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 collective phenomena in amphiphilic systems 
e.g., pattern replication by copolymer materials 

supramolecular copolymers locally create 
“defectants” and avoid diffusive sorting   

Daoulas, Cavallo, Shenhar, Müller,  PRL 105, 108301 (2010) 
Weiss, Daoulas, Müller, Shenhar, Macro 44, 9773 (2011)  

Stoykovich, Kang, Daoulas, Liu, Liu, de Pablo,  
Müller, Nealey, ACS Nano 1, 168 (2007)  

suitable choice of “defectants”  allows 
directed assembly into irregular patterns  



effective interactions become weaker for large degree of coarse-graining  
         no (strict) excluded volume, soft, effective segments  can overlap,  
         rather enforce low compressibility on length scale of interest,  
``                                           ´´         -terms generate pairwise interactions 
                                                     particle-based description for MC, BD, DPD,  
                                                     or SCMF simulations  

top-down approach: minimal soft coarse-grained models  

with 

molecular architecture:  
Gaussian chain 

Müller, Smith, J. Polym. Sci. B 43, 934 (2005); Daoulas, Müller, JCP 125, 184904 (2006); Detcheverry, 
Kang, Daoulas, Müller, Nealey, de Pablo, Macromolecules 41, 4989 (2008); Pike, Detcheverry, Müller,  
de Pablo, JCP 131, 084903 (2009); Detcheverry, Pike, Nealey, Müller, de Pablo, PRL 102, 197801 (2009) 

bead-spring model with soft, pairwise interactions 



particle simulation and continuum description 
 system: symmetric, binary AB homopolymer blend 
 degrees of freedom: 

particle coordinates,                 composition field (and density), 
 

 model definition: 
intra- and intermolecular potentials      free-energy functional,   
(here: soft, coarse-grained model, SCMF)       (Ginzburg-Landau-de Gennes or Ohta-Kawasaki) 
single-chain dynamics            time-dependent GL theory 
(here: Rouse dynamics)                (model B according to Hohenberg & Halperin)  
segmental friction,            Onsager coefficient, 

 projection:   

Kawasaki, Sekimoto, Physica 143A , 349 (1987) 
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speed-up particle simulations by concurrent coupling 
question: why are particle simulations slow?    
 
1) barrier problem (b): 
      system has to overcome a free-energy barrier,  
      Kramer’s theory   
      solutions: WL sampling, conf.T-WL, conf. flooding, 
                      metadynamics, transition-path sampling, forward flux sampling, … 
                                                                    Dellago, Bolhuis, Adv. Polym. Sci 221, 167 (2008) 
2) time-scale problem (a): “intrinsically slow processes” 
      downhill in continuum free energy but small Onsager coefficient (response  
      to TD force) and/or two vastly different time scales (stiff equations) 
      stiff interaction dictates time step, weak interaction drives slow time evolution 
      solutions:   �reversible multiple time step MD (RESPA)  
                                                                    Tuckerman, Berne, Martyna, JCP 97, 1990 (1992) 
                        �SCMF simulation                       Müller, Smith J.Polym.Sci.B 43, 934 (2005)  
                                �HMM        E, Engquist, Li, Ren, Vanden-Eijnden, Comm. Comp. Phys. 2, 367 (2007) 



time scale and free-energy separation in polymer blends 
system: symmetric, binary AB homopolymer blend 
bonded interactions (stiff) 
non-bonded interactions (weak) 
        Ginzburg-Landau models do not include stiff bonded interactions 
        and approximate limiting slow time evolution 
recap: kinetics of phase separation in a symmetric binary polymer blend: 
•  spinodal decomposition  
•  Lifshitz-Slyozov coarsening (diffusive regime) 

Gibbs-Thomson equation 

 

•  alternative: droplet coagulation by Brownian motion  
     irrelevant due to large viscosity of polymer melt 
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to show: steps that involve particle simulation require a time of the order 

heterogeneous multiscale modeling (HMM) 
E, Ren, Vanden-Eijnden, J. Comp. Phys. 228, 5437 (2009)  

E et al, Com. Comp. Phys 2, 367 (2007)   



free-energy functional from restraint simulations 
idea: restrain the composition,                       , of particle model to fluctuate 
         around the order-parameter field,         , of the continuum description 
         (field-theoretic umbrella sampling for order-parameter field,         )  
 
 
 
 
 
 
                     strong coupling between particle model and continuum description 

inspired by Maragliano, Vanden-Eijnden, Chem. Phys. Lett. 426, 168 (2006) 

bead-spring model 

soft, non-bonded 

restrain composition 



free-energy functional from restraint simulations 
idea: restrain the composition,                       , of particle model to fluctuate 
         around the order-parameter field,         , of the continuum description 
         (field-theoretic umbrella sampling for order-parameter field,         )  
 
make an Ansatz for the continuum description with a few parameters 
determine parameters by comparing µ(r|m) with result of Ansatz  
 
GL model required, not “equation-free” Kevrekidis, Gear, Hummer AICHE J.  50, 1346 (2004) 
•  average over space (instead of time) to determine the few parameters  

            of the Ginzburg-Landau model (spatial homogeneity of GL model) 
•  result: Ginzburg-Landau model for a particle model at a specific state  

large time step Δt is limited by the condition that parameters  
do not vary on scale Δt 

     e.g., intrinsic structure of interface must not vary WSL vs SSL  
             but location of interface may move 
 Müller, EPJ Special Topics 177, 149 (2009) 



GL simulation of Lifshitz-Slyozov regime 
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heterogeneous multiscale modeling (HMM) 
E, Ren, Vanden-Eijnden, J. Comp. Phys. 228, 5437 (2009)  

E et al, Com. Comp. Phys 2, 367 (2007)   



Onsager coefficient from relaxation of simulations 
idea: study relaxation of restraint system towards equilibrium,  
         relaxation time of the constraint system is speeded-up by a factor 
 
 
 
 
 
 
 
 
 
 
 
 
      constraint system exponentially relaxes towards 
      with a fast relaxation time scale                                  (fraction of Rouse time)           



speed-up and scale separation 
question: What limits the increase of       ? 
•   accurate measurement of the chemical potential 
•   forces due to the restraint must be smaller than the original forces  
    that dictate the intrinsic kinetics of the particle model 

§   bonded force per segment 
§   non-bonded, thermodynamic force 
§   restraint force     

 
 
 relaxation rate is increase by a factor λN 
for small composition/density variations 
 
caveat : λN ≥ 1   not linear response,  
                             dynamic RPA fails 
       additional relaxation τ may be required 
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numerical results: Lishitz-Slyozov regime 

Müller, Daoulas, PRL 107, 227801 (2011)  



problem: find a physical reversible path  
                that identifies the barrier to stalk formation 
 
•  which “coordinates” describe transformation? 

particle coordinates in liquid are impractical because 
(i) missing entropy and (ii) permutation symmetry 
       use order parameter field 

            DFT suggests that collective densities are suitable 
  
•    compute free-energy functional  
 
            field-theoretic umbrella sampling,  
            on-the-fly string method (particle-based) 
•  find minimal free-energy path (MFP) in high- 

dimensional “coordinate” space (for functional           on collocation lattice) 
       improved string method 

b) collective transformation between morphologies  

 Dellago, Bolhuis, Adv.  
Polym. Sci 221, 167 (2008) 

Transition path from two apposed membranes to a stalk obtained by a combination of
particle simulations and string method
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The formation of an hourglass-shaped passage connecting two apposed membranes, i.e., a stalk,
is an essential initial step in membrane fusion. The most probably transition path from two sep-
arate membranes to a stalk, i.e., the minimum free energy path (MFEP), is constructed using a
combination of particle simulations and string method. For the reversible transition path in the
coarse-grained membrane model, a collective order parameter, m, can be identified as the local dif-
ference of hydrophilic and hydrophobic densities. In particle simulations, the free energy, F [m] as
a functional of m is not readily available. This difficulty is overcome by an equation-free approach,
where the morphology and the excess free energy along the MFEP is obtained by an on-the-fly string
method. The transition state is confirmed by direct diagonalization of order-parameter fluctuations
and by the probability of reaching either the stalk or bilayer morphology from different positions
along the MFEP.

Membrane fusion is essential for intracellular traffick-
ing, endo- and exocytosis, viral infection, and drug deliv-
ery [1]. The molecular mechanism of this collective bio-
physical process is only poorly understood because the
time (µs) and length (tens of nm) scale of the process
makes a direct experimental observation difficult. Theo-
ries using Helfrich’s Hamiltonian [2], self-consistent field
(SCF) theory [3, 4], and computer simulation have been
employed to predict the fusion pathway [5–10]. In all
the scenarios of membrane fusion, the initial step in-
volves an intermediate metastable state characterized by
an hourglass-shaped hydrophobic passage connecting two
opposing membranes, i.e., a stalk. Despite numerous pre-
vious studies, predicting the geometry and free-energy
barrier of stalk formation remains a challenge. In this
letter we examine the stalk formation using a combina-
tion of particle-based simulations and string method.

Coarse-grained, particle-based models are well suited
to address collective membrane processes because they
avoid the necessary approximation (e.g., small curva-
ture expansion) of analytic theory, account for molec-
ular lipid architectures, and include fluctuations. On the
other hand, the identification of reversible transforma-
tion paths of collective phenomena and the calculation
of the concomitant free-energy barriers present a chal-
lenging task [11]. This challenge is further complicated
by the fact that the free energy is not directly available
from simulation of particle-based models. One commonly
used strategy is to employ a subset of particle coordi-
nates, i.e., the reaction coordinates, to parameterize the
reversible transformation path. However, this approach
faces difficulties because (i) there exists no constructive
strategy for identifying the reaction coordinates and (ii)
the indistinguishability of the particles in a fluid has to
be accounted for. We overcome these difficulties by ap-
plying the string method [12–17] to our particle-based
model. The string method is an efficient method to iden-

tify the minimum free energy path (MFEP), correspond-
ing to the most probably transition path, on a free energy
landscape. It has been used in conjunction with the self-
consistent field theory (SCFT) to investigate pore forma-
tion in membranes [18] and transition between different
self-assembled morphologies of block copolymers [19]. In
the current study we use the string method with particle
simulations to construct the MFEP connecting a stalk
with two apposed bilayer membranes.
Specifically, we use the local density difference, m(r),

between the hydrophilic and hydrophobic species as the
collective variable. This local order parameter accounts
for the permutation symmetry of identical particles. For
a given set of particle coordinates, {r}, the corresponding
order parameter, m̂(r) (where the “hat” indicates the de-
pendence on {r}) can be calculated by a simply counting.
The free energy as a functional of m(r) is then defined
via a partial trace,

F [m]

kBT
= − ln

�
D[{r}] e−

H[{r}]
kBT δ [m(r)− m̂(r)] , (1)

where H denotes the Hamiltonian of the particle-based
model. Because the free-energy functional F is not di-
rectly available from particle simulations, we adopt an
equation-free approach [20] by evaluating the derivatives
of F on the fly using short simulations of a restrained
particle-based model. The basic idea is similar to the on-
the-fly string method proposed by Vanden-Eijden et al.
[15, 21]. We note that this on-the-fly string method has
been applied to single biomolecules. The current study
is the first application of this method to collective phe-
nomena involving many self-assembling molecules.
In the string method, a MFEP is described by a string

of states or morphologies, ms(r), indexed by a con-
tour variable s. In our application the string is dis-
cretized into Ns = 24 morphologies. The two ends of
the string are specified by a configuration of two apposed

E, Ren, Vanden-Eijnden, JCP 126, 164103 (2007) 
Maragliano, Vanden-Eijnden. Chem. Phys. Lett., 446, 182 (2007)  
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the scenarios of membrane fusion, the initial step in-
volves an intermediate metastable state characterized by
an hourglass-shaped hydrophobic passage connecting two
opposing membranes, i.e., a stalk. Despite numerous pre-
vious studies, predicting the geometry and free-energy
barrier of stalk formation remains a challenge. In this
letter we examine the stalk formation using a combina-
tion of particle-based simulations and string method.

Coarse-grained, particle-based models are well suited
to address collective membrane processes because they
avoid the necessary approximation (e.g., small curva-
ture expansion) of analytic theory, account for molec-
ular lipid architectures, and include fluctuations. On the
other hand, the identification of reversible transforma-
tion paths of collective phenomena and the calculation
of the concomitant free-energy barriers present a chal-
lenging task [11]. This challenge is further complicated
by the fact that the free energy is not directly available
from simulation of particle-based models. One commonly
used strategy is to employ a subset of particle coordi-
nates, i.e., the reaction coordinates, to parameterize the
reversible transformation path. However, this approach
faces difficulties because (i) there exists no constructive
strategy for identifying the reaction coordinates and (ii)
the indistinguishability of the particles in a fluid has to
be accounted for. We overcome these difficulties by ap-
plying the string method [12–17] to our particle-based
model. The string method is an efficient method to iden-
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ing to the most probably transition path, on a free energy
landscape. It has been used in conjunction with the self-
consistent field theory (SCFT) to investigate pore forma-
tion in membranes [18] and transition between different
self-assembled morphologies of block copolymers [19]. In
the current study we use the string method with particle
simulations to construct the MFEP connecting a stalk
with two apposed bilayer membranes.
Specifically, we use the local density difference, m(r),

between the hydrophilic and hydrophobic species as the
collective variable. This local order parameter accounts
for the permutation symmetry of identical particles. For
a given set of particle coordinates, {r}, the corresponding
order parameter, m̂(r) (where the “hat” indicates the de-
pendence on {r}) can be calculated by a simply counting.
The free energy as a functional of m(r) is then defined
via a partial trace,
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where H denotes the Hamiltonian of the particle-based
model. Because the free-energy functional F is not di-
rectly available from particle simulations, we adopt an
equation-free approach [20] by evaluating the derivatives
of F on the fly using short simulations of a restrained
particle-based model. The basic idea is similar to the on-
the-fly string method proposed by Vanden-Eijden et al.
[15, 21]. We note that this on-the-fly string method has
been applied to single biomolecules. The current study
is the first application of this method to collective phe-
nomena involving many self-assembling molecules.
In the string method, a MFEP is described by a string
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cretized into Ns = 24 morphologies. The two ends of
the string are specified by a configuration of two apposed
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the midplane of the stalk along the MFEP. Two apposing
bumps emerge from the initially flat bilayers, represent-
ing a localized, asymmetric thickening of the hydrophobic
core. The shape of the inner cis monolayers deforms as
to pass through the tip of the bump with minimal free
energy cost, while the outer trans monolayer remains al-
most unaltered. The distance between the tip position
of the apposing bumps has been identified as a reaction
coordinate for stalk formation in recent simulations using
the MARTINI model [8]. A saddle point is encountered
when the two hydrophobic cores of the apposing bumps
touch. Farther along the MFEP, the hourglass-shaped
hydrophobic passage widens until it becomes metastable.
In this metastable stalk morphology, the order parame-
ter is locally reduced at the hydrophobic interstices [2, 25]
where the portions of differently curved monolayers con-
tact each other. This small reduction of the hydrophobic
density of our compressible model signals the local pack-
ing frustration.

The free energy of the states along the MFEP can
be computed by integration using Eqs. (3) and (5)
(cf. Fig. 2). For the chosen membrane separation, the
formation of the bump (critical state) requires a free-
energy cost ∆F ∗

+/(γintd
2
0) ≈ 0.105. The relaxation from

the saddle point towards the metastable stalk decreases
the free energy by ∆F ∗

−/(γintd
2
0) ≈ −0.022. These val-

ues correspond to 16.3kBT and −3.4kBT , respectively,
for a lipid system, which are lower primarily due to
molecular density difference. The free-energy difference
between the metastable stalk and apposing bilayers is
then given by ∆Fstalk/(γintd20) ≈ 0.083 (corresponding
to about 13kBT in lipids), which is slightly smaller than
the predictions of SCFT (≈ 0.092) [3] for a very similar
model within the mean-field approximation. At the sad-
dle point, s∗ = 0.532, the transition state corresponds to
a volume of 29 linear amphiphilic molecules in our coarse-
grained model. This value corresponds to only one or two
lipid molecules, in agreement with previous simulations
[8]. The metastable stalk at sstalk ≈ 0.8 corresponds to a
volume of about 90 amphiphiles. These small values in-
dicate that fluctuations are important for lipid systems.

The calculation of the chemical potential via Eq. (5)
utilizes the λ → ∞-limit of the umbrella potential to
mimic the constraint partition function, Eq. (1). It is not
possible to increase λ ad infinitum because local Monte
Carlo moves, altering the order parameter, will be re-
jected at this limit. Therefore it is desirable to indepen-
dently verify the saddle-point morphology predicted from
the string method. The saddle-point morphology can be
obtained by diagonalizing the order-parameter fluctua-
tions in its vicinity [26–29]. This procedure does not
depend on the limit λ → ∞. It requires, however, a good
initial estimate for the saddle point, which is available
from the on-the-fly string method [15]. In the vicinity
of the saddle point, we make a quadratic Ansatz for the

Figure 2: (right axis) Free energy along the MFEP (black,
left axis) and the probability that configurations generated
with the constraint Hamiltonian Hc at mc = ms decay into
two apposed bilayers at a time 1.41τ0 after the constraint
has been removed (blue, right axis). Results have been ob-
tained for 256 independent configurations at each value of s.
The thermal energy scale, kBT , is indicated for our coarse-
grained membrane model and lipids. The inset presents a
configuration snapshot at the saddle point, s∗ = 0.532. Hy-
drophilic segments are colored yellow, hydrophobic segments
are shown in red, solvent particles are not shown. Only every
10th linear amphiphile is depicted. When we identifying one
double-tailed lipid with two linear amphiphiles, the molecular
density in the snapshot matches that of a lipid bilayer.

free-energy functional of the restrained system,

Fc[m]

kBT
=
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drdr�

[m(r)− �m̂(r)�c] [m(r�)− �m̂(r�)�c]
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�m̂(r)�c�m̂(r�)�c. Since Sc is real and symmetric, we can
decompose it in the form, Sc(r, r�) =
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µ µeµ(r)eµ(r

�),
with real eigenvalues µ and orthonormal eigenvectors
eµ(r). All eigenvalues µ are positive because the re-
strained system is stable. The free energy of the corre-
sponding un-restrained system can be written in a similar
form,
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where m∗(r) is the saddle point. These two free-

energy functionals are related via, F [m]
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2 [mc(r)−m(r)]2. Comparing Eqs. (6) and (7),
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S(r,r�) = 1
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− λδ(r − r�), leading to an
improved estimate for the saddle point,
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where !l and !r are Lagrange multipliers determined by the
constraints

!"l − "s! = !"r − "s! = h . "30#

"29# is a discretized version of "27# because

!V""l# = H""s#""l − "s# + O"h2# "31#

and similarly for !V""r#: here we used !V""s# and !"l−"s!
=h.

In practice, "29# can be solved by a two-step procedure.
At each time step, "r and "l is first evolved by the potential
force to give intermediate values,

"l
! = "l

n − #t ! V""l
n# , "32#

and similarly for "r
!; then the constraints in "30# are enforced

by projecting "l
! and "r

! to the sphere S"s,h
with center "s and

radius h,

"l
n+1 = "s + h

"l
! − "s

!"l
! − "s!

"33#

and similarly for "r
!. The steady-state solution of the proce-

dure above is used in "28# to calculate the tangent vector $̂s.
The parameter h in "28# should be chosen as small as

possible without impeding the accuracy with round-off er-
rors: if the digital precision is TOLmin, one should choose
h=TOLmin

1/2 , in which case the error due to finite difference in
"28# remains O"h2#=O"TOLmin#.

Notice that the time step #t in "32# can be chosen inde-
pendently of h without impeding on the accuracy because
"31# implies that !V""l#=O"h# and !V""r#=O"h#. As a re-
sult !"l

!−"l
n!=O"h# and !"r

!−"l
n!=O"h# and the two steps in

the procedure above do not interfere with the accuracy re-
gardless of what #t is. Since the convergence of the solution
of "29# is exponential in time, the number of steps nstep re-
quired to achieved a given accuracy TOL on $s scales as in
"23#.

Note that the above procedure brings "r and "l to the
minima of the potential energy V on the sphere S"s,h

by
steepest descent dynamics. More efficient constrained opti-
mization methods can be used as well to improve the con-
vergence rate and save computational cost.15

C. Illustrative example

In this example, we calculate the MEP, one of the saddle
point, and the associated unstable direction for the Mueller
potential.13

In the calculation, we first identify an approximation of
the MEP using the improved string method with N=10 im-
ages. Cubic splines were used in the reparametrization and
the forward Euler method with #t=4.5%10−4 was used in
the integration. After 70 time steps when d defined in "18# is
less than 0.1, we stop the string calculation, and identify the
image of maximum energy along the string, "s

0, and the cor-
responding $̂s

0. Then we switch to the climbing image algo-
rithm described in Sec. V A to improve "s

0, using again #t
=4.5%10−4 in "22#. The numerical result is shown in the

upper panel of Fig. 2. The figure shows the initial string
"dashed line# and the calculated MEP "filled circles#. The
background shows the contour lines of the Mueller potential.
There is an intermediate metastable state along the MEP, and
accordingly there are two saddle points. The empty circle on
the MEP indicates the location of the saddle point "s with
higher energy, obtained by the climbing image technique.
After convergence, the norm of the potential force at "s,
!!V""s#!, is smaller than 10−12. It takes 188 time steps to
reach this accuracy. The convergence history for the calcula-
tion of the saddle point is shown in the lower panel of Fig. 2.
The error decays exponentially with the iteration number or
time step n.

We then proceeded to calculate the unstable direction at
"s using the algorithm described in Sec. V B. We compared
the accuracy of the numerical results for different choices of
h.2,3,5,15 The numerical result is shown in the upper panel of
Fig. 3. Here the error is calculated by

FIG. 2. Upper panel: Initial string and calculated MEP using the string
method with ten images "the images are shown as filled circles; the lines are
the curves interpolated across these images; the vertical line is the initial
string and the other one is the calculated MEP#. The empty circle indicates
the saddle point identified by combining the string method with the climbing
image technique. The norm of the residual potential force at "s is smaller
than 10−12, !!V""s#!&10−12. The background shows the contour lines of the
Mueller potential. Lower panel: The norm of the force on the climbing
image !!V""s#! vs the number n of iterations or time steps. The convergence
is exponential in time.
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describe the transformation path by a  
string of morphologies ms(r) that is  
parameterized by a contour variable  
0 ≤ s ≤ 1 
 
the minimum free-energy path (MFP) 
is defined by condition that the derivative 
perpendicular to the path vanishes 
 
 
on-the-fly string method and improved string method: 
1.  evolve each morphology ms(r) as to minimize the free energy 

2.  re-parameterize the string to equal distance Δs (pointwise 3rd order spline) 
 
 

on-the-fly string method and improved string method  

E, Ren, Vanden-Eijnden, JCP 126, 164103 (2007) 
Maragliano, Vanden-Eijnden. Chem. Phys. Lett., 446, 182 (2007)  
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Figure 3: Dynamics of bilayer undulations

in a coarse-grained solvent-free membrane

model. (top) Normalized correlation function

F (q, t)/F (q, 0) of undulations as a function of

q2t (q wave vector, t time). For the sake of clar-

ity, the curves for different q are stacked with an

offset of 0.1. (bottom) The same functions as

before, but now for a simulation with Langevin

thermostat, which disrupts most inertia effects.

the condition, that the variation of the free energy perpendicular to the path vanishes

∇⊥F [m] = δF

δms(r) −
dms(r)

ds

�
d3r δF

δms(r)
dms(r)

ds
�

d3r
�

dms(r)
ds

�2
!= 0 (1)

In particle-based simulation models, the free-energy functional F [m] is unknown and

we use our field-theoretic umbrella sampling to compute the chemical potential. To this

end, we restrain order-parameter fluctuations by an umbrella potential at each point in

space (using a collocation grid) and add a contribution to the Hamiltonian [10–12]

∆Humbrella({r})
kBT

= λ

2

�
d3r

�
m(r) − m̂(r|{r})

�2
(2)

where m̂(r|{r}) denotes the order-parameter that is computed from the explicit coordi-

nates, {r}, of the particle configuration. In the large-λ limit, we compute the chemical

potential according to

µ(r) = δF

δms(r) ≈ kBTλ
�
m(r) − m̂(r|{r})

�

umbrella
(3)

Similar techniques have been used for single-molecule studies and are termed “on-the-fly”

string method [13, 14].

This general computational strategy has many possible application and with the com-

puter time at the JSC we want to study the transformation path involved in membrane

fusion and the ordering of block copolymer systems. Typically, the transformation path

is discretize in 24 or 32 configurations (see Fig. 1). For each configuration along the string

of morphologies we will compute the chemical potential via field-theoretic umbrella sam-

pling, Eq. (3). The Single-Chain-in-Mean-Field simulation of a single configuration can

efficiently employ 32 cores. Thus, a typical simulation will employ 512 to 1024 cores and

is well suited for the massively parallel jugene system.
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bilayers (the 0
th

morphology) and a stalk-like structure

(the (Ns + 1)
th

morphology). The squared distance be-

tween two morphologies, m1(r) and m2(r), is defined by

s212 ∝
�
dr [m1(r) −m2(r)]2. The MFEP is obtained by

demanding that the variation of F perpendicular to the

path vanishes,

∇⊥F [ms] =

�
dr ns(r)

δF [ms]

δm(r)
= 0 ∀s, (2)

with ns(r) = ms(r) −
∂ms
∂s

�
dr ms

∂ms
∂s�

dr (
∂ms
∂s )

2 . The free energy

along the MFEP can be computed by,

dF [ms]

ds
=

�
dr

∂ms(r)

∂s

δF [ms]

δm(r)
. (3)

The transition state, m∗
, is identified as the maximum

on the MFEP,
dF [ms]

ds = 0. We use the improved string

method to find the MFEP [15, 16], which consists of

a two-step cycle: (i) F is minimized by evolving the

morphologies according to ∆ms(r) = −µ(r|ms)∆ with

µ(r|m) =
δF [m]
δm(r) ; and (ii) ms(r) is re-parameterized via

a third-order spline at each point, r, to restore uniform

spacing of morphologies along the string. The driving

force for the string evolution is the derivative of F , which

is computed by restraining fluctuations of m(r) using an

umbrella potential [22, 23],

Hc[{r},mc]

kBT
=

H[{r}]

kBT
+

�
dr

λ

2
[mc(r)− m̂(r)]2 (4)

In the limit λ → ∞, the free energy of the restrained sys-

tem, Fc[mc] ≡ −kBT ln
�
D[{r}] e−

Hc[{r},mc]
kBT , converges

to the free-energy functional F [mc]. Differentiating with

respect to m(r), we obtain the chemical potential as the

restrained average of the microscopic order parameter,

δFc[mc]

δmc(r)
= λkBT [mc(r)− �m̂(r)�c]

λ→∞
→ µ(r|mc) (5)

The amphiphiles in our soft, coarse-grained model are

represented by chains composed of NA = 11 hydrophilic

(A) and NB = 21 hydrophobic (B) beads, and the sol-

vents by chains of N = 32 A beads. It has been shown

that this minimal model captures the universal prop-

erties of bilayer membranes [6, 7]. The Hamiltonian

H is comprised of bonded and non-bonded interactions

[24]. The bonded interactions take the form of a bead-

spring model,
Hb
kBT =

�N−1
t=1

3(N−1)
2Re

2 [ri(t+ 1)− ri(t)]
2 ,

where Re is the end-to-end distance of the amphiphiles.

The non-bonded interactions are given by
Hnb

kBT
√

N̄
=

�
dr
Re

[
κ0N
2 (φ̂A+φ̂B−1)

2−
χ0N
4 (φ̂A−φ̂B)

2
], with φ̂A(r) =

1
ρ0

�
i,s γA,i(t)δ(r−ri(t)), here γA,i(t) = 1 if the segment

t on molecule i is hydrophilic and zero otherwise. We dis-

cretize space in cells of linear dimensions, ∆L = Re/6 in

order to compute the local densities and define the micro-

scopic order parameter by m̂(r) = φ̂A − φ̂B . κ0N limits

Figure 1: Contour plot of the string ms(r) in the midplane

of the system; every second configuration is depicted. Hy-

drophobic regions are colored red, hydrophilic regions are

shown in blue.

fluctuations of the total density from the reference value,

ρ0. χ0N describes the repulsion between hydrophilic and

hydrophobic molecules. N̄ = (ρ0Re
3/N)

2
characterizes

the molecular density. We use the values κ0N = 50,

χ0N = 30, and

√

N̄ = 128, respectively. The strength of

the umbrella potential is set to λ = 25

√

N̄/R3
. Single-

Chain-in-Mean-Field simulations [24] in conjunction with

Smart Monte Carlo moves are used to sample the con-

figurations of the restrained particle-based model. It

takes τ0 = 28 400 Monte Carlo steps for an amphiphile

in a tensionless membrane to laterally diffuse a distance

3.64Re = 2d0. In order to estimate the chemical poten-

tial according to Eq. (5), we average over 3.38τ0 and then

we evolve the string with ∆ = 0.005Re
3/kBT

√

N̄ .

Within the SCFT, the tension-free model membrane

is characterized by a thickness, d0 ≈ 1.82Re, and

an interface tension between the hydrophobic and hy-

drophilic domains, γintd20/(kBT
√

N̄ ) ≈
�

χ0N/6(1 −

4 ln 2/χ0N)(d0/Re)
2 ≈ 6.72. These quantities are used to

identify length and energy scales. For biological lipids the

corresponding values are d0 ≈ 3.6nm and γintd20/kBT ≈

155. The molecular density in our coarse-grained model

is ρ0d30/N =

√

N̄ (d0/Re)
3 ≈ 772, which is larger than

that of a lipid system (≈ 35.8). The model system is

embedded in a box of size 3.3d0 × 2.2d0 × 2.2d0 with

periodic boundary conditions. The system contains two

bilayers of thickness 0.934d0 parallel to the y and z axis

and separated by a solvent layer of thickness 0.33d0. The
system is restrained by the umbrella potential, Eq. (4), in

a cylindrical volume of thickness 2.2d0 and radius 0.66d0.
The construction of the initial string started with its

two ends, which were taken as the order-parameter pro-

files of two apposed bilayers and the metastable stalk.

A third-order spline parameterization from the two ends

was then used to generate an initial string with Ns = 12.

In the early stages, we adjusted the ends to reduce fluctu-

ations [30] and doubled Ns to 24. After about 300τ0 the

string of morphologies finally converged to the MFEP.

Fig. 1 presents contour plots of the order parameter in
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Figure 1: Contour plot of the string ms(r) in the midplane

of the system; every second configuration is depicted. Hy-

drophobic regions are colored red, hydrophilic regions are

shown in blue.
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that of a lipid system (≈ 35.8). The model system is

embedded in a box of size 3.3d0 × 2.2d0 × 2.2d0 with

periodic boundary conditions. The system contains two

bilayers of thickness 0.934d0 parallel to the y and z axis

and separated by a solvent layer of thickness 0.33d0. The
system is restrained by the umbrella potential, Eq. (4), in

a cylindrical volume of thickness 2.2d0 and radius 0.66d0.
The construction of the initial string started with its

two ends, which were taken as the order-parameter pro-

files of two apposed bilayers and the metastable stalk.
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was then used to generate an initial string with Ns = 12.
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of the system; every second configuration is depicted. Hy-

drophobic regions are colored red, hydrophilic regions are
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characterizes

the molecular density. We use the values κ0N = 50,

χ0N = 30, and
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N̄ = 128, respectively. The strength of

the umbrella potential is set to λ = 25
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N̄/R3
. Single-

Chain-in-Mean-Field simulations [24] in conjunction with

Smart Monte Carlo moves are used to sample the con-

figurations of the restrained particle-based model. It

takes τ0 = 28 400 Monte Carlo steps for an amphiphile

in a tensionless membrane to laterally diffuse a distance

3.64Re = 2d0. In order to estimate the chemical poten-

tial according to Eq. (5), we average over 3.38τ0 and then

we evolve the string with ∆ = 0.005Re
3/kBT
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Within the SCFT, the tension-free model membrane

is characterized by a thickness, d0 ≈ 1.82Re, and

an interface tension between the hydrophobic and hy-

drophilic domains, γintd20/(kBT
√

N̄ ) ≈
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χ0N/6(1 −

4 ln 2/χ0N)(d0/Re)
2 ≈ 6.72. These quantities are used to

identify length and energy scales. For biological lipids the

corresponding values are d0 ≈ 3.6nm and γintd20/kBT ≈

155. The molecular density in our coarse-grained model

is ρ0d30/N =

√

N̄ (d0/Re)
3 ≈ 772, which is larger than

that of a lipid system (≈ 35.8). The model system is

embedded in a box of size 3.3d0 × 2.2d0 × 2.2d0 with

periodic boundary conditions. The system contains two

bilayers of thickness 0.934d0 parallel to the y and z axis

and separated by a solvent layer of thickness 0.33d0. The
system is restrained by the umbrella potential, Eq. (4), in

a cylindrical volume of thickness 2.2d0 and radius 0.66d0.
The construction of the initial string started with its

two ends, which were taken as the order-parameter pro-

files of two apposed bilayers and the metastable stalk.

A third-order spline parameterization from the two ends

was then used to generate an initial string with Ns = 12.

In the early stages, we adjusted the ends to reduce fluctu-

ations [30] and doubled Ns to 24. After about 300τ0 the

string of morphologies finally converged to the MFEP.

Fig. 1 presents contour plots of the order parameter in

string of morphologies for stalk formation  
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the midplane of the stalk along the MFEP. Two apposing
bumps emerge from the initially flat bilayers, represent-
ing a localized, asymmetric thickening of the hydrophobic
core. The shape of the inner cis monolayers deforms as
to pass through the tip of the bump with minimal free
energy cost, while the outer trans monolayer remains al-
most unaltered. The distance between the tip position
of the apposing bumps has been identified as a reaction
coordinate for stalk formation in recent simulations using
the MARTINI model [8]. A saddle point is encountered
when the two hydrophobic cores of the apposing bumps
touch. Farther along the MFEP, the hourglass-shaped
hydrophobic passage widens until it becomes metastable.
In this metastable stalk morphology, the order parame-
ter is locally reduced at the hydrophobic interstices [2, 25]
where the portions of differently curved monolayers con-
tact each other. This small reduction of the hydrophobic
density of our compressible model signals the local pack-
ing frustration.

The free energy of the states along the MFEP can
be computed by integration using Eqs. (3) and (5)
(cf. Fig. 2). For the chosen membrane separation, the
formation of the bump (critical state) requires a free-
energy cost ∆F ∗

+/(γintd
2
0) ≈ 0.105. The relaxation from

the saddle point towards the metastable stalk decreases
the free energy by ∆F ∗

−/(γintd
2
0) ≈ −0.022. These val-

ues correspond to 16.3kBT and −3.4kBT , respectively,
for a lipid system, which are lower primarily due to
molecular density difference. The free-energy difference
between the metastable stalk and apposing bilayers is
then given by ∆Fstalk/(γintd20) ≈ 0.083 (corresponding
to about 13kBT in lipids), which is slightly smaller than
the predictions of SCFT (≈ 0.092) [3] for a very similar
model within the mean-field approximation. At the sad-
dle point, s∗ = 0.532, the transition state corresponds to
a volume of 29 linear amphiphilic molecules in our coarse-
grained model. This value corresponds to only one or two
lipid molecules, in agreement with previous simulations
[8]. The metastable stalk at sstalk ≈ 0.8 corresponds to a
volume of about 90 amphiphiles. These small values in-
dicate that fluctuations are important for lipid systems.

The calculation of the chemical potential via Eq. (5)
utilizes the λ → ∞-limit of the umbrella potential to
mimic the constraint partition function, Eq. (1). It is not
possible to increase λ ad infinitum because local Monte
Carlo moves, altering the order parameter, will be re-
jected at this limit. Therefore it is desirable to indepen-
dently verify the saddle-point morphology predicted from
the string method. The saddle-point morphology can be
obtained by diagonalizing the order-parameter fluctua-
tions in its vicinity [26–29]. This procedure does not
depend on the limit λ → ∞. It requires, however, a good
initial estimate for the saddle point, which is available
from the on-the-fly string method [15]. In the vicinity
of the saddle point, we make a quadratic Ansatz for the

Figure 2: (right axis) Free energy along the MFEP (black,
left axis) and the probability that configurations generated
with the constraint Hamiltonian Hc at mc = ms decay into
two apposed bilayers at a time 1.41τ0 after the constraint
has been removed (blue, right axis). Results have been ob-
tained for 256 independent configurations at each value of s.
The thermal energy scale, kBT , is indicated for our coarse-
grained membrane model and lipids. The inset presents a
configuration snapshot at the saddle point, s∗ = 0.532. Hy-
drophilic segments are colored yellow, hydrophobic segments
are shown in red, solvent particles are not shown. Only every
10th linear amphiphile is depicted. When we identifying one
double-tailed lipid with two linear amphiphiles, the molecular
density in the snapshot matches that of a lipid bilayer.

free-energy functional of the restrained system,

Fc[m]

kBT
=

�
drdr�

[m(r)− �m̂(r)�c] [m(r�)− �m̂(r�)�c]
2Sc(r, r�)

,(6)

which is specified by the average local order parame-
ter �m̂(r)�c, and its variation Sc(r, r�) = �m̂(r)m̂(r�)�c −
�m̂(r)�c�m̂(r�)�c. Since Sc is real and symmetric, we can
decompose it in the form, Sc(r, r�) =

�
µ µeµ(r)eµ(r

�),
with real eigenvalues µ and orthonormal eigenvectors
eµ(r). All eigenvalues µ are positive because the re-
strained system is stable. The free energy of the corre-
sponding un-restrained system can be written in a similar
form,

F [m]

kBT
=

�
drdr�

[m(r)−m∗(r)] [m(r�)−m∗(r�)]

2S(r, r�)
, (7)

where m∗(r) is the saddle point. These two free-

energy functionals are related via, F [m]
kBT = Fc[m]

kBT −
�
dr λ

2 [mc(r)−m(r)]2. Comparing Eqs. (6) and (7),
we obtain, 1

S(r,r�) = 1
Sc(r,r�)

− λδ(r − r�), leading to an
improved estimate for the saddle point,

m∗(r) = �m̂(r)�c −
�

dr� S(r, r�)λ [mc(r
�)− �m̂(r�)�c]

≈ �m̂�c −
eµmax(r)
1

µmax
− λ

�
dr� eµλ [mc − �m̂�c] , (8)

free-energy barrier for stalk formation  
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