

Where Scattering and Modeling Meet: Structure and Dynamics of Poly Dots

Dvora Perahia

Clemson University

Clemson Sc

UCSB Multi Scale Modeling 2012

Acknowledgements

Prof .Uwe H.-F. Bunz U of Heidelberg

Prof Rakchart Traiphol Naresuan University, Thailand

Dr. Yunfei Jiang Behr Ltd

Dr. Gary S. Grest Sandia National Laboratory

Resources

\$\$	NSF
\$\$	Clemson University
CINT,	SNL
Neutrons:	NIST, SNS. Lujan Center
Comp Time :	Palmetto Cluster,
	Hopper NERSC DOE

Naresh Osti Sabina Maskey Clemson University

Organic Photo Voltaic Technology

Electrode, ~100 nm

Dynamics in Complex Fluids

Multiple Length Scale in Scattering

Wavelength Gobject Size Angstroms for Condensed Matter Research

$$\lambda[\text{Å}] = \frac{12.398}{E_{\text{ph}}[\text{keV}]}$$

Responsive Soft Materials

Soft Colloids

Clean Energy

200

Poly Dots

Organic Photo

Voltaic

Sensors

100 nm

>Elastic and Inelastic Scattering
 Lujan, HFIR, SNS, NIST
 >Computational Studies
 CINT

A Few Words on Scattering

- Elastic: Correlations Inelastic: Dynamics
- => Ensemble Average

ð.

Correlations in the Motion of Atoms in Liquid Argon*

A. Rahman

VI. CONCLUSIONS

A classical 864-body problem with a truncated twobody interaction of the Lennard-Jones type, with periodic boundary conditions is, by itself, a problem of interest, in which case the assumptions involved reduce simply to the assumptions in solving the set of differential equations as a set of difference equations.

The question of identifying such a system with a physical system like liquid argon is very difficult to answer on the basis of the limited amount of information presented in this paper. Firstly, the value of the diffu-

Poly Dots Overview

- Conjugated Polymers
- Poly Nano Dots
- Structure
- Dynamics

Conjugated Polymers

Organic Electro-Optical Devices

Self assembled Nano Clusters

Optically Active Polymer Nano Particles

Cellular-Imaging

- Cellular Targeted Treatments
- Sensing
- Building Blocks for Devi

Poly Dots Parent Polymer

poly(para-phenyleneethynylene) (PPE)

Bunz, U. H. F., Macromolecular Rapid Communications 2009, 30 (9-10), 772-805.

Poly Nano-Dots: Wish List

- Remain in Confined Geometry: for extended time while passing across membranes while assembled into devices
- Remain fluorescent in confined NP geometry.
- Remain optically active upon integration.

Challenges

Conjugated polymers are often rigid: folded into a nano particle does not yield a stable state

Conjugated polymers are highly interacting Integration may result in lost of optical activity

Single Molecules in Toluene

Single Molecules are Fully Extended!

Flexible and Semi Flexible Polymer Conformations

Conformation of a single Molecule

Extended conformation up to N=2000 in all solvents

Maskey, S.; Pierce, F.; Perahia, D.; Grest, G.S. J. Chem Phys. 2011

Structure From MD Simulations

Molecules are stretched out in good solvents

✤Backbone is stretched out

- Side chains lie away from the backbone
- Aromatic rings are not co-planar

Where are the solvent molecules?

Solvent-Molecule Resonance Time

Fraction of tol resides next to the PPEs longer than tol-tol in neat toluene

Single Molecules in Toluene: NSE Dynamics

 $S(q,t)/S(q,0) = A \exp[-D_{eff}(q) q^2 t]$

Effective Diffusion

Dynamics with a characteristic length scale that corresponds to the rigid segment of PPEs measured by SANS

Dynamics of A Single Molecule

Effective Diffusion on the Order of Magnitude of the Experimental Results
The side chains are significantly more dynamic than the backbone

Isolated Conjugated Polymer in Solvents

PPE molecules remain extended

No correlations are observed within the backbone

The polymer backbone remains dynamic

Toluene is associated with the PPE backbone.

What is Next? Assembly of the PPEs

Scattering: SANS \Leftrightarrow Structure

Line shapes and intensities are different

Shape of a Poly Dot

- In good solvent, stretched out conformation of the PPE
- Nano dots assume hard sphere shape in water

Open Questions

Internal Structure

Correlation between the aromatic rings Correlations between the side chains Density away from the surface

Internal dynamics

Backbone Side chain Dynamics away from the interface

Forces: What hold the NP together?

 Polymer chain was enclosed in a large sphere and radius of the sphere decreased as a function of time until nanoparticle of desired diameter formed.

Structure of Poly dots

Simulation

Experimental

> Experimental and computational results:

poly dots are spherical in shape

Structure of Poly dots

A full sphere with a bit of a density decrease at the interface

- In poor solvent, nanoparticle unravels at beginning but remains steady with time
- ✤ In good solvent, nanoparticle keeps on unraveling with time

Maskey, S.; Pierce, F.; Perahia, D.; Grest, G.S. CSRI Summer Report, Sa

R_g as a Function of Time

Maskey,S.; Pierce,F.;Perahia,D.;Grest,G.S. CSRI Summer Report, Sandia 2010. Maskey,S.; Pierce,F.;Perahia,D.;Grest,G.S. To be submitted

Side Chain Effects

- Rg increases as a function of time in good solvent.
- Rg remains constant in poor solvent.

Temperature has very little effect

Dynamics

The side Chains Remain Dynamics
 Limited motion is observed for the backbone

Summary

- □ Poly Dots are spherical objects
- No Internal Correlations within the backboneRemain Dynamic in Confinement

- **Future:**
 - Effects of the chemistry of the side chainsAssembly

Silica-NPs Grafted with PPEs in Poor Solvent

- Clusters of PPE chains are formed in poor solvent.
- With increase in molecular weight, the clusters become more distinct and PPE chains are branched.