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Topics biomolecular simulation group

0 peptide aggregation,
peptide- and protein-based materials

Q organic/inorganic hybrid materials

= Representability (thermodynamic &
structural properties)

© Transferability (change of concentration;

phase separation)

@ Interactions with surfaces & interfaces

zal composition

Oﬂfcﬁ@ﬂ

I |

“like proteins

lic macromolecule§

//
/-"‘




Topics biomolecular simulation group

0 peptide aggregation,
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Q organic/inorganic hybrid materials

0 formation of large protein aggregates
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Formation of large protein aggregates:
Multiscale simulation of virus capsids

Model system CCMV

(cowpea chlorotic mottle virus) ¢ RN

Interaction Dimerization

Motif
190
‘ y (COOH)

Capsomer

proposed

assembly
pathway

T3 capsid by cooperative
addition of dimers

Pentamer of
Dimers (POD)



Formation of large protein aggregates:
Multiscale simulation of virus capsids

Model system CCMV %%{33;“
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Formation of large protein aggregates:
Multiscale simulation of virus capsids

Model system CCMV CG / atomistic simulations of hexameric
(cowpea chlorotic mottle virus) and pentameric interface

Pentamer of 4'
Dimers (POD) 3 v a0k




Multiscale simulation of virus capsids

CG / atomistic simulations of hexameric and pentameric interface

Hexamer Pentamer



Multiscale simulation of virus capsids

CG / atomistic simulations of hexameric and pentameric interface

Setup:

position restrained regions

0 CG REMD simulations

CG model by 0 Clustering and free energy reweighting (WHAM)

Bereau & Deserno, J. Chem Phys 2009 o ] ]
0 Atomistic simulations after backmapping



Free energy F'[£]

The wild-type hexamer

- (a) hex-CG
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Cluster #

52%

very stable beta barrel — as it should be
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The Gly-mutant hexamer

- {a) hex-CG
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Cluster #

11%, 10% and 9.4%

no stable beta barrel — as it should be
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The pentamer — regular CG model

{a) hex-CG
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Cluster #

8.2%,5.6% and 5.1%

© no beta barrel
© multiple structures of similar stability

How “realistic” are these structures?
Is there no beta barrel possible in the
pentameric interface?
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The pentamer — beta-biased CG model

- (a) hex-CG
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Multiscale simulation of virus capsids

Structure of \
hexameric interface /{

reproduced in CG model

incl. mutants «
( ) S/
Why backmap?
{, © Comparison w. experiment

v A T
\ /l

L}g © Handing over to higher-resolution calculation (e.g. QM/MM)

| @ Assessing the CG model
compared to a (presumably) more accurate model

- ~ B T~

>

=» CG approach opens possibility to study these unstructured regions in proteins



What happens after backmapping ?

... at the hexameric interface:

Secondary structure of hexamer cluster 1
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What happens after backmapping ?

... at the pentameric interface:
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What happens after backmapping ?

... at the pentameric interface with “CG artifacts” :
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© How does one quantify this?

(In both cases the atomistic structure “runs away” from the CG one.

However for the “good” CG model, the ensembles still “appear to agree better)
© How does one assess the difference between CG and

atomistic model for rather shallow FE landscapes?



Can we do better than just backmap?

The simple case: CG and atomistic FE minima are deep and agree structurally

FE landscape: CG model

> kT

FE landscape: atomistic model

> kT




Can we do better than just backmap?

Another simple case: CG and atomistic FE minima are deep but the models “disagree”

FE landscape: CG model

> kT

FE landscape: atomistic model

> kT




Can we do better than just backmap?

But what if the landscapes are shallow?

FE landscape: CG model

FE landscape: atomistic model

» Use the CG model for sampling

» Backmap
» One option: Sample atomistically (multiple times) and recluster
» Or: “measure” the FE difference of the various basins between the models

» Note: one might want to not have to use an order parameter





