Topics biomolecular simulation group

- peptide aggregation,peptide- and protein-based materials
- □ organic/inorganic hybrid materials
- □ formation of large protein aggregates

Typical composition

Topics biomolecular simulation group

- peptide aggregation,peptide- and protein-based materials
- □ organic/inorganic hybrid materials
 - Representability (thermodynamic & structural properties)
 - Transferability (change of concentration; phase separation)
 - □ Interactions with surfaces & interfaces

Topics biomolecular simulation group

- peptide aggregation,peptide- and protein-based materials
- □ organic/inorganic hybrid materials
- □ formation of large protein aggregates

Christoph Globisch, MPI-P
Tristan Bereau, formerly CMU
Venky Krishnamani, CMU
Markus Deserno, CMU

Formation of large protein aggregates: Multiscale simulation of virus capsids

Formation of large protein aggregates: Multiscale simulation of virus capsids

Formation of large protein aggregates: Multiscale simulation of virus capsids

Multiscale simulation of virus capsids

CG / atomistic simulations of hexameric and pentameric interface

Multiscale simulation of virus capsids

CG / atomistic simulations of hexameric and pentameric interface

CG model by Bereau & Deserno, J. Chem Phys **2009**

- □ CG REMD simulations
- □ Clustering and free energy reweighting (WHAM)
- □ Atomistic simulations after backmapping

The wild-type hexamer

The Gly-mutant hexamer

11%, 10% and 9.4%

no stable beta barrel – as it should be

The pentamer – regular CG model

8.2%, 5.6% and 5.1%

- no beta barrel
- multiple structures of similar stability

How "realistic" are these structures? Is there no beta barrel possible in the pentameric interface?

The pentamer – beta-biased CG model

Multiscale simulation of virus capsids

Structure of hexameric interface reproduced in CG model (incl. mutants)

Why backmap?

- Comparison w. experiment
- ⇒ Handing over to higher-resolution calculation (e.g. QM/MM)
- Assessing the CG model compared to a (presumably) more accurate model
- → CG approach opens possibility to study these unstructured regions in proteins

What happens after backmapping?

... at the hexameric interface:

What happens after backmapping?

... at the pentameric interface:

What happens after backmapping?

... at the pentameric interface with "CG artifacts":

- → How does one quantify this?
 (In both cases the atomistic structure "runs away" from the CG one.
 However for the "good" CG model, the ensembles still "appear to agree better)
- ⇒ How does one assess the difference between CG and atomistic model for rather shallow FE landscapes?

Can we do better than just backmap?

The simple case: CG and atomistic FE minima are deep and agree structurally

Can we do better than just backmap?

Another simple case: CG and atomistic FE minima are deep but the models "disagree"

Can we do better than just backmap?

- ➤ Use the CG model for sampling
- ➤ Backmap
- ➤ One option: Sample atomistically (multiple times) and recluster
- Or: "measure" the FE difference of the various basins between the models
- ➤ Note: one might want to not have to use an order parameter