike 
equation for real (monomer) and auxiliary (center-of-mass of coarse-grained 
unit) sites. �



Analytical Coarse-Grained model from Ornstein-Zernike Equation!

Polyethylene N=44, 64, 96!
Filled symbols:UA-MD simulation (Grest) (24 h, 1600 particles, 64-node cluster)!
Open symbols: MS-MD simulation (4 h, 6000 particles, 1 CPU)!
	


h r,ξρ( ) ≈ − 39 3
16 π

ξρ 1+ 2 ξρ( ) 1− 926 r
2 +O r 4( )#

$%
&

'(
exp −

3
4
r 2

)

*
+

,

-
.

ξρ = ξρ Rg r = r Rg

G.Yatsenko, E.J. Sambriski, M.A. Nemiroskaya,  M. G. Guenza, Phys. Rev. Lett. 93, 257809 (2004).!

in the large N limit� ~Rg(polymer)	


Galina Yatsenko �



Transferability: an effective pair potential optimized at one 
set of conditions (molecular structure and thermodynamic) 
will not generally be transferable to another set of 
conditions !
!



Blockcopolymer melts!
Here f=NA/NB=0.25!
AA (), BB (), !
AB ()!

hhPP() PIB () �

iPP() sPP()!

E.J. Sambriski,  M. G. Guenza, PRE 76, 051801 (2007) !
Multiblock polymer A. J. Clark, and M. G. Guenza J. Chem. Phys. 132, 044902-12  (2010).	


Different architectures	


Ed Sambriski�



Coarse-graining Description for Polymer Mixtures!

hAA r( ) = 1−φ
φ

Iφ
AA r( )+γ 2IρAA r( ), hBB r( ) = φ

1−φ
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BB r( )+γ −2IρBB r( ),
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with! The potential 
depends on the 
concentration !
fluctuations 
correlation length!

σ=σA/σB   semiflexibility ratio!
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Figure 2: Comparison of mesoscopic simulations [open symbols] with UA MD simulations [filled

symbols] for the h�⇥(r) of polymer mixtures under athermal conditions. Also shown are theoretical

predictions [solid curves] based on our analytic expression, Equation 9. Presented are data from

AA [circles], AB [triangles], and BB [squares] contributions for compositionally symmetric and

asymmetric systems. For comparison, numerical predictions obtained from Equation 3 using the

Debye form are shown [dashed curves]. For clarity the inset highlights the peak region for each

separate contribution.

25

Center-of-mass TCF!
Comparison of theory 
(full line) with UA-MD 
(filled symbols) and MS-
MD(open symbols)!
T=453K – athermal regime 
NA=NB=96 !
Data from Heine et al JCP 
2003, Jaramillo et al JCP 
2004.!

hBB!
hAB!
hAA!

Jay McCarty�

J. McCarty, I. Y. Lyubimov, M.G.G. 
Macromol. 43, 3964 (2010).!



Multiscale Modeling of Polymer Mixtures: !
Scale Bridging in the Athermal and Thermal Regime hhPP/PE!

Concentration fluctuation structure!
factor              diverges at the phase!
transition (spinodal).!
!
The interaction parameter!
The polymer volume fraction !

Sφφ 0( )

χ  T −1

J. McCarty, I. Y. Lyubimov, M. G. Guenza!
Macromol. 43, 3964 (2010).!
J. McCarty, and M. G. Guenza !
J. C. P. 133, 094904 (2010).!

φ

hhPP/PE Phase diagram from MS-MD!

Jay McCarty�



reported in Figs. 3 and 4, respectively. Finally, results for the
two mixtures of PIB/sPP and iPP/PE are presented in Figs. 5
and 6. All systems in real space show quantitative agreement
with UA-MD data but are obtained at a much more efficient
computational time than running the full UA-MD simulation.
Furthermore, the procedure to obtain the pair correlation
functions is entirely analytical, hence we do not utilize any
optimization procedure or numerical fitting scheme to obtain
consistency between the two descriptions, and thus the
method is fully transferable. Figures 2–6 demonstrate the

versatility of the approach for studying mixtures of polymers
with subtly different chemical architecture, since the same
multiscale procedure is applied in all cases.

B. Applications to thermal blends
with realistic ! parameters

In the multiscale modeling procedure presented above,
we set !=0 in our soft colloidal representation, and the UA
simulations to which we combine our mesoscale simulations
are assumed to be well-mixed. This provides an efficient
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FIG. 2. !Left" Multiscale modeling: the left panels show the total correlation function, hmm!k", for AA !top", BB !middle", and AB !bottom" interactions, for
a mixture of 50:50 hhPP/sPP. The data over the range of small k values were obtained by mesoscale simulation, whereas over the large k range it was obtained
by UA-MD simulation. The inset depicts the local structure. The dashed line indicates the value at which the two simulations were combined. !Right" The
correlation function, hmm!r", after Fourier transform !solid red line" is compared with results from the full UA-MD simulation !open symbols".
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Multiscale Modeling of Polymer Mixtures �
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Representability: even at the correct state conditions numerical 
potential optimized to reproduce one quantity, e.g. the correct 
radial distribution function, will not necessarily reproduce any 
other, such as the correct pressure or energy.!
!
!



Analytical Effective Potential between two Soft Spheres 	


VHNC r( ) = −kBT c(r)− h(r)+ ln(1+ h(r))[ ] ≈ −kBT c(r)HNC closure�

4

cal space, ccc(k), reads

ĉcc(k) =
ĥcc(k)
Ŝcc(k)

, (9)

where Ŝcc(k) = 1 + ⇥chĥcc(k) is the center of mass static
structure factor.[? ]. The e⇤ective pair potential may
be obtained numerically with substitution of Equation
6 and Equation 9 into the HNC closure, Equation 8.
When this potential is used as input into classical molec-
ular dynamic simulations the resulting distribution re-
produces the center of mass distribution calculated di-
rectly from united atom simulations of the same polymer
system[28? ]. These simulations we term mesoscale sim-
ulations (MS), since they reproduce the polymer struc-
ture at intermediate to large length-scales. In Section 7
we perform numerous MS simulations to test our analytic
expressions derived below.

Although Equation 8 can be solved numerically from
gcc(r), an explicit analytical form of the potential is de-
sirable as it facilitates the evaluation of thermodynamic
quantities of interest. For this we use an analytical ap-
proximation for the direct correlation function in the
limit of high degree of polymerization and high monomer
density recently derived by Clark, et al. The derivation
begins by approximating the direct correlation function
in the low wavevector limit as being independent of the
wavevector, cmm(k) ⇤ c0(< 0). Equation 1 is then sub-
stitued into Equation 5, giving

ĥcc(k) =
c0[⇤̂cm(k)]2

1� ⇥c0⇤̂mm(k)
(10)

It should be stressed that this result is general and does
not amount to making the thread limit approximation,
but just in assuming ĉ(k) to be independent of k for small
k, where a coarse-grained description is valid. In Ap-
pendix I it is shown that this approximation amounts
to truncating a Taylor expansion of a general form of

ĉ(k) to lowest order in k. Substitution of Equation 10
into the expression for the inverse static structure factor,
given for soft colloids as [Scc(k)]�1 = 1/[1 + ⇥chhcc(k)]
gives an analytical expression for [Scc(k)]�1, which can
be rewritten in the form

[Ŝcc(k)]�1 = �

⇤
1/� + ⇥̂mm(k)

1 + �⇥̂mm(k)� �[⇥̂cm(k)]2

⌅
, (11)

where the parameter � ⇥ N |co|⇥ and the ⇥̂(k)s are the
intramolecular form factors normalized by N , (⇥̂(k) =
⇤̂(k)/N). In order to obtain an approximate expression
for Equation 11, the intramolecular distribution func-
tions are represented by the infinite chain Gaussian freely
jointed chain (fjc) forms, and the di⇤erence in the denom-
inator, (⇥̂mm(k) � [⇥̂cm(k)]2), is expanded in a Taylor
series about k = 0. To lowest order in k, Clark, et al.
have shown that the resulting approximate form of the
inverse structure factor is given by

[Ŝcc(k)�1] = �
�

45
45 + �R2

gk
4

⇥
. (12)

Finally the direct correlation function is obtained by
substitution of Equation 12 into Equation 9, and by
approximating the low wavevector behavior of ĥ(k) as
ĥ(k) ⇤ ĥ(0) = �N/⇥. Subsequent Fourier transform
gives the desired approximate form for the direct corre-
lation function in real space, which to leading order is

ccc
(0)(r) ⇤ �

45
(51/4)8�

⌃
2
3

�1/4

⇥chR3
g

sin (Qr)
Qr

e�Qr, (13)

where the numerical factor Q = (51/4
⇧

3/2/(Rg�1/4). A
detailed discussion of the validity of this approximation
for ccc(r) is presented elsewhere.[? ] For shorter chains,
an additional correction term has been calculated with
the result

ccc
(1)(r) =

⇧
5

672�⇥chR3
g�1/4

[(
945r

�1/4Rg
(cos (Qr) + sin (Qr)) + 13Q3

rs(Qr � 4) cos (Qr) +
13Q4

rsr

�1/4Rg
sin (Qr)]

e�Qr

Qr
, (14)

with Qrs being the numerical factor Qrs = (51/4
⇧

3/2).
The total direct correlation function to this order is thus
ccc(r) = c(0)(r) + c(1)(r). Although an expression for
c(r) for hard spheres has been derived many years ago[?
], Equations 13 and 14 provide an analytic expression for
c(r) for a simple fluid of soft spheres which can interpen-
etrate. To our knowledge this is the first formulation of
an analytic expression for the direct correlation function
of soft spheres. Combining Equation 6, 13, and 14 into
Equation 8 yields a lengthy but completely analytic form

of the potential. The separate contributions of each of
the three terms in Equation 8 on the thermodynamics
will be examined in subsequent sections of this paper.
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to derive an analytical solution of the CG potential by
approximating the fourier transform of cmm(r) by its zero
wavevector value, c0 = 4⇡

R1
0 r

2
c

mm(r). The e↵ective
direct correlation between blobs is given in Fourier space
by
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c0 where c0 < 0, and ⌦̂bm

av

(k) is the
intramolecular correlation function between the coms of
a block and a monomer, averaged over the chain and nor-
malized such that its value at k = 0 is equal to one. The
sharp peak around k = 0 leads to the enhanced sensitiv-
ity of the function to the quality of the approximations
used in the chain model, and made numerical solutions
of the potential necessary in our previous work.

The total correlation function in this blob descrip-
tion gives isothermal compressibility, 

T

= [k
B

T⇢

ch

(1 +
�
b

)]�1, with k

B

the Boltzmann constant and T the tem-
perature, which is consistent with the atomistic descrip-
tion of compressibility. Assuming that a coarse grained
unit contains a number of monomers su�ciently large to
follow a Gaussian space distribution, and that the den-
sity and the interaction strength are large enough that
the product �

b

>> 1, the contribution to the inverse
transform integral for large wavevectors (k >> 1/R

gb

)
is neglibible for r > R

gb

. In this limit, the direct corre-
lation for k << 1/R

gb

has the simple rational function
limiting form c

bb(k) / 1/(1 + �R4
gb

k

4) as �
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! 1. Ap-
proximating the e↵ective direct correlation by this form
for all wavevectors introduces very little error, allowing
for a simple approximation for the functional form in
real space. The accuracy at intermediate � values can be
improved by taking this as the zeroth order term of an
asymptotic expansion in 1/

p
�
b

about �
b

! 1.
The e↵ective potential is then derived by applying the

Mean Spherical Approximation, V

bb(r) ⇡ �k
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Tc

bb(r),
which holds for soft potentials in the limit of high den-
sities and long chains of interest here.[13] For r > R

g

,
the intermolecular blob potential, which is the needed
input for the mesoscale simulations of the coarse-grained
polymer liquid, is given by
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where Q = 51/4
p

3/2/(�
b

)1/4, Q
rs

= 51/4
p

3/2, and r

is in units of the blob radius-of-gyration, R

gb

. When
n

b

= 1 Eq.(2) represents the e↵ective potential between
the center-of-mass of two polymers in a melt.

Several important features emerge from this formal so-
lution of the intermolecular potential between coarse-
grained units. Because the potential is formally ex-

pressed as a function of the molecular and thermody-
namic parameters, Eq.(2) is in principle general and ap-
plicable to polymer melts in di↵erent thermodynamic
conditions and with diverse macromolecular structures.
The range of the e↵ective potentials between CG units

scales beyond the e↵ective block radius of gyration, R
gb

,
and decays with the number of monomers per block as

N

1/4
b

. The result of this scaling is that in a polymeric liq-
uid integrals over the e↵ective potential or force between
the coms of two coarse grained units do not vanish with
increasing degree of polymerization, contrary to what is
conventionally assumed based upon the behavior of the
potential of mean force (pmf). Thermodynamic integrals
over the pmf, w(r) = �k

B

T ln(1�h(r)) do vanish for in-
creasing degree of polymerization, as the pmf at contact
decreases as 1/(⇢

m

p
N) while its range is fixed to the

radius of gyration of the coarse grained unit. The two
potentials are foundamentally di↵erent: while the pmf is
defined as the e↵ective potential between two blobs, or
between the center of mass of two polymers if n

b

= 1,
in the field of the surrounding chains, V bb(r), is the ef-
fective potential between any pair of CG units in the
simulation.
The observed scaling behavior can be explained by

considering that in a liquid the total e↵ective correla-
tion between two sites (atomistic or CG), and its related
potential, can be regarded as “propagating” through se-
quences of direct pair interactions following the Ornstein-
Zernike integral equation theory. These many-body con-
tributions to the pair interaction are not simply addi-
tive, and once mapped into the OZ pair interaction, they
result in a slowly decaying tail. Because of the Gaus-
sian statistics that applies to the structure of long poly-
meric chains, the interaction between any intermolecu-
lar pair of blobs statistically propagates in the shared
volume as a random walk following the random path of
e↵ective CG sites. Given that in the releavant volume
V

b

/ R

3
gb

/ N

3/2
b

l

3, the number of e↵ective CG sites is

of the order of n0
b

/ ⇢

m

R

3
gb

/N

b

/ N

1/2
b

⇢

m

l

3, which leads

to the observed scaling of N1/4
b

.
From the analytical form of the e↵ective potential,

Eq.(2), the pressure of the system can be calculated ex-
plicitly. Specifically in the high density, long chain limit,
the pressure reduces to the simple expression

P

⇢

c

k

b

T

⇡ 1� Nc0⇢m

2
. (3)

where ⇢
c

= ⇢

m

/N is the chain density. Eq.(3) is in agree-
ment with the monomer level description,[11] and does
not depend on the level of coarse-graining of the model
selected.
To test the self consistency and the predictions of

the e↵ective potentials we perform molecular dynamics
(MD) simulations of the polymer melts where each chain
is represented as a collection of soft colloidal particles.
Simulations were performed using the LAMMPS simula-
tion package,[14] using the e↵ective potentials character-

Q = 51/4 3 2 Γ( )1/4
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III. EQUATION OF STATE FOR
COARSE-GRAINED REPRESENTATION OF

POLYMER MELTS

A. The Virial Route

In our renormalized description, the structure of the
polymer melt is e�ectively mapped onto a liquid of soft
interpenetrating colloids of radius of gyration, Rg, and
density ⇤ch. This analogy is here exploited by imple-
menting liquid-state theory for simple liquids to deter-
mine thermodynamic properties from the pair distribu-
tion function, g(r), and the pair potential, v(r). We begin
with the pressure equation often employed in the treat-
ment of monatomic fluids, which reads[21]

P

⇤chkBT
= 1� 2⇥⇤ch

3kBT

⇤ �

0
g(r)

dv(r)
dr

r3dr, (15)

where P is the pressure, kB is the Boltzmann constant,
and T is the temperature. Equation 15 is derived in the
canonical ensemble and based on the assumption of hav-
ing a pair decomposable interaction potential, and de-
fines the compressibility factor, Zv = �P/⇤ch, being the
reduced equation of state for a fluid of soft colloids in the
virial route. Beginning with Equation 8, we start with
the final contribution, �vcc(r) = �ccc(r), using the as-
symptotic expressions for the direct correlation function
derived in Section 2.2. Equation 15 becomes

P

⇤chkBT
= 1+

2⇥⇤ch

3

⇤ �

0
g(r)

�
dc(0)(r)

dr
+

dc(1)(r)
dr

⇥
r3dr.

(16)
Evaluation of Equation 16 is facilitated by the soft, long-
ranged nature of the pair potential. Since the radial dis-
tribution function, gcc(r), approaches unity at a much
smaller distance than the spatial range of the potential,
the integrand is dominated by the contribution arising
from the direct correlation function, and gcc(r) is well
approximated by the homogenous limit of g(r) ⇥= 1. Not-
ing that the integral of the first order correction term
vanishes,

⇤ �

0

dc(1)(r)
dr

r3dr = 0, (17)

Equation 16 can be analytically solved using Equation
13, yielding a simple expression for the equation of state
for a fluid of soft spheres,

Zv = 1 +
N |c0|⇤

2
. (18)

At this point it is worthwhile to make several comments
regarding the form of Equation 18. First, in modeling
polymers as soft interpenetrating spheres, Louis and co-
workers, found that the ...[stu� here]. We note that our
result in Equation 18 agrees with this observation; how-
ever, since they did not have an analytical potential, they
could not explicitly evaluate the equation of state as we

have done here. Second, Equation 18 is the equation
of state for a fluid of soft spheres, where the parameters
entering the expression come entirely from the monomer-
level description, (i.e. there are no additional fit parame-
ters in our procedure). These parameters are simply the
chain length, N , the monomer site density, ⇤, and impor-
tantly the low wave-vector limit for the monomer direct
correlation function co, which contains important physi-
cal information since it is related to the compressibility
of the system. This can be seen ...(Yethiraj and Hall)

Already one can see just from the form of Equation 18
that our coarse-graining procedure reproduces the correct
thermodynamics. This point will be taken up in more
detail in Section [].

To obtain an estimate of the behavior of the equation
of state for soft colloids, the direct correlation parameter,
co may be approximated with the thread limit result of
Equation 4, giving

Zv = 1 +
⇥⇤
⇧

N⌅3

6
⇧

3
+

⇥2⇤2N⌅6

216
, (19)

which takes the form of a familiar virial-type expansion
of the density, with the second virial coe⌅cient

B2(T ) =
⇥⌅3

6
⇧

3N
, (20)

and the third virial coe⌅cient given by

B3(T ) =
⇥2⌅6

216
. (21)

B. Additional Contributions to the Equation of
State

In this section we focus our attention on the two ad-
ditional terms in Equation 8, which are the potential
of mean force between center of mass sites, defined as
�wcc(r) = � ln[gcc(r)], and the total correlation function,
hcc(r). A common approach in deriving realistic coarse-
grained potentials is to use an iterative procedure, such
as the Iterative Boltzmann Inversion method, where the
coarse-grained distribution function is optimized by iter-
ative calculation of the potential of mean force until con-
vergence is reached.[? ] Here, we show that our analytical
potential of mean force already reproduces the correct
monomer level of description and thus no optimization
scheme is necessary in our course-graining approach. For
dense polymer systems thermodynamic quantities calcu-
lated from the potential of mean force will not be ac-
curate, as the full pair potential, vcc(r), is needed[? ];
however, due to its wide use and since it is a good first
guess for the iterative procedures commonly adopted, it
is instructive to examine the equation of state predicted
by our coarse-grained potential of mean force. Further-
more, in the limit of infinite dilution, ⇤⇤ 0, the equality
wcc(r) = vcc(r) holds.

Thermodynamic Consistency: Eq. of State for Soft Colloids (an example) �

Compressibility Route� Virial Route!
Analytical form of v(r)~ - kBT c(r) �

hcc k( ) = ωmc k( ) /ωmm k( )!" #$
2
hmm k( )

k→ 0 ωmc 0( ) =ωmm 0( ) = N hcc 0( ) = hmm 0( )

Consistency with Atomistic description!
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COARSE-GRAINED REPRESENTATION OF

POLYMER MELTS

A. The Virial Route

In our renormalized description, the structure of the
polymer melt is e�ectively mapped onto a liquid of soft
interpenetrating colloids of radius of gyration, Rg, and
density ⇤ch. This analogy is here exploited by imple-
menting liquid-state theory for simple liquids to deter-
mine thermodynamic properties from the pair distribu-
tion function, g(r), and the pair potential, v(r). We begin
with the pressure equation often employed in the treat-
ment of monatomic fluids, which reads[21]

P

⇤chkBT
= 1� 2⇥⇤ch

3kBT
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0
g(r)

dv(r)
dr

r3dr, (15)

where P is the pressure, kB is the Boltzmann constant,
and T is the temperature. Equation 15 is derived in the
canonical ensemble and based on the assumption of hav-
ing a pair decomposable interaction potential, and de-
fines the compressibility factor, Zv = �P/⇤ch, being the
reduced equation of state for a fluid of soft colloids in the
virial route. Beginning with Equation 8, we start with
the final contribution, �vcc(r) = �ccc(r), using the as-
symptotic expressions for the direct correlation function
derived in Section 2.2. Equation 15 becomes
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= 1+
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g(r)
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dc(0)(r)

dr
+

dc(1)(r)
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Evaluation of Equation 16 is facilitated by the soft, long-
ranged nature of the pair potential. Since the radial dis-
tribution function, gcc(r), approaches unity at a much
smaller distance than the spatial range of the potential,
the integrand is dominated by the contribution arising
from the direct correlation function, and gcc(r) is well
approximated by the homogenous limit of g(r) ⇥= 1. Not-
ing that the integral of the first order correction term
vanishes,

⇤ �

0

dc(1)(r)
dr

r3dr = 0, (17)

Equation 16 can be analytically solved using Equation
13, yielding a simple expression for the equation of state
for a fluid of soft spheres,

Zv = 1 +
N |c0|⇤

2
. (18)

At this point it is worthwhile to make several comments
regarding the form of Equation 18. First, in modeling
polymers as soft interpenetrating spheres, Louis and co-
workers, found that the ...[stu� here]. We note that our
result in Equation 18 agrees with this observation; how-
ever, since they did not have an analytical potential, they
could not explicitly evaluate the equation of state as we

have done here. Second, Equation 18 is the equation
of state for a fluid of soft spheres, where the parameters
entering the expression come entirely from the monomer-
level description, (i.e. there are no additional fit parame-
ters in our procedure). These parameters are simply the
chain length, N , the monomer site density, ⇤, and impor-
tantly the low wave-vector limit for the monomer direct
correlation function co, which contains important physi-
cal information since it is related to the compressibility
of the system. This can be seen ...(Yethiraj and Hall)

Already one can see just from the form of Equation 18
that our coarse-graining procedure reproduces the correct
thermodynamics. This point will be taken up in more
detail in Section [].

To obtain an estimate of the behavior of the equation
of state for soft colloids, the direct correlation parameter,
co may be approximated with the thread limit result of
Equation 4, giving

Zv = 1 +
⇥⇤
⇧

N⌅3

6
⇧

3
+

⇥2⇤2N⌅6

216
, (19)

which takes the form of a familiar virial-type expansion
of the density, with the second virial coe⌅cient

B2(T ) =
⇥⌅3

6
⇧

3N
, (20)

and the third virial coe⌅cient given by

B3(T ) =
⇥2⌅6

216
. (21)

B. Additional Contributions to the Equation of
State

In this section we focus our attention on the two ad-
ditional terms in Equation 8, which are the potential
of mean force between center of mass sites, defined as
�wcc(r) = � ln[gcc(r)], and the total correlation function,
hcc(r). A common approach in deriving realistic coarse-
grained potentials is to use an iterative procedure, such
as the Iterative Boltzmann Inversion method, where the
coarse-grained distribution function is optimized by iter-
ative calculation of the potential of mean force until con-
vergence is reached.[? ] Here, we show that our analytical
potential of mean force already reproduces the correct
monomer level of description and thus no optimization
scheme is necessary in our course-graining approach. For
dense polymer systems thermodynamic quantities calcu-
lated from the potential of mean force will not be ac-
curate, as the full pair potential, vcc(r), is needed[? ];
however, due to its wide use and since it is a good first
guess for the iterative procedures commonly adopted, it
is instructive to examine the equation of state predicted
by our coarse-grained potential of mean force. Further-
more, in the limit of infinite dilution, ⇤⇤ 0, the equality
wcc(r) = vcc(r) holds.

Thread model�
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density ⇤ch. This analogy is here exploited by imple-
menting liquid-state theory for simple liquids to deter-
mine thermodynamic properties from the pair distribu-
tion function, g(r), and the pair potential, v(r). We begin
with the pressure equation often employed in the treat-
ment of monatomic fluids, which reads[21]
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where P is the pressure, kB is the Boltzmann constant,
and T is the temperature. Equation 15 is derived in the
canonical ensemble and based on the assumption of hav-
ing a pair decomposable interaction potential, and de-
fines the compressibility factor, Zv = �P/⇤ch, being the
reduced equation of state for a fluid of soft colloids in the
virial route. Beginning with Equation 8, we start with
the final contribution, �vcc(r) = �ccc(r), using the as-
symptotic expressions for the direct correlation function
derived in Section 2.2. Equation 15 becomes
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Evaluation of Equation 16 is facilitated by the soft, long-
ranged nature of the pair potential. Since the radial dis-
tribution function, gcc(r), approaches unity at a much
smaller distance than the spatial range of the potential,
the integrand is dominated by the contribution arising
from the direct correlation function, and gcc(r) is well
approximated by the homogenous limit of g(r) ⇥= 1. Not-
ing that the integral of the first order correction term
vanishes,
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dc(1)(r)
dr
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Equation 16 can be analytically solved using Equation
13, yielding a simple expression for the equation of state
for a fluid of soft spheres,

Zv = 1 +
N |c0|⇤
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. (18)

At this point it is worthwhile to make several comments
regarding the form of Equation 18. First, in modeling
polymers as soft interpenetrating spheres, Louis and co-
workers, found that the ...[stu� here]. We note that our
result in Equation 18 agrees with this observation; how-
ever, since they did not have an analytical potential, they
could not explicitly evaluate the equation of state as we

have done here. Second, Equation 18 is the equation
of state for a fluid of soft spheres, where the parameters
entering the expression come entirely from the monomer-
level description, (i.e. there are no additional fit parame-
ters in our procedure). These parameters are simply the
chain length, N , the monomer site density, ⇤, and impor-
tantly the low wave-vector limit for the monomer direct
correlation function co, which contains important physi-
cal information since it is related to the compressibility
of the system. This can be seen ...(Yethiraj and Hall)

Already one can see just from the form of Equation 18
that our coarse-graining procedure reproduces the correct
thermodynamics. This point will be taken up in more
detail in Section [].

To obtain an estimate of the behavior of the equation
of state for soft colloids, the direct correlation parameter,
co may be approximated with the thread limit result of
Equation 4, giving
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which takes the form of a familiar virial-type expansion
of the density, with the second virial coe⌅cient
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B. Additional Contributions to the Equation of
State

In this section we focus our attention on the two ad-
ditional terms in Equation 8, which are the potential
of mean force between center of mass sites, defined as
�wcc(r) = � ln[gcc(r)], and the total correlation function,
hcc(r). A common approach in deriving realistic coarse-
grained potentials is to use an iterative procedure, such
as the Iterative Boltzmann Inversion method, where the
coarse-grained distribution function is optimized by iter-
ative calculation of the potential of mean force until con-
vergence is reached.[? ] Here, we show that our analytical
potential of mean force already reproduces the correct
monomer level of description and thus no optimization
scheme is necessary in our course-graining approach. For
dense polymer systems thermodynamic quantities calcu-
lated from the potential of mean force will not be ac-
curate, as the full pair potential, vcc(r), is needed[? ];
however, due to its wide use and since it is a good first
guess for the iterative procedures commonly adopted, it
is instructive to examine the equation of state predicted
by our coarse-grained potential of mean force. Further-
more, in the limit of infinite dilution, ⇤⇤ 0, the equality
wcc(r) = vcc(r) holds.

6

We begin again with the pressure equation, Equation
15, which upon introduction of the potential of mean
force for vcc(r), reduces to

P

⇧chkBT
= 1 +

2
3
⌅⇧ch

⇤ ⇥

0

dg(r)
dr

r3dr. (22)

Equation 22 can be solved analytically, using our defini-
tion of g(r) from Equation 6, with the solution,

Zpmf
v = 1 + ⌅⇧chR2

g⇤�(1 + ⇤�/⇤c) (23)

Introducing the definitions of ⇤� and ⇤c, and after some
algebra, one obtains

Zpmf
v =

3
2
� 1

(
⇧

2 + 2⌅⇧chR3
g)2

. (24)

Comparison of Equation 24 with the equation of state
calculated above in Equation 19, shows that the two are
markedly di⇥erent. Most noticeably, Equation 24 scales
as ⇧�2N�1, and in the limit of infinitely long or infinitely
dense chains, approaches a constant value of 1.5, which is
negligibly small compared to Equation 19 which scales as
⇧2N . This supports the validity of the MSA approxima-
tion used above for long chains, where �vcc(r)⇤ �ccc(r).
Interestingly, in the opposite limit of infinite chain dilu-
tion, ⇧ch ⇤ 0, both Equation 19 and Equation 24 ap-
proach unity, recovering the equation of state for an ideal
gas.

In the context of this work, the potential of mean
force is another route to show the consistency between
the monomer and soft-colloid representations a polymer
melt. Factoring out a 1/R2

g and reintroducing the def-
initions of ⇤c and ⇤�, Equation 24 can be equivalently
written as

Zpmf
v = 1 +

1
R2

g

�
⇤2
c � ⇤2

�

⇥
. (25)

In the monomer representation, we again make use of
the PRISM thread limit result, for which gmm(r) is given
by Equation 3. Upon di⇥erentiation of Equation 3 with
respect to r, and insertion into Equation 22, one obtains

Zpmf
v = 1 +

6
N⌃2

�
⇤2
c � ⇤2

�

⇥

= 1 +
1

R2
g

�
⇤2
c � ⇤2

�

⇥
(26)

which is identical with Equation 25 obtained in the soft-
colloidal representation.

The final contribution in Equation 8 to the pressure is
again calculated from Equation 15, and becomes

P

⇧chkBT
= 1 +

2
3
⌅⇧ch

⇤ ⇥

0
g(r)

dg(r)
dr

r3dr, (27)

which can be solved analytically using Equation 6, with
the solution,

Zhcc(r)
v = (28)

We are now in position to write the total equation of state
from the full HNC potential as Ztot

v = ZMSA
v + Zpmf

v +
Zhcc(r)

v . Not surprisingly, the addition of Equation 23
and Equation 28 results in a cancellation of the potential
of mean force term, leaving only

Ztot
v = 1 +

⌅⇧
⇧

N⌃3

6
⇧

3
+

⌅2⇧2N⌃6

216
+ stuffhere. (29)

The additional term in Equation 29 resulting from the
inclusion of the full HNC potential, scales as ... Thus,
for large N the MSA approximation for which �vcc(r) ⇥
�ccc(r) is increasingly valid and Ztot

v ⇥ ZMSA
v as given

by Equation 18.

C. The Compressibility Route

An alternative approach to calculate the thermody-
namic properties of fluids is to use the compressibility
route, which is derived in the grand canonical ensemble,
where particle number fluctuations may be readily ob-
tained, and is found to depend solely on density fluctua-
tions. More specifically, the reduced equation of state
obtained from the compressibility route, Zc, is deter-
mined by thermodynamic integration of the isothermal
compressibility, ⇥T , which is related to Ŝcc(k ⇤ 0), and
reads[? ]

P

kBT
=

⇤ �ch

0
d⇧[Ŝcc(0, ⇧)]�1]. (30)

Using the form of the reciprocal structure factor given
above by Equation 11, recalling that � = N |c0|⇧, the
integral in Equation 30 is readily solved to obtain the
compressibility equation of state, (Zc = �P/⇧ch). One
complication that arises when using a density dependent
potential in the compressibility equation of state is that
the density is the variable of integration. First, neglecting
the density dependence of |c0|, hence (c0(⇧) = c0) gives,

Zc =
N |c0|⇧

2
, (31)

which is identical with Equation 18, showing that the
compressibility route and the virial route in this case are
equivalent. Also, as shown in Section [] above, this is
equivalent with the monomer-level prediction.

Alternatively, one could introduce a density depen-
dence to c0, for example with the thread limit (Equation
4), and obtain a slightly di⇥erent expression. Insertion
of Equation 4 into [Ŝcc(0)]�1 = N |co|⇧, and subsequent
integration yields,

Zc =
⌅⇧
⇧

N⌃3

6
⇧

3
+

2
3

⌅2⇧2N⌃6

216
. (32)

Comparison of Equation 32 with Equation 19 shows that,
although not exactly identical, the di⇥erence between the
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We begin again with the pressure equation, Equation
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force for vcc(r), reduces to
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Equation 22 can be solved analytically, using our defini-
tion of g(r) from Equation 6, with the solution,
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Introducing the definitions of ⇤� and ⇤c, and after some
algebra, one obtains
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Comparison of Equation 24 with the equation of state
calculated above in Equation 19, shows that the two are
markedly di⇥erent. Most noticeably, Equation 24 scales
as ⇧�2N�1, and in the limit of infinitely long or infinitely
dense chains, approaches a constant value of 1.5, which is
negligibly small compared to Equation 19 which scales as
⇧2N . This supports the validity of the MSA approxima-
tion used above for long chains, where �vcc(r)⇤ �ccc(r).
Interestingly, in the opposite limit of infinite chain dilu-
tion, ⇧ch ⇤ 0, both Equation 19 and Equation 24 ap-
proach unity, recovering the equation of state for an ideal
gas.

In the context of this work, the potential of mean
force is another route to show the consistency between
the monomer and soft-colloid representations a polymer
melt. Factoring out a 1/R2

g and reintroducing the def-
initions of ⇤c and ⇤�, Equation 24 can be equivalently
written as
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v = 1 +

1
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In the monomer representation, we again make use of
the PRISM thread limit result, for which gmm(r) is given
by Equation 3. Upon di⇥erentiation of Equation 3 with
respect to r, and insertion into Equation 22, one obtains
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which is identical with Equation 25 obtained in the soft-
colloidal representation.

The final contribution in Equation 8 to the pressure is
again calculated from Equation 15, and becomes

P

⇧chkBT
= 1 +

2
3
⌅⇧ch

⇤ ⇥

0
g(r)

dg(r)
dr

r3dr, (27)

which can be solved analytically using Equation 6, with
the solution,

Zhcc(r)
v = (28)

We are now in position to write the total equation of state
from the full HNC potential as Ztot

v = ZMSA
v + Zpmf

v +
Zhcc(r)

v . Not surprisingly, the addition of Equation 23
and Equation 28 results in a cancellation of the potential
of mean force term, leaving only

Ztot
v = 1 +

⌅⇧
⇧

N⌃3

6
⇧

3
+

⌅2⇧2N⌃6

216
+ stuffhere. (29)

The additional term in Equation 29 resulting from the
inclusion of the full HNC potential, scales as ... Thus,
for large N the MSA approximation for which �vcc(r) ⇥
�ccc(r) is increasingly valid and Ztot

v ⇥ ZMSA
v as given

by Equation 18.

C. The Compressibility Route

An alternative approach to calculate the thermody-
namic properties of fluids is to use the compressibility
route, which is derived in the grand canonical ensemble,
where particle number fluctuations may be readily ob-
tained, and is found to depend solely on density fluctua-
tions. More specifically, the reduced equation of state
obtained from the compressibility route, Zc, is deter-
mined by thermodynamic integration of the isothermal
compressibility, ⇥T , which is related to Ŝcc(k ⇤ 0), and
reads[? ]

P

kBT
=

⇤ �ch

0
d⇧[Ŝcc(0, ⇧)]�1]. (30)

Using the form of the reciprocal structure factor given
above by Equation 11, recalling that � = N |c0|⇧, the
integral in Equation 30 is readily solved to obtain the
compressibility equation of state, (Zc = �P/⇧ch). One
complication that arises when using a density dependent
potential in the compressibility equation of state is that
the density is the variable of integration. First, neglecting
the density dependence of |c0|, hence (c0(⇧) = c0) gives,

Zc =
N |c0|⇧

2
, (31)

which is identical with Equation 18, showing that the
compressibility route and the virial route in this case are
equivalent. Also, as shown in Section [] above, this is
equivalent with the monomer-level prediction.

Alternatively, one could introduce a density depen-
dence to c0, for example with the thread limit (Equation
4), and obtain a slightly di⇥erent expression. Insertion
of Equation 4 into [Ŝcc(0)]�1 = N |co|⇧, and subsequent
integration yields,

Zc =
⌅⇧
⇧

N⌃3

6
⇧

3
+

2
3

⌅2⇧2N⌃6

216
. (32)

Comparison of Equation 32 with Equation 19 shows that,
although not exactly identical, the di⇥erence between the

Assuming c0 is no density dependent�

Thread model�

6

We begin again with the pressure equation, Equation
15, which upon introduction of the potential of mean
force for vcc(r), reduces to

P

⇧chkBT
= 1 +

2
3
⌅⇧ch

⇤ ⇥

0

dg(r)
dr

r3dr. (22)

Equation 22 can be solved analytically, using our defini-
tion of g(r) from Equation 6, with the solution,

Zpmf
v = 1 + ⌅⇧chR2

g⇤�(1 + ⇤�/⇤c) (23)

Introducing the definitions of ⇤� and ⇤c, and after some
algebra, one obtains

Zpmf
v =

3
2
� 1

(
⇧

2 + 2⌅⇧chR3
g)2

. (24)

Comparison of Equation 24 with the equation of state
calculated above in Equation 19, shows that the two are
markedly di⇥erent. Most noticeably, Equation 24 scales
as ⇧�2N�1, and in the limit of infinitely long or infinitely
dense chains, approaches a constant value of 1.5, which is
negligibly small compared to Equation 19 which scales as
⇧2N . This supports the validity of the MSA approxima-
tion used above for long chains, where �vcc(r)⇤ �ccc(r).
Interestingly, in the opposite limit of infinite chain dilu-
tion, ⇧ch ⇤ 0, both Equation 19 and Equation 24 ap-
proach unity, recovering the equation of state for an ideal
gas.

In the context of this work, the potential of mean
force is another route to show the consistency between
the monomer and soft-colloid representations a polymer
melt. Factoring out a 1/R2

g and reintroducing the def-
initions of ⇤c and ⇤�, Equation 24 can be equivalently
written as

Zpmf
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1
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g

�
⇤2
c � ⇤2

�

⇥
. (25)

In the monomer representation, we again make use of
the PRISM thread limit result, for which gmm(r) is given
by Equation 3. Upon di⇥erentiation of Equation 3 with
respect to r, and insertion into Equation 22, one obtains
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which is identical with Equation 25 obtained in the soft-
colloidal representation.

The final contribution in Equation 8 to the pressure is
again calculated from Equation 15, and becomes

P

⇧chkBT
= 1 +

2
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⌅⇧ch

⇤ ⇥

0
g(r)

dg(r)
dr

r3dr, (27)

which can be solved analytically using Equation 6, with
the solution,

Zhcc(r)
v = (28)

We are now in position to write the total equation of state
from the full HNC potential as Ztot

v = ZMSA
v + Zpmf

v +
Zhcc(r)

v . Not surprisingly, the addition of Equation 23
and Equation 28 results in a cancellation of the potential
of mean force term, leaving only

Ztot
v = 1 +

⌅⇧
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⇧
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216
+ stuffhere. (29)

The additional term in Equation 29 resulting from the
inclusion of the full HNC potential, scales as ... Thus,
for large N the MSA approximation for which �vcc(r) ⇥
�ccc(r) is increasingly valid and Ztot

v ⇥ ZMSA
v as given

by Equation 18.

C. The Compressibility Route

An alternative approach to calculate the thermody-
namic properties of fluids is to use the compressibility
route, which is derived in the grand canonical ensemble,
where particle number fluctuations may be readily ob-
tained, and is found to depend solely on density fluctua-
tions. More specifically, the reduced equation of state
obtained from the compressibility route, Zc, is deter-
mined by thermodynamic integration of the isothermal
compressibility, ⇥T , which is related to Ŝcc(k ⇤ 0), and
reads[? ]
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kBT
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0
d⇧[Ŝcc(0, ⇧)]�1]. (30)

Using the form of the reciprocal structure factor given
above by Equation 11, recalling that � = N |c0|⇧, the
integral in Equation 30 is readily solved to obtain the
compressibility equation of state, (Zc = �P/⇧ch). One
complication that arises when using a density dependent
potential in the compressibility equation of state is that
the density is the variable of integration. First, neglecting
the density dependence of |c0|, hence (c0(⇧) = c0) gives,

Zc =
N |c0|⇧

2
, (31)

which is identical with Equation 18, showing that the
compressibility route and the virial route in this case are
equivalent. Also, as shown in Section [] above, this is
equivalent with the monomer-level prediction.

Alternatively, one could introduce a density depen-
dence to c0, for example with the thread limit (Equation
4), and obtain a slightly di⇥erent expression. Insertion
of Equation 4 into [Ŝcc(0)]�1 = N |co|⇧, and subsequent
integration yields,
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Comparison of Equation 32 with Equation 19 shows that,
although not exactly identical, the di⇥erence between the
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We begin again with the pressure equation, Equation
15, which upon introduction of the potential of mean
force for vcc(r), reduces to
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dg(r)
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Equation 22 can be solved analytically, using our defini-
tion of g(r) from Equation 6, with the solution,

Zpmf
v = 1 + ⌅⇧chR2

g⇤�(1 + ⇤�/⇤c) (23)

Introducing the definitions of ⇤� and ⇤c, and after some
algebra, one obtains

Zpmf
v =
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2 + 2⌅⇧chR3
g)2

. (24)

Comparison of Equation 24 with the equation of state
calculated above in Equation 19, shows that the two are
markedly di⇥erent. Most noticeably, Equation 24 scales
as ⇧�2N�1, and in the limit of infinitely long or infinitely
dense chains, approaches a constant value of 1.5, which is
negligibly small compared to Equation 19 which scales as
⇧2N . This supports the validity of the MSA approxima-
tion used above for long chains, where �vcc(r)⇤ �ccc(r).
Interestingly, in the opposite limit of infinite chain dilu-
tion, ⇧ch ⇤ 0, both Equation 19 and Equation 24 ap-
proach unity, recovering the equation of state for an ideal
gas.

In the context of this work, the potential of mean
force is another route to show the consistency between
the monomer and soft-colloid representations a polymer
melt. Factoring out a 1/R2

g and reintroducing the def-
initions of ⇤c and ⇤�, Equation 24 can be equivalently
written as

Zpmf
v = 1 +
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In the monomer representation, we again make use of
the PRISM thread limit result, for which gmm(r) is given
by Equation 3. Upon di⇥erentiation of Equation 3 with
respect to r, and insertion into Equation 22, one obtains
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which is identical with Equation 25 obtained in the soft-
colloidal representation.

The final contribution in Equation 8 to the pressure is
again calculated from Equation 15, and becomes

P

⇧chkBT
= 1 +

2
3
⌅⇧ch

⇤ ⇥

0
g(r)

dg(r)
dr

r3dr, (27)

which can be solved analytically using Equation 6, with
the solution,

Zhcc(r)
v = (28)

We are now in position to write the total equation of state
from the full HNC potential as Ztot

v = ZMSA
v + Zpmf

v +
Zhcc(r)

v . Not surprisingly, the addition of Equation 23
and Equation 28 results in a cancellation of the potential
of mean force term, leaving only

Ztot
v = 1 +
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N⌃3
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⇧

3
+

⌅2⇧2N⌃6

216
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The additional term in Equation 29 resulting from the
inclusion of the full HNC potential, scales as ... Thus,
for large N the MSA approximation for which �vcc(r) ⇥
�ccc(r) is increasingly valid and Ztot

v ⇥ ZMSA
v as given

by Equation 18.

C. The Compressibility Route

An alternative approach to calculate the thermody-
namic properties of fluids is to use the compressibility
route, which is derived in the grand canonical ensemble,
where particle number fluctuations may be readily ob-
tained, and is found to depend solely on density fluctua-
tions. More specifically, the reduced equation of state
obtained from the compressibility route, Zc, is deter-
mined by thermodynamic integration of the isothermal
compressibility, ⇥T , which is related to Ŝcc(k ⇤ 0), and
reads[? ]
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kBT
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⇤ �ch

0
d⇧[Ŝcc(0, ⇧)]�1]. (30)

Using the form of the reciprocal structure factor given
above by Equation 11, recalling that � = N |c0|⇧, the
integral in Equation 30 is readily solved to obtain the
compressibility equation of state, (Zc = �P/⇧ch). One
complication that arises when using a density dependent
potential in the compressibility equation of state is that
the density is the variable of integration. First, neglecting
the density dependence of |c0|, hence (c0(⇧) = c0) gives,

Zc =
N |c0|⇧

2
, (31)

which is identical with Equation 18, showing that the
compressibility route and the virial route in this case are
equivalent. Also, as shown in Section [] above, this is
equivalent with the monomer-level prediction.

Alternatively, one could introduce a density depen-
dence to c0, for example with the thread limit (Equation
4), and obtain a slightly di⇥erent expression. Insertion
of Equation 4 into [Ŝcc(0)]�1 = N |co|⇧, and subsequent
integration yields,
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Comparison of Equation 32 with Equation 19 shows that,
although not exactly identical, the di⇥erence between the
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Thermodynamic Inconsistency due to Numerical Optimizations �
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Energy and Pressure from MS-
MD simulations, using the full 
potential (squares) or the potential 
with h(r) cut at 3.5 Rg (circles)�

T = 450K ρm = 0.0328Å

Thermodynamic Inconsistency due to Numerical Optimizations �

•  Cutting the potential affects 
the structure of the simulated 
CG liquid within the error of 
the procedure. !

•  However it greatly affects the 
measured thermodynamic 
properties.!

•  Enhanced at large N   �

Anthony Clark �
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The dynamics measured in mesoscale simulations of the coarse-
grained system is unrealistically fast and needs to be rescaled !
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Predictions of Single-chain Diffusion Coefficients from !
mesoscale simulations of coarse-grained polymers!
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Rescaling is calculated from the ratio between MS and UA properties, 
solved analytically. MS-MD input: ρ, T, Rg �

1)  MS MD --> diffusion!

2)   !

3)  Re-scale friction!

DMS time rescaling−ENTROPY" →"""""" Dtime
MS

DMS

D = Dtime
MS ζ soft
Nζm

Entanglements relax on the same 
timescale than the entangled 
chain: one loop perturbation!
! Dβζm ' = N Dβζm( )2



COARSE-GRAINING and DYNAMICAL RESCALING - 1!

Grouping of microstates (blue dots) into!
progressively coarser states (ellipses) !
leads to increasing entropy (number of!
microstates in the corresponding ellipse)  !

Time rescaling due to increasing entropy�

~Rg(polymer)	


Obtained solving the LE for!
monomers dynamics!

t = tsimulRg 3mN 2kBT

H. C. Öttinger Beyond Equilibrium Thermodynamics (Wiley, Hoboken, N.J. 2005).�



COARSE-GRAINING and DYNAMICAL RESCALING - 2!

A polymer on three levels of description: an !
increasing number of fast processes are !
eliminated in favor of random fluctuations!
for the coarser description --> increasing !
friction. !

i�

j	


2) Rescaling of the friction coefficient!

Monomer!

Soft-colloid!

LJ CH2 UA mapped onto a hard-sphere d=2.1 A !

H. C. Öttinger Beyond Equilibrium Thermodynamics (Wiley, Hoboken, N.J. 2005).�



N-1!

N-2!

Comparison with Simulations I!

UA-MD simulations!
MS-MD simulations!

From rescaled MS-MD friction coefficient à 
local dynamics from Langevin Equation�
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TABLE I: MS-MD Parameters - UA-MD data
Polymer N T [K] � [sites/Å3] Rg [Å]

PE30a 30 400 0.0317 7.97
PE44a 44 400 0.0324 10.50
PE48b 48 450 0.0314 10.54
PE66a 66 448 0.0329 13.32
PE78b 78 450 0.0321 14.35
PE96a 96 448 0.0328 16.79
PE142b 142 450 0.0327 20.51
PE174b 174 450 0.0328 22.92
PE224b 224 450 0.0329 26.28
PE270b 270 450 0.0330 29.27
PE320b 320 450 0.0330 31.31
a data from ref. [14]; b data from ref. [3]

12

Rotational End-to-End TCF!

Data from: a) Mondello & Grest JCP 106, 327 (1997)!
b) Uhlherr et al. Europhys. Lett. 57, 506 (2002).!
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Comparison with experiments and predictions of new data 	




Comparison with simulations of a different polymer: PB!
Simulation in the NPT ensemble!
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The procedure is general, 
transferable, and predictive 
(different molecules, density, 
temperature, molecular weighs).�
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! ! ! !  !THE END �
by Jay �

CONCLUSIONS�

Analytical h(r) from OZ Eq.!
!
1)  Structural consistency!

2)  Thermodynamic consistency!

3)  Transferable!

4)  Analytical rescaling of the 
dynamics!

5)  Insights on how to achieve 
thermodynamic consistency 
in numerical methods!
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