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Unexpected Fine Scale Behavior
Many models coarse-grain to same equations
→Micro model constructed to give a coarse-grained eqn (LB, SPH)  
can not be expected to give correct atomic and mesoscopic behavior

Nanomotor (C. Denniston & MOR, J. Chem Phys. 125, 214102, 2006)



Wetting + Conc. Gradient → Couette or 
Poisseuille-like flow between static walls
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Atomistic flows fit by generalized sharp interface 
boundary conditions down to scales ~ a few nm
• Stress balance →
• Slip boundary condition

Can get net mass flux with no drag, negative slip 
lengths, …
Velocities ~ m/s ,  stresses ~ MPa

General Slip Boundary Condition
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Phase-Field Model of Fluid-Fluid Interface
If  » a  coarse-grained F functional of , 
Square-gradient theories

Usually ignore K (odd in ), assume K>0
Often fix expand  as quartic polynomial in 

 None of these assumptions is good

 Obtain  and K’s from MD measurements of
coexistence line, and pressure and linear 
response near coexistence

 Fit gives surface tension and width that agrees
with MD results although not fit to them

Denniston & Robbins, Physical Review E69, 021505 (2004)
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Linear Response
•Apply perturbation:  sinqx,  =- sinqx

•Measure resulting q, q

L=2/2 + K q2 , …

•Find L’s linear in q2 to 2/q2,
but K,K<0

•Usual to add q4 terms if K<0
but expect K0 as q
since cost of forcing atoms
onto arbitrarily fine lattice0 
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Electro‐Wetting on Dielectric (EWOD)
Electrowetting → Change in contact angle with voltage
Allows: Fluid drops to be guided on surface

Drop shape to be changed – active lenses
Questions: Can mechanism be used at nanometer scale?

Why does contact angle saturate before perfect
wetting?

ΔV
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Electro‐Wetting on Dielectric (EWOD)
Equilibrium:   balance between interfacial tensions

Young’s eqn:  cos 0 + sl = sv

Apply V: Must add effect of electrostatic energy
Lippmann’s eqn.: cos  – cos 0 = є0 єr V2/2dcV2/2

c=capacitance per unit area
Electrocapillary view  surface tension reduced by     

electric energy per unit area: sl  sl - cV2/2 



Experiments: Saturation at High Voltage
Proposed explanations:
Negative effective tension  sl – cV2/2 < 0
Quinn et al., J. Phys. Chem. B109, 6268 (2005).

Field diverges as approach contact line
Dielectric breakdown  Charging of dielectric
Papathanasiou et al., J. Appl. Phys. 103, 034901, (2008)

Micro-droplet ejection
 Field overcomes 
Vallet et al. Eur. Phys. J. B11,

583 (1999)

If continuum  singularity
 atoms may matter
Moving contact lines,
cavity flow, …

SiO2 with Cytop coating
Gupta & Frechette

▬ Lippmann
■ Experiment Saturation



Nanoscale Simulations of EWOD

 Fluid – short bead-spring chains 4 to 8 beads at T~2Tg 
Covalent bonds on chain → UFENE =0.5kR0

2 ln[1-(r/R0)2]
Interchain →Lennard-Jones (LJ)  ULJ=4u[(/r)12-(/r)6]  

 Rigid solid substrate, discrete atoms w=0.61m-3

 Change solid-fluid binding energy usf to change θ0

 Charge one monomer on some chains to increase V
 Perfect conductor at depth D via image charges, uniform 
 Periodic boundary conditions:  Lx=114.6, Lz=10.6, Ly=2Lx

Correct to remove effect of periodic images along y
 Measure , sv-sl, capacitance c for uniform films – not fit
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Nanoscale Simulations of EWOD

Can express parameters in terms of key lengths    
normalized by molecular diameter 

Interface width ~ 3
Bjerrum length lB=e2/kBT  at lB interaction = kBT

Gouy-Chapman screening length
GC=e/2lBcV where cV is surface charge density

Continuum theory assumes all lengths ~0
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Electroosmotic Flow & Electrowetting
• Direct summation of long range interactions is 
prohibitive for large systems.

• Use particle‐particle particle‐mesh with multigrid
method for solving Poisson equation
Liu,  Wang, Chen and Robbins, J. Comput. Phys. 229, 7834-7847  (2010)
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Behavior Like that 
in  Macroscopic 
Experiments



Comparison to Lippmann Equation
Lines – Lippmann 
with no fit params.

∆ chain length 4 
■ chain length 8 

Green: diff. usf → θ0

Black lB=96
Red lB=12.32
Blue lB=4

As in experiment, θ follows Lippmann at small V then saturates
Saturation delayed for longer chains

since  not changed by length  molecular effect
Stronger screening, shorter lB, delays saturation



Comparison to Lippmann Equation
Lines – Lippmann 
with no fit params.

∆ chain length 4 
■ chain length 8 

Green: diff. usf → θ0

Black lB=96
Red lB=12.32
Blue lB=4

Not negative effective tension  sl – cV2/2 < 0 (Quinn et al., 2005).
sl ~ independent of chain length, arbitrarily large

No dielectric breakdown (Papathanasiou et al., 2008)
Not related to  as expected if microdroplet ejection (Vallet et al., ‘99)



Microscopic Force Balance Equation
Lippmann Equation derived from energy minimization with 
assumed geometry.  May be violated.
Forces must balance everywhere in simulation
Consider region around contact line.
fel,x = Force per length from 

electric field on charge
within region

Net force must be zero → fel,x =  [cos θ – cos θ0]

Reduces to Lippman if fringing fields don’t change
Then only change with position of edge is increase in area with 
energy cV2/2 → fel,x

Choose region big enough to include most of electric field ~5σ
Bigger than interface width ~3  capture entire surface tension

θ
svsl
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Test of Force Balance Equation

Force balance holds at all voltages BUT fel,x saturates.
Saturation depends on chain length. 
At high field molecules leave drop, screen field at drop edge 

∆ chain length 4 
■ chain length 8 

Green: diff. εsf →θ0

Black lB=96
Red lB=12.32
Blue lB=4

Lines assume bulk 
surface tensions.

saturation in 
Lippmann plot



Maximum Force on Charges at Interface
∆ chain length 4 
■ chain length 8 

Red lB=12.32
Blue lB=4

Lateral interfacial 
field Ex,i rises at 
different rates for 
different lB, D, … 

Saturates at value 
that only depends 
on chain length
Constant in 
saturation region 
of electrowetting

eE
x,

i
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Exp.: Saturation delayed for larger ions (Heikenfeld)
Saturation delayed for ac voltage (Ralston)



Microscopic Force Balance Equation
Lippmann Equation derived from energy minimization with 
assumed geometry.  May be violated.
Forces must balance everywhere in simulation
Consider region around contact line.
fel,x = Force per length from 

electric field on charge
within region

Net force must be zero → fel,x =  [cos θ – cos θ0]

Reduces to Lippman if fringing fields don’t change

As region shrinks in size, fel,x → 0 and θ→ θ0

although limited by finite width of interface

θ
svsl



fel,x



Electrowetting Conclusions
• Similar electrowetting in ~10nm and macroscopic drops
 Can extend applications to nanoscales

• Lippmann equation fails as V increases, V saturates
• Lateral force balance obeyed even after saturation
Negligible changes in ’s with V

• Saturation molecules pulled from drop at Ex,I that 
depends on molecular binding, size and not 
Screen fringing fields fel,x and limit increase in cos

• May control saturation by varying ionic binding



Model contact region atomistically, 
elastic deformations with finite-elements, 
constrain deformations in overlap region

Streamlines in L~0.3mm channel with moving 
top wall.  Atomistic solution in <1% of area 
(green) removes continuum singularity

Linking Atomistic and Continuum Regions
Three overlap regions where solve both continuum and MD
Outermost  Continuum solution gives MD boundary condition
Innermost  MD gives continuum boundary condition
Middle  Two solutions equilibrate independently

Fluids: Apply boundary conditions to velocities
Solids: Apply boundary conditions to displacements



Linking Atomistic and Continuum Regions
Three overlap regions where solve both continuum and MD
Outermost  Continuum solution gives MD boundary condition
Innermost  MD gives continuum boundary condition
Middle  Two solutions equilibrate independently

Fluids: Apply boundary conditions to velocities
Solids: Apply boundary conditions to displacements
Fluids: S. T. O’Connell & P. A. Thompson, Phys. Rev. E52, R5792, (1995)

Why not use forces instead of displacements/velocities?
E. G. Flekkoy, G. Wagner & J. Feder, Europhys. Lett. 52, 271 (2000)

Fluids – Position of boundary is undetermined 
→ drifts in response to fluctuations or systematic errors

General – Any error in constitutive relation creates problems in 
overlap region

Less sensitive when match displacements 
any global factor in stress is irrelevant                



Navier slip boundary condition

S

u||

Slip length
Knowledge of S,  and  completely 
characterizes a simple fluid.

u║w=S u║ w 
 stress

wall

Fluid Continuum – Incompressible Navier-Stokes
 

0u

u][1uuu 2



 


pt



Atomistic Region → Molecular Dynamics

: Characteristic length, particle diameter.
:  Characteristic energy. 
τ(m2/)1/2: Characteristic time of the potential.
rc: Cut-off distance, usually 2.2for fluids
Integrate with velocity-Verlet, time step ΔtMD=0.005τ

Determine parameters for fluid continuum model:
Temperature 1.1/kB, density =0.81m-3, viscosity =2.14-3.
Wall (111) surface of fcc crystal
Wall-fluid interaction wf controls flow boundary condition (BC)    

wf→ no-slip BC, S=0

Truncated and shifted Lennard-Jones potential



Continuum:  Incompressible Navier-Stokes (Projection method)
Atomistic: Molecular dynamics of Lennard-Jones atoms, no-slip

Potential: U(r) =4((/r)12 - (/r)6] ;   Units , 

Hybrid Algorithm Applied to Fluids
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MD  Continuum

Continuum  MD

Potential confines 
particles at y3

Insert/remove 
number of particles 
equal to net flux



Equation of Motion for Constrained Particles
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Finite Difference Scheme for the equation of motion:
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tFD=40tMD → Staggered time grid
Average MD over tFD to fix continuum boundary
Extrapolate continuum to integrate next MD interval



Particle Confinement and Mass Flux
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Werder et al. J. Comp. Phys. 205, 373 (2005)
claim artifacts, but use different implementation



Schematic of simulation

Continuum 

MD 

Overlap 

Still Wall 

Moving Wall U 

Dynamic Couette Flow
Hybrid solution (symbols) tracks 
full continuum (lines) as a function 
of time after motion starts

X. B. Nie, S. Y. Chen, W. N. E 
and M. O. Robbins, J. Fluid 

Mech. 2004.

tFE=40tMD

Use 10 realizations of 
MD, 1 continuum



Hybrid vs. MD    Hybrid vs. Continuum

Flow past a rough wall
Continuum 

MD

Overlap 

Still Wall 

Moving Wall U 

Streamlines from hybrid  MD
includes flow between regions

Continuum fails because doesn’t
match complex boundary
condition around bump



Including Heat Flux

Heat capacity cV, for 
incompressible fluid 

 
m
kE

TkNm
kc B

k
B

B
V 43.2

)(3
21

2
3

1
2

2 













  uuuu 2  pt
























































 



222
2 22

x
u

y
u

y
u

x
uTTu

t
Tc yxyx

V  

0 u



Coupling Scheme: Momentum and Energy
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X. Nie et al. JFM 500, 55-64 (2004)
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Robbins, J Comp. Phys. (2007)



Continuum 

MD 

Overlap 

Still Wall 

Moving Wall U 

Temperature in Steady State Couette Flow
At boundaries of overlap region:
rms MD veloc.  continuum T

Hybrid solution tracks pure MD

Reproduces behavior in fluid and
Kapitza resistance at solid-fluid 
interface

T2

T1



Unsteady Temperature Profiles

100-200 1000-3000

Increase T of top wall to 1.2 at t=0 follow evolution of T
Hybrid agrees with pure MD 
Hybrid has smaller statistical fluctuations since thermal 
noise only in MD region.  Ave. before coupling to cont.

50 independent sims. 50 independent sims.



Singular Cavity Flow

Corner flow Molecular scale
influences macroscopic forces

No-slip boundary condition  is 
discontinuous at corners a, b
Stress diverges as 1/r
Log divergence in total force

on wall

Only need atomic information near corners
 Use hybrid method that treats bulk with continuum  

Navier-Stokes equations, corners with MD

Continuum approach: Navier-Stokes + no-slip boundary condition (bc)     
Usually phenomenological no-slip bc has little effect at large scales
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Coupling in Overlap Region
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Continuum  MD
1) Average tangential MD velocity in 
shadowed bins forced to NS value:

2) Normal MD velocity constrained by 
matching mass flux at boundary

Have tested:
Agrees with pure MD calculations.
Independent of  continuum grid 1, 3 and 6and specific set of 
constrained velocities (within MD noise)

MD  Navier Stokes
Mean atomic velocity gives 
boundary condition to NS eqs.

X.B. Nie, S.Y. Chen and M. R. Robbins, Physics of Fluids 16, 3579 2004.



Treating Large Range of Length Scales
Problem: Size of atomistic region independent of system size L 

BUT time to equilibrate NS flow field grows with L.
Explicit dynamics approach limited to L~0.1m.

Solution: Multigrid and time approach
Integrate to steady state at each scale with optimum time step.
Iterate between scales till self-consistent (~10 times).

Result: Size limited only by onset of non-steady, turbulent flow
Show results for 0.3mm cavities.
> 10 orders of magnitude faster than fully atomistic
~ 20 minutes per iteration
Use average over 16 MD representations to accelerate       



Schematic of Local Refinement

M

Flow at each scale reaches steady state at its own 
characteristic time  (Phys. Rev. Lett. 96 134501 (2006))

Coarse ->Fine: Prolongation. Fine->Coarse: Restriction.

M



Multiscale Solution for Re=6400 (U=0.068)

• Ten grid levels, largest 256x256, others 64x64, smallest mesh 0.95
• Dashed lines: the regions expanded in successive plots. Final plot  MD region
• Stokes equations bottom corners self-similar under mag. by ~16 (red arrows)

This scaling is cut off by atomic structure.
• Computational time saving more than 1010 over fully atomistic.
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Stress along the moving wall
Three regions contribute to force F:

Atomistic, Stokes, high Re             Re=UL/

Re=25 – 6400

U=0.27 /τ

Re=6400

U=0.27 /τ

Breakdown of Stokes for r<S – atomistic or r>RI /U – inertial
Little change for r < RI as increase Re by increasing L
Large r contribution gives change in F for fixed U, atomic props.         
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Total Force on the Moving Wall
Re - only parameter in continuum theory
Find strong variation with U at fixed Re, atomic model

Re=400

U ()
○ 0.27
□0.68

Refff
U
F

StokesS 
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r<S    S<r<RI RI<r

fS given by assumption that stress saturates at S
S= 0.3+ 7UtLJ;            fRe is phenomenological fit



Similar Singularity at Moving Contact-Line
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consistently

Transformation:





Find Slip at Fluid-Fluid Interface
Choose wall-fluid coupling 
so no-slip far from contact 
line
BUT slip at fluid-fluid 
interface
Must build this into 
continuum model

This image cannot currently be displayed.
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Hybrid Scheme for Two Phase Flow: P->C

P->C: 

1. Average particle velocity to give continuum u

2. Determine the interface direction in the overlap 
from MD and constrain continuum interface

MD  

Continuum  

C->P  

P->C  
Overlap  



Hybrid Scheme for Two Phase Flow: C->P

1) Constrain velocities 
and mass flux as above

2) Force  the interface to 
follow continuum 
interface equation by 
putting a membrane in 
the overlap region.

3) Solve flow for given 
boundary and iterate 
until self-consistent

MD 

Continuum 

C->P 

P->C 
Overlap 

C->P:



Procedure to reach steady state in MD

• Fix the boundary shape to let the system reach steady state.

• Correct the boundary shape according to the new interface and then  
repeat the last step until the boundary and the interface shapes are 
consistent. 



Typical Results Near A Contact-line



Typical Results of the Whole Flow Field



Deviation from Cox Solution
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Time Extrapolation Scheme
Need different approach for dynamic problems

MD for short t
then extrapolate to 
continuum time
step

Problem:
Extrapolate 
signal AND noise



Couette flow driven by oscillating wall

x=y=15.6, tFD=10, 

t1 =t2=0.5 

Ten-fold extrapolation in time

x=y=31.3, tFD=50, 

t1 =t2=2.5 

Comm. In Comp. Phys. 4, 1279 (2008)



See Delay If No Time Extrapolation

Weinan E, W. Ren, and E. Vanden-Eijnden, and Yamamoto and 
collaborators have considered non-extrapolated case.  
OK if large time scale separation



Multi-scale modeling of contacts 
between self-affine surfaces

Contact geometry and stresses central to friction & adhesion
Real surfaces often rough on many scales  self-affine - δh~lH

Surfaces steeper at smaller scales, fractal contact regions,
most connected regions of contact at resolution of calculation
Not clear continuum mechanics applies

H=0.5

Self-affine surface Contact (blue) of self-affine surface



Hybrid model for 2d self-affine surfaces
Easily treat volumes with ~108 atoms

At edge of overlap region 
MD and FEM 
displacements provide 
BC’s for each other

FEM->MD

MD->FEMMD

overlapFEM



FNLennard-Jones (LJ) interactions
Discrete atoms near surface

Green’s function for multilayer 

interactions for substrate

Energy minimization, T=0

Systems up to 1012 atoms

Simulate up to 108 at surface

Simulate bulk: Greens function atoms

Ideal elastic FCC response

No plasticity/anharmonicity

rigid

rigid

Discrete Greens Function Approach


