
Gary Leal

Chemical Engineering at UCSB (also Materials and ME)

My group does theoretical and experimental work on fluid mechanics,

and the dynamics of complex fluids (polymeric liquids, suspensions,

colloids, emulsions/blends, surfactant systems etc.)

Our approach is typically from the continuum point of view, but 

various problems of interest have motivated us in the past few 

years to begin to try to engage multiscale and/or hybrid methods

TODAY

1) An idea of the type of problems that started 

us thinking about multiscale methods

2) A summary of our work on one aspect – namely coarse

graining methods applied to MD (Chia-Chun Fu)



We work on a number of  problems that might benefit 

from multiscale or hybrid computational analysis

•Polymer rheology: Rheological models for branching effects in 

non-linear flow conditions. Coupling between flow and concentration 

fields in polymer solutions.

We have already heard about “coarse graining” efforts to achieve 

mesoscopic  and continuum descriptions of polymeric liquids,

but our work has been strictly at the level of kinetic theory (e.g. reptation

theory) and  continuum models derived from these theories. 

•Vesicle dynamics; adhesion; line tension effects in hole dynamics; 

stability and roll-up of bilayer sheets;  via  Continuum models that 

treat the bilayer as a somewhat complicated elastic membrane

Many of the parameters in these models can be measured experimentally

and some can be explored directly via mesoscale models, 

but there is an obvious role for direct molecular predictions

too (and there is, of course, work in this direction via many people

including Frank Brown here at UCSB)



Our FOCUS for Multiscale Methods : 

problems that (likely) require molecular resolution in some 

localized part of a macroscopic flow domain where we can otherwise 

use continuum mechanics.

Two motivating problems:

•Drop Coalescence; rupture process for 

thin films 

•Nanobubble stability (focused on   

transport contributions, i.e. the 

continuum-based transport model 

of Detlef Lohse and Michael Brenner)

Next; a few words about these problems



Coalescence involves the rupture of the thin film between a pair of 

colliding drops: preceded by a complex process of film drainage and 

evolution of shape until a configuration is reached where van der Waals 

attraction across the film leads to rapid rupture and coalescence. 

There is no hydrodynamic instability and in the case of fluids with 

relatively weak van der Waals effects (e.g. polymeric fluids) continuum 

based calculations indicate that the film can thin locally to a few 

nanometers before it finally ruptures.

Not surprisingly, there is a problem when the continuum based 

description of this phenomena is compared with experiments 

Ref: Yoon, Baldessari, Ceniceros & Leal, Physics of Fluids,19 (2007)

Incompressible Newtonian fluids; van der Waals forces  included

via a disjoining pressure approximation; multiscale via boundary

integral methods with systematic local grid resolution



Predicted evolution of  the thin film shape (head-on)

- =0.19, Ca=0.015, R=27m, AH =3.210-21J  
(PBd drops in PDMS)

30 nm
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- hc/R ≈ 0.00034  

- hc ≈ 10 nm

30nm

Can the continuum treatment be extended this far?



Drainage time for head-on collision

tdG exp  
0.8

- Experiment

- Simulation &

scaling theory
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Scaling  with viscosity ratio

Scaling with capillary number

-Experiment and theory

(both numeric and scaling)

tdG   Ca4/3

tdG sim  
1

Predictions

R=27μm

(mainly implicated in film

thinning process

while film is still

macroscopic)

Data for PBd drops in PDMS (but identical for inverted system)
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 1    3.69x10
-8

 3    4.10x10
-9

 10  3.69x10
-10

 27  4.99x10
-11

 70  7.53x10
-12

Figure 15. The experimental data are represented by: 
solid triangles for R= 27.2 m, 
solid circles for  R= 40.1 m, 

solid squares for  R= 45.4 m.

tdG ~ R2/3

tdG ~ R5/4

theory

experiment

Scaling with drop size

(i.e. with                        )  
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(Mainly controls final stages 

of film thinning and rupture

when film is very thin)

λ= 0.19

Maybe multiscale

simulations could help?



Nanobubbles form spontaneously  on hydrophobic surfaces in

the presence of water (or water based fluids) containing an 

adsorbed gas (could be air). Expectation is that they should have 

a lifetime of a few microseconds, but they are observed to last 

for days.

The Lohse-Brenner picture of nanobubble stability is that it is 

established as a quasi-steady state with an active transport of gas 

into the surrounding fluid, and back via a recirculation mechanism 

into the bubble in the vicinity of the contact line.  

Nanobubbles



Dynamic equilibrium mechanism

for surface nanobubble

stabilization, D. Lohse and 

M. P. Brenner, PRL (2008)

Exit velocity: measured and

predicted via scaling

theory to be 3-4 m/s

Height of the jet in the

water required to lose 

momentum and turn around

is several microns 

A simulation “model” of this process would require an MD simulation of the 

bubble and a continuum description of the fluid domain 



Our focus (in joint work with Scott Shell)  has thus been on the development of methods

to cope with systems that combine the need for molecular (or possibly mesoscopic)

resolution in localized regions of a macroscopic (continuum) fluid domain.

3 Project areas:

1)  An adaption of the methods developed by Robbins for direct coupling between MD and 

continuum (for viscous flow systems where the macroscale problem can be solved via 

BI methods) with a few modest wrinkles; applied to steady flow problems such as 

shear flows with slip/no-slip boundaries.

Coupling of MD and Continuum via a mesoscale transition region

“Top-down”

2) Progress toward the development of a computational algorithm with MD coupled to continuum 

via an intermediate mesoscale fluctuating SPH description (SDPD ).

“Bottom up”

3) Coarse grain MD (Chia-Chun Fu) 



A Systematic Coarse-Graining of Molecular 
Dynamics Simulation 

 
KITP Physical Principles of Multiscale Modeling 

2012, May 10 
Chia-Chun Fu, Pandurang Kulkarni, Scott Shell and Gary Leal 

University of California, Santa Barbara 
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Systematic Coarse-graining 

Step1 

Step 2 

 

 

 

 

 

Step 3 

 

Detailed simulation of the target system 

Construct CG potential 

CG model, CG potential and DPD thermostat 

Recover g(r) and pressure Correct thermodynamics? 

Properties: g(r), Pressure, Transport coefficients 

Recover diffusion coefficient and viscosity 
Correct thermodynamics and dynamics? 

“To what extent can we systematically match a simple Lennard-Jones 
  fluid model using mesoscale (DPD-like) models?” 



Coarse-grained MD - Model 

• Target system: Lennard-Jones liquid @ T*=1.0 and ρ*=0.8 

                (Ar @ T = 120K and ρ = 1344 kg/m3) 

• CG system@ T*=1.0 and reduced number density 
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N0 = 1000 

CG = 10%  ρCG = 0.72         CG = 30%  ρCG = 0.56 
CG = 50%  ρCG = 0.40         CG = 70%  ρCG = 0.24 
CG = 90%  ρCG = 0.08 



From Prof. Lyubertsev’s talk on last Wednesday 

• To construct the effective interaction from a reference 
atomistic system:  

 

              1. Select R=θ(ri) 

              2. Find effective interactions for R by integrating   

                  out remaining DOFs 

               

 

              3. Practically,  

                         (1) force matching 

                         (2) match averages:  RDF or other averages. 
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W R =  − kT ln driδ R − θ ri  e−βH(ri ) 

W R1 … RN ≈   Veff (Rij )

i

 



• Iterative Boltzmann inversion (Reith, 2003) 

 

 

 

 

Methods for matching selected 
thermodynamic properties 
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1. converges based on uniqueness theorem 
     -- one to one relationship between pair potential and RDF. 
2.  qualitative convergence argument given in Soper, 1996.  
3.  state-point dependence 
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“potential of mean force”  UPMF 



• Pressure correction  (our work) 
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• RDF is mostly determined by the repulsive core of potential. 

  

Match structure (RDF) only 

(Weeks and Chandler, 1971) 
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• Pressure correction acts at the tail. 
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Match RDF & Pressure 
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• Pressure correction acts at the tail. 
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Match RDF & Pressure 
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• Cutoff length should be chosen carefully depending on 
the CG level or the CG simulation will not give any 
speedup. 
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Matching RDF 
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Are the CG potentials unique? 
A test with no coarse-graining to recover LJ potential 
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Are the CG potentials unique? 
A test with no coarse-graining to recover LJ potential 
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Matching RDF 
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Are the CG potentials unique? 
A test with no coarse-graining to recover LJ potential 

Matching RDF 
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Are the CG potentials unique? 
A test with no coarse-graining to recover LJ potential 

Matching RDF 

• After 10 iteration, the RDFs are virtually indistinguishable but 
the potential differs from the original LJ potential. 

• No further changes with more iterations. 
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Up1 

Matching RDF and pressure 
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What happens if we add the pressure correction? 
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Matching RDF and pressure 

What happens if we add the pressure correction? 
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Up30 

Recover the attractive tail 

What happens if we add the pressure correction? 
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• Initial RDFs due to U0 reflect original LJ system at 
reduced densities. 
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potential U0  

CG level = 90% CG level = 10% 
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Target RDF Target RDF 

U0 = ULJ U0 = ULJ 
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CG potential depends upon the initial guess for 
potential U0  

CG level = 90% CG level = 10% 

U0 = UPMF = -kT ln gtarget(r) 
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CG potential depends upon the initial guess for 
potential U0  
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RDF-optimized UCG 



• When ϕ is small (little coarse-graining), UCG depends on U0. 

• When ϕ is large (high coarse-graining), UCG is less sensitive to U0. 
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Match RDF 
Match RDF and P 

increasing CG level 



Viscosity – Reverse Non Equilibrium MD 

Diffusivity – Mean Square Displacement 
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(Muller-Plathe, 1999) 

Equations of motion: 

Galilean invariance: FD, FR depend on relative particle velocities and positions. 
Balance of FR and FD (fluctuation-dissipation) generates canonical ensemble.    

• Dissipative particle dynamics (DPD) thermostat 
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𝑟  𝑖 =
𝑝  
𝑖

𝑚𝑖

  𝑝  𝑖 =  𝐹 𝑖
𝐶 + 𝐹 𝑖

𝐷 + 𝐹 𝑖
𝑅  

Matching dynamics 

Dissipative term Random force term 



A self consistent friction coefficient can be found  
using the DPD thermostat. 

 

 

 

 

 

 

 

 

 is the DPD friction coefficient 
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The product of diffusion and viscosity roughly remains constant 
with various γ, as would be expected from Stokes-Einstein.  
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What happens if a non-Galilean-invariant thermostat is used,  
e.g., Langevin dynamics? 
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mr i =  −∇iU − mγr i +  2γkTmR(t) 

Diffusion 
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Problems and Future Work 
• Are the properties that we chose to match adequate for 

dynamic multiscale simulation, such that the underlying 
physics is not undermined? 

• Adaptive resolution – connect to MD.  
      Need special treatment in the buffer/transition region. 
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N0, M=2 N = N0/M  

Map into superatoms Lennard-Jones chain fluids 

CG level:  = (1-1/M) x 100% 

N   

CG L-J chain system 
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Other system- 
Lennard-Jones chain  



, 

, 

, Equation of motion 

Fluctuation-Dissipation theorem 

Galilean invariance 

Dynamics 

• Dissipative particle dynamics(DPD) Thermostat 

, 

, 
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=  −ζ 𝑤D(𝑟𝑖𝑗)(𝑟 𝑖𝑗 ∙ 𝑣  𝑖𝑗)𝑟 𝑖𝑗 

𝐹  𝑖
𝑅

=  −σ 𝑤R(𝑟𝑖𝑗)Θ𝑖𝑗𝑟 𝑖𝑗 

𝑣  𝑖𝑗 =  𝑣  𝑖 − 𝑣  𝑗 𝑟 𝑖𝑗 = 𝑟 𝑖 − 𝑟 𝑗 

σ2 = 𝑘B𝑇ζ 𝑤R(𝑟)
2

= 𝑤D(𝑟) 

Viscosity – Reverse Non Equilibrium MD 

(Muller-Plathe, 1999) 


	Leal_MultiScale12_KITP
	Fu_MultiScale12_KITP

