Some theoretical considerations of the Adaptive Resolution Simulation (AdResS)

Han Wang
Institute for Mathematics, Freie Universität Berlin, Germany
Joint with: Carsten Hartmann, Christof Schütte, Luigi Delle Site (FUB)

12 Apr 2012

AdResS, Basic concepts

Coupling the two resolutions
 Representability problem

- Representability problem of water coarse graining: Structure (compressiblity) v.s. Pressure

Coupling the two resolutions

Representability problem

- Representability problem of water coarse graining: Structure (compressiblity) v.s. Pressure
- Pressure corrected coarse-grained model,

Coupling the two resolutions

Representability problem

- Representability problem of water coarse graining: Structure (compressiblity) v.s. Pressure
- Pressure corrected coarse-grained model,
- wrong density profile in hybrid region...

S. Poblete, et. al., J. Chem. Phys. 132, 114101 (2010)

With courtesy of Luigi Delle Site

Coupling the two resolutions

Effective grand-canonical approach ${ }^{1}$

- Use the structurally correct coarse-grained model (fit $g(r)$):
$-P_{A T} V \neq-P_{C G} V ; \rho \neq \rho_{0}$;

$$
g_{A T}(r)=g_{C G}(r) ; \kappa_{A T}=\kappa_{C G}
$$

${ }^{1}$ S. Fritsch et. al. Phy. Rev. Lett. (2012) in press.

Coupling the two resolutions

Effective grand-canonical approach ${ }^{1}$

- Use the structurally correct coarse-grained model (fit $g(r)$):
$-P_{A T} V \neq-P_{C G} V ; \rho \neq \rho_{0}$; $g_{A T}(r)=g_{C G}(r) ; \kappa_{A T}=\kappa_{C G}$
- The "thermodynamic force":

$$
\begin{aligned}
& -\left[P_{A T}+\frac{\rho_{0}}{M_{\alpha}} \int_{\Delta} \mathbf{F}^{\mathrm{th}}(x) \mathrm{d} x\right] V=-P_{C G} V \\
& \mathbf{F}_{\alpha}=\sum_{\beta} \mathbf{F}_{\alpha \beta}+\mathbf{F}^{\mathrm{th}}\left(x_{\alpha}\right) .
\end{aligned}
$$

${ }^{1}$ S. Fritsch et. al. Phy. Rev. Lett. (2012) in press.

Coupling the two resolutions

Effective grand-canonical approach ${ }^{1}$

- Use the structurally correct coarse-grained model (fit $g(r)$):
$-P_{A T} V \neq-P_{C G} V ; \rho \neq \rho_{0}$; $g_{A T}(r)=g_{C G}(r) ; \kappa_{A T}=\kappa_{C G}$
- The "thermodynamic force":

$$
\begin{aligned}
& -\left[P_{A T}+\frac{\rho_{0}}{M_{\alpha}} \int_{\Delta} F^{\mathrm{th}}(x) \mathrm{d} x\right] V=-P_{C G} V ; \\
& \mathbf{F}_{\alpha}=\sum_{\beta} \mathbf{F}_{\alpha \beta}+\mathbf{F}^{\mathrm{th}}\left(x_{\alpha}\right) .
\end{aligned}
$$

- Is AdResS a grand canonical simulation:

$$
\begin{equation*}
p(\mathbf{x}, N)=\frac{1}{\mathcal{Z}} e^{\beta \mu_{A T} N-\beta \mathcal{H}^{A T}(\mathbf{x})} \tag{?}
\end{equation*}
$$

${ }^{1}$ S. Fritsch et. al. Phy. Rev. Lett. (2012) in press.

Proof

- Notation:
atomistic $\mathbf{x}_{1} ; N_{1}$, hybrid $\mathbf{x}_{2} ; N_{2}$, coarse-grained $\mathbf{x}_{3} ; N_{3}$. so the target is:

$$
p\left(\mathbf{x}_{1}, N_{1}\right)=\frac{1}{\mathcal{Z}_{1}} e^{\beta \mu_{A T} N_{1}-\beta \mathcal{H}^{A T}\left(\mathbf{x}_{1}\right)}
$$

Proof

- Notation:
atomistic $\mathbf{x}_{1} ; N_{1}$, hybrid $\mathbf{x}_{2} ; N_{2}$, coarse-grained $\mathbf{x}_{3} ; N_{3}$. so the target is:

$$
p\left(\mathbf{x}_{1}, N_{1}\right)=\frac{1}{\mathcal{Z}_{1}} e^{\beta \mu_{A T} N_{1}-\beta \mathcal{H}^{A T}\left(\mathbf{x}_{1}\right)}
$$

- Firstly, fix the number of molecules in atomistic region:

$$
p\left(\mathbf{x}_{1}, N_{1}\right)=p\left(\mathbf{x}_{1} \mid N_{1}\right) p\left(N_{1}\right)
$$

we should prove:

$$
\begin{aligned}
p\left(\mathbf{x}_{1} \mid N_{1}\right) & =\frac{1}{Z_{N_{1}}} e^{-\beta \mathcal{H}^{A T}\left(\mathbf{x}_{1}\right)} \\
p\left(N_{1}\right) & =\frac{1}{\mathcal{Z}_{1}} e^{\beta \mu_{A T} N_{1}} Z_{N_{1}}
\end{aligned}
$$

Proof

- The atomistic region is a sub system embedded in the hybrid region.

$$
p\left(\mathbf{x}_{1} \mid N_{1}\right)=\sum_{N_{2}} \int p\left(\mathbf{x}_{1} \mid N_{1} ; \mathbf{x}_{2}, N_{2}\right) p\left(\mathbf{x}_{2}, N_{2} \mid N_{1}\right) \mathrm{d} \mathbf{x}_{2}
$$

Proof

- The atomistic region is a sub system embedded in the hybrid region.

$$
p\left(\mathbf{x}_{1} \mid N_{1}\right)=\sum_{N_{2}} \int p\left(\mathbf{x}_{1} \mid N_{1} ; \mathbf{x}_{2}, N_{2}\right) p\left(\mathbf{x}_{2}, N_{2} \mid N_{1}\right) \mathrm{d} \mathbf{x}_{2}
$$

- Fortunately, we have

$$
\begin{aligned}
p\left(\mathbf{x}_{1} \mid N_{1} ; \mathbf{x}_{2}, N_{2}\right) \propto & e^{-\beta \mathcal{H}^{A T}\left(\mathbf{x}_{1} ; \mathbf{x}_{2}, N_{2}\right)} \text { AT probability!! } \\
\mathcal{H}^{A T}\left(\mathbf{x}_{1} ; \mathbf{x}_{2}, N_{2}\right)= & \sum_{j=1}^{N_{1}} \frac{1}{2} m_{i} \mathbf{v}_{i}^{2}+\sum_{i, j=1}^{N_{1}} \frac{1}{2} U^{A T}\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right) \\
& +\sum_{i=1}^{N_{1}} \sum_{j=N_{1}+1}^{N_{2}} U^{A T}\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)
\end{aligned}
$$

Extension of the hybrid region

Necessary conditions for the hybrid region

- Do we have a right $p\left(\mathbf{x}_{2}, N_{2} \mid N_{1}\right)$?

Necessary conditions for the hybrid region

- Do we have a right $p\left(\mathbf{x}_{2}, N_{2} \mid N_{1}\right)$?
- Difficult to answer: do not have a Hamiltonian...

Necessary conditions for the hybrid region

- Do we have a right $p\left(\mathbf{x}_{2}, N_{2} \mid N_{1}\right)$?
- Difficult to answer: do not have a Hamiltonian...
- Necessary conditions: marginal probabilities
- First order: $\rho(x)$.
- Second order: $g(r)$.

Necessary conditions for the hybrid region

- Do we have a right $p\left(\mathbf{x}_{2}, N_{2} \mid N_{1}\right)$?
- Difficult to answer: do not have a Hamiltonian...
- Necessary conditions: marginal probabilities
- First order: $\rho(x)$.
- Second order: $g(r)$.
- The thermodynamic force approach gives the right $\rho(x)$.

Necessary conditions for the hybrid region

- Do we have a right $p\left(\mathbf{x}_{2}, N_{2} \mid N_{1}\right)$?
- Difficult to answer: do not have a Hamiltonian...
- Necessary conditions: marginal probabilities
- First order: $\rho(x)$.
- Second order: $g(r)$.
- The thermodynamic force approach gives the right $\rho(x)$.
- The extension of hybrid region gives the right $g(r)$.

Proof of molecule number probability

- the probability of N_{1} :

$$
p\left(\mathbf{x}_{1}, N_{1}\right)=p\left(\mathbf{x}_{1} \mid N_{1}\right) p\left(N_{1}\right)
$$

Proof of molecule number probability

- the probability of N_{1} :

$$
p\left(\mathbf{x}_{1}, N_{1}\right)=p\left(\mathbf{x}_{1} \mid N_{1}\right) p\left(N_{1}\right)
$$

- Assumptions:
- thermodynamics limit: $N_{2} \ll N_{1} \ll N_{3}$
- additive Hamiltonian of AT and CG regions:

$$
\mathcal{H}\left(\mathbf{x}_{1}, N_{1} ; \mathbf{x}_{3}, N_{3}\right)=\mathcal{H}^{A T}\left(\mathbf{x}_{1}, N_{1}\right)+\mathcal{H}^{C G}\left(\mathbf{x}_{3}, N_{3}\right) ; \quad N_{1}+N_{3}=N
$$

Proof of molecule number probability

- the probability of N_{1} :

$$
p\left(\mathbf{x}_{1}, N_{1}\right)=p\left(\mathbf{x}_{1} \mid N_{1}\right) p\left(N_{1}\right)
$$

- Assumptions:
- thermodynamics limit: $N_{2} \ll N_{1} \ll N_{3}$
- additive Hamiltonian of AT and CG regions:

$$
\mathcal{H}\left(\mathbf{x}_{1}, N_{1} ; \mathrm{x}_{3}, N_{3}\right)=\mathcal{H}^{A T}\left(\mathrm{x}_{1}, N_{1}\right)+\mathcal{H}^{C G}\left(\mathrm{x}_{3}, N_{3}\right) ; \quad N_{1}+N_{3}=N
$$

- we prove:
- First order accuracy: $\mu_{A T}=\mu_{C G} \leftarrow$ thermodynamics force.
- Second order accuracy: $\kappa_{A T}=\kappa_{C G} \leftarrow g_{A T}(r)=g_{C G}(r)$.

Thanks!

